Our vision is to reduce tremors by 80% via an affordable, compact device that restores direct surgeon control.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.

BACKGROUND
Laparoscopic surgery is a minimally invasive technique intended to reduce recovery time and patient pain. Hand tremors of the surgeon reduce precision and can cause adverse effects. For this reason, robotic laparoscopy has been designed to increase surgeon performance.

LIMITATIONS OF CURRENT SOLUTIONS
- Too expensive
- Too large for operation room
- Indirect User Interface
- Incompatible with existing instruments

PROJECT DESIGN
Problem:
Reduce Tremor while minimizing the impact of the tremor suppression device on the surgeon.

Solution:
By rapidly spinning a small mass, the gyroscopic forces created can passively reduce tremor, while allowing full freedom of motion for the surgeon.

LIMITED DESIGN
Disc Thickness = 0.50 in.