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Mass-modulation schemes for a class of wave energy

converters: Experiments, models, and efficacy

Christopher A. Diamonda, Carolyn Q. Judgeb,∗, Bayram Orazova, Ömer Savaşa, Oliver
M. O’Reillya

aDepartment of Mechanical Engineering, University of California at Berkeley, Berkeley CA 94720,

USA
bNaval Architecture and Ocean Engineering, United States Naval Academy, Annapolis, MD 21402,

USA

Abstract

In a recent series of works, mass-modulation schemes have been proposed for a class of
ocean wave energy converter (WEC). The goal of the schemes is to improve the energy
harvesting capabilities of these devices by taking advantage of the ambient water. How-
ever this improvement comes at the cost of increased system complexity and possible
impulse loadings at the instances where the mass changes. In the present work, experi-
mental results for a pair of these schemes are presented and one of them is shown to be
effective in increasing the energy harvesting potential of a WEC. Building and testing
prototype WECs is costly and challenging and so, in order to examine as wide a range of
parameters and designs as possible, a detailed two degree-of-freedom model is developed
for a WEC equipped with a mass-modulation scheme. Numerical analysis of the model
also shows the potential benefits of the mass-modulation scheme.

Keywords: Ocean Wave Energy Converter, Energy Harvesting, Piecewise-smooth
Dynamical Systems

1. Introduction

A subset of ocean wave energy converters (WEC) feature heaving buoys, utilizing
methods of energy extraction originally proposed in the mid 1970s (Evans, 1976, 1982;
Mei, 1976; Salter, 1974). These methods form the basis of much current research in
the area of ocean wave energy harvesting where part of the power of the incident waves
is converted to electrical power. As with many other energy harvesting devices that
exploit resonance, these devices have a relatively narrow bandwidth (Stephen, 2006;
Tang and Zuo, 2011). Consequently, accurately predicting and, if possible, actively
modifying the resonant behavior in response to changes in the frequency of the incident
waves is critical. Similar to energy harvesting devices in other application areas (see,
e.g., the recent review by Daqaq et al. (2014)), any improvement in the response in the
neighborhood of a resonance relative to an unmodified harvester will improve the appeal
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of the device. As a result, central issues in the type of WEC of interest in this paper are
modeling the dynamics of these devices (e.g., Falcão et al. (2012)) and the development
of control strategies which either actively tune a resonant frequency of these devices to
the frequency of the dominant incident waves (as in Dick (2005)) or latches the motion
of the WEC to that of the incident waves (as in Babarit et al. (2004); Falnes (2002)).

To improve the energy extraction capabilities of a buoy WEC that exploits resonance
phenomena, we have taken an approach different than the aforementioned schemes (which
either alter a resonant frequency or involve latching control). Instead, we have proposed
a scheme to vary the effective mass of the device within each wave cycle (see Figure
A.1). This modulation can be achieved by either trapping water and/or varying the
hydrodynamic added mass of the WEC in a manner that produces a state-dependent
switching of the mass parameter. The goal of this variation is to increase the velocity
of the relative heaving motion of the system thereby improving energy harvesting. Part
of the inspiration for the method came from the response amplification observed in the
resonant behavior of parametrically excited systems (see, e.g., Rhoads et al. (2008);
Rugar and Grütter (1991); Wirkus et al. (1998)).

In our earlier works, we proposed a heaving buoy WEC design that was distinguished
from contemporary WECs (see, e.g., Goggins and Finnegan (2014); McCabe (2013);
Vicente and Justino (2013); Yeung et al. (2011); Zurkinden et al. (2014)) by the afore-
mentioned mass-modulation scheme. This WEC design was analyzed in Orazov et al.
(2010, 2012) and an experimental prototype tested in Orazov (2011). The analysis of
Orazov et al. (2010, 2012) demonstrated that significant improvement in energy har-
vesting could be achieved using the innovative mass-modulation scheme. Furthermore,
in Orazov (2011), it was found that improvements in the energy harvested could be
achieved, but significant momentum losses which were neither anticipated nor modeled
in Orazov et al. (2010, 2012) were also observed. These losses were determined to be as-
sociated with momentum conservation at several discrete stages of the mass modulation.
The observed momentum loss necessitated exploration of alternative mass-modulation
schemes and the development of a new set of models.

The purpose of the present paper is to extend our earlier work (Diamond et al., 2013)
where new sets of mass-modulation schemes were presented, and a simple one degree-
of-freedom model was used to explore their efficacy. In the present paper, experimental
results for the optimal mass-modulation scheme, known as Scheme III, proposed in Dia-
mond et al. (2013) are presented. These experiments verify a potential improvement in
energy harvesting. However, the testing facility and prototype WEC allow only limited
adjustment of key design and environmental parameters. As these parameters affect the
optimality of any one given mass-modulation scheme, an enhanced model was sought
which could be used to determine the system’s sensitivity to a wider range of parame-
ters. The resulting two-degree-of-freedom model accounts for the momentum loss and
incorporates a more realistic representation of hydrodynamic interactions. The main
insight this model provides is to show that the mass modulation Scheme III will work
for a wide variety of parameter choices. Particularly important is a parameter related
to momentum loss: designing a WEC where the momentum loss associated with the
mass-modulation scheme is minimized is shown to be key.

An outline of the paper is as follows. First, we present a broader discussion of the
mass-modulation schemes. Next, we give a brief overview of the experiments on a system
similar to the first model described in Orazov et al. (2010) in Section 3.1 and show how
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they motivated the creation of the second model described in Diamond et al. (2013) and
exploration of new mass-modulation schemes. One such scheme, which we refer to as
Scheme III, was considered to be optimal for the one degree-of-freedom model used in
Diamond et al. (2013). In Section 3.2, results from a series of experiments on a prototype
WEC equipped with a power-take-off element (PTO) are presented. Next, in Section 4,
we establish the two-degree-of-freedom model for the WEC prototype which accommo-
dates hydrodynamic effects that were absent in our earlier single degree-of-freedom mod-
els. To facilitate using this model to explore parameter regimes for a mass-modulated
WEC, an energy harvesting metric is defined in Section 5. We discuss the effect on
our metric of varying individual parameters in Section 6 and present our conclusions in
Section 7.

2. Mass-Modulation Schemes

Heaving buoy ocean wave energy converters (WECs) harvest energy by exploiting
the oscillation of the buoy in response to incident waves. In order to optimize its energy
harvesting capabilities, the WEC is designed so that one of its resonant frequencies is close
to the dominant frequency of the incident waves. Designing and operating a buoy WEC
is challenging. Among the many challenges, WECs operate in a harsh environment where
maintenance can be difficult and the necessary design and wave tank testing of scaled
prototypes is expensive and time consuming. Clearly, any scheme that can effectively
improve the energy harvesting of a WEC is worth examining.

One scheme that we believe can improve the energy harvesting capabilities of a WEC
is a mass-modulation scheme. In such a scheme, the mass of an element of a WEC is
varied in time. This variation can take several forms. One option is to actively change
the geometry of one of the floats of the WEC and thereby change its hydrodynamic added
mass. Another option is to periodically enclose and later release a volume of water in
one of the floats. Such modulation takes advantage of the fluid environment and incident
waves and can be viewed as a form of parametric excitation. The latter is a well-known
phenomenon that has been used to amplify the response of oscillating systems (Rugar
and Grütter, 1991), in such varied settings as MEMS oscillators and oscillating water
columns (Olvera et al., 2007; Rhoads et al., 2008).

The first such mass-modulation scheme was examined in Orazov et al. (2010) and was
further investigated and improved in Diamond et al. (2013) and Orazov et al. (2012).
Referring to Figure A.1, in the present context of WECs, the mass of the inner float of
a buoy WEC is modulated in time. If the inner float is completely submerged as shown
in the figure, then the mass-modulation can be entirely attributed to the change in the
hydrodynamic added mass of the inner float as the flaps are opened and closed.

There are no theoretical restrictions on the frequency and duration of mass modula-
tion that may be specified. Indeed, there exist infinitely many mass-modulation schemes
that can be concocted. Generally, parametric excitation is most successful when it oc-
curs at around twice the fundamental, or natural, frequency of an oscillator. The naval
architecture of a heaving buoy WEC is such that its fundamental frequency is in the
neighborhood of the commonly encountered incident wave frequency. Thus, guided by
the literature (Olvera et al., 2007; Rhoads et al., 2008; Rugar and Grütter, 1991) on
parametric excitation, the initial work on these schemes in Orazov et al. (2010, 2012)
focused on modulation at approximately twice the frequency of wave forcing.
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While it is possible to conceive of a control system which would use the fluid sur-
rounding the WEC to modulate the mass in any conceivable manner, our focus has been
on the development and implementation of mass-modulation schemes that can be real-
ized passively. In our early designs, we found that passive mass modulation could be
implemented by alternatively allowing water flow, through some section of the WEC,
and blocking water flow through that same section. When the flow is blocked, a pressure
associated with the impeded flow and the inertial force of moving the newly trapped
volume of water are created, relative to the case where the flow was unimpeded. For a
given velocity, these effects are assumed to be proportional only to the acceleration of
the mass, and as such they may be grouped with a mass term. This results in an increase
in effective mass - a mass modulation.

Three such schemes are shown in Figure A.2. The schemes feature modulation by a
fraction µ of the mass MOff

1 of an inner float M1 when the mass is not being modulated
and the variables x1 and ẋ1 denote the respective (heaving or vertical) displacement and
velocity of M1. Thus the mass of M1 changes from

MOn
1 = MOff

1 + µMOff
1 (1)

to MOff
1 . It is critical to note here that the mass modulation µMOff

1 is dependent on
the state of the system and so the models for the WEC will feature state switching and
possibly impulsive loading when the mass of M1 changes from MOff

1 changes to MOn
1 and

vice versa.
For example, Figure A.3 illustrates two possible implementations of the mass-modulation

scheme shown in Figure A.2(c). The masses in this figure are connected by a power-take-
off system which is not shown and both heave in response to the incident waves. The
mass M1 is equipped with a mechanism that enables it change its effective mass by an
amount µMOff

1 . The realization shown in Figure A.3(i) only involves changes to the hy-
drodynamic added mass while the design shown in Figure A.3(ii) involves changes both
to the hydrodynamic added mass of M1 and an additional change in M1 due to the
enclosed mass of water:

(i) For the realization shown in Figure A.3(i), µMOff
1 is equal to the difference in the

hydrodynamic added mass of M1 when the flaps are in the open state compared to
the closed state.

(ii) For the realization shown in Figure A.3(ii), µMOff
1 is equal to the change in hydro-

dynamic added mass of M1 plus the effect of the enclosed mass.

The modulation scheme is accompanied by an impulsive loading on the mass M1 which
alters the dynamics of the WEC and this may have a detrimental effect on the harvesting
capabilities. Experimental results for Schemes I & III will be discussed in Section 3. We
also emphasize that the realization emphasized in this paper is the one shown in Figure
A.3(i).

It is not immediately apparent that a mass-modulation scheme should be effective
in improving the energy harvesting capabilities of a WEC. Such schemes are difficult to
faithfully model, are hindered in effectiveness by the increased damping and impulsive
loading introduced by the mass-modulation mechanism, and are difficult to implement
in a prototype. Part of the purpose of the present paper is to show how Scheme III
above overcomes many of the technical challenges of the earlier Schemes I and II and
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successfully yields improvements to energy harvesting. We illuminate this improvement
with the help of a model that is far more realistic than the ones used in our earlier works
(Diamond et al., 2013; Orazov, 2011; Orazov et al., 2010, 2012) and by experimental
testing of a prototype.

3. Experimental Results

While it is straightforward to propose a mass-modulation scheme, significant chal-
lenges arise when attempting to implement a scheme in a prototype. The first scheme
for which a prototype was designed and tested was Scheme I and the results of this test-
ing are recorded in Orazov’s dissertation (Orazov, 2011). We report these results below
in Section 3.1 because, among others, they serve to illuminate features of the mass mod-
ulation that weren’t considered in our earlier models. These results also bear contrast to
those for Scheme III which we report in Section 3.2.

3.1. Experimental Results: Scheme I

Initial experimental work involved the construction of a small scale prototype WEC
to verify the previously proposed (Orazov et al., 2010, 2012) mass-modulation Scheme
II at the UC Berkeley Tow Tank facility in Richmond, CA (Figure A.4). This facility
employed a hydraulically actuated and electronically controlled vertical-flap wave maker
to independently set incident wave frequency and amplitude.

As can be seen in Figure A.5, a scale prototype of the WEC was constructed of three
parts: an outer float and guides, an inner float which was concentric to the outer float,
and the water entrapment mechanism, which is rigidly attached to the inner float. Two
deviations were made from the earliest model in Orazov et al. (2010, 2012) and this
experiment: no power-take-off system, or power-take-off modeling damper, was imple-
mented, and a spring loaded latching mechanism that was to initiate the twice-per-period
mass modulation was simplified to a once-per-period mass modulation due to difficulties
in realizing the switching in the experimental setup. In terms of Figure A.2, Scheme I
was tested instead of Scheme II.

Figure A.6 shows two phase portraits, one simulation generated using a one degree-
of-freedom model in (a) and one physically realized (from this experiment) in (b). In
both we can observe a downward jump in velocity when the upper flaps close and mass
is effectively added, and it is notable that good agreement is seen between the modified
theory and the experiment generally. We invite the reader to contrast this jump in veloc-
ity with the corresponding portrait shown in Figure A.7 where no flaps are installed and
the mass is unmodulated: no velocity jump is observed when the flaps are absent. This
is a consequence of the conservation of momentum, which at the time of the experiments
reported in Orazov (2011) was not accounted for in the one degree-of-freedom model.
The jump’s appearance in Figure A.6 provoked a reassessment of the original theory and
the creation of an updated single mass model discussed in (Diamond et al., 2013, Eqns.
(1)–(4)). This updated model was used here to generate Figure A.6(a), which is in good
agreement with the measurements shown in Figure A.6(b).

Agreement between experimental results and theory, as modified by momentum con-
siderations in Diamond et al. (2013), was encouraging, but several questions provoked
by the experiment needed to be addressed. Power-proportional damping was absent in
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the experimental setup. Lack of this damping has the potential to alter the dynamics
from those specified by the model. Moreover, updated boundary conditions implemented
in light of momentum considerations mentioned above were incorporated into Diamond
et al. (2013). These conditions corresponded to Scheme III, and this scheme warranted
its own investigation.

3.2. Experimental Results: Scheme III

Improved experimental realization of the mass-modulated WEC required the addition
of a power-proportional damper. To model the damping provided by a PTO, a stepper
motor, rotated by the relative motion between the inner and outer floats via a rack-and-
pinion mechanism, was installed on the prototype. A discussion of this type of power
generator and its applicability to our model follows in Section 3.2.1. Additionally, testing
of Scheme III necessitated a new mechanism to modulate the mass. A simple, passive
mechanism was designed which is briefly presented in Section 3.2.2.

3.2.1. The Power-Take-Off Element

A simple PTO is constructed by placing a resistive load RL between two leads of a
properly configured common stepper motor. The rack-and-pinion mechanism translate
the relative heaving motion into a rotary motion at the shaft of the stepper motor, thus
generating power. Determination of the damping applied between the inner and outer
floats at a given relative velocity is dependent on the effective moment arm of the pin-
ion gear (rP ) and the torque τM generated by the motor at a given rotational speed

(τM = τM

(

θ̇;RL

)

). As the torque τM = τM (θ̇;RL) is generally not an analytic func-

tion, it was experimentally determined for a variety of resistive loads RL and rotational
speeds θ̇. Two motors - a Slo-Syn M062-FC-404B and a Slo-Syn M092-FD-416E - were
characterized by measuring the power applied to a third motor to rotate them at a known
speed with a known resistive load. A sample of the characterization data may be seen in
Figure A.8.

It is instructive to recall here from the literature on single degree-of-freedom mass-
spring-damper oscillators of the form mü+(be + c) u̇+ku = A cos (ωt) that are equipped
with a PTO modeled as beu̇ that optimal harvesting is achieved when ω2 = k

m
and

be = c (see, e.g., Salter (1974); Stephen (2006)). While the corresponding optimal
conditions are not known for the models employed in this paper, these results for the
simpler model serve as useful benchmarks. Referring to Figure A.8, it is readily apparent
that the damping provided by the stepper motor PTO is quite different than the linear
proportional damping that is typically considered in models for PTOs (Salter, 1974;
Stephen, 2006). In the latter works, the power P extracted by the PTO is assumed
proportional to the relative velocity vrel between the heaving bodies:

P = FPTO · vrel ≈ cPTOv
2
rel (2)

where cPTO is a positive constant. Similiarily in our models, the damping force is as-
sumed to be positively proportional to the relative velocity between the floats, through
the pinion gear of moment arm rp. For the sake of our models’ fidelity, we would desire

P ∼ cPTOr
2
pθ̇

2. As can be seen from Figure A.8, however, the damping torque is neg-
atively proportional to the speed of the relative velocity between the floats, where this
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proportionality is given by κτ , with a non-zero holding torque (a torque up to which the
motor can resist turning) τH . Moreover, the proportionality constant changes depending

on the operational velocity regime and load resistance: κτ = κτ

(

θ̇;RL

)

, and the hold-

ing torque additionally depends on the load resistance, or τH = τH (RL). Thus power
extracted by the PTO is given by

P = τM (θ̇;RL) · θ̇ = τH (RL) · θ̇ − κτ

(

θ̇;RL

)

· θ̇2. (3)

As such, the optimal damping for single degree-of-freedom oscillators mentioned above
could not be exactly recreated here. Regardless, this new PTO was used, as it would
affect the mass modulated and unmodulated versions of the prototype identically and
would be far more representative of a real system than that considered in the previous
experimental work. Additionally, we now take this opportunity to note a few methods
of enhancing this PTO.

If we restrict our attention to the area of low rotational speeds, or roughly less than ten
radians/second, we notice that the holding torque τH decreases, and the magnitude of the
torque/rotational speed proportionality increases, with increasing RL. For a direct rack-
and-pinion setup - one absent adjustable gearing - rp may easily be selected for these sort
of rotational speeds. This suggests that, if desired, there is the potential that the resistive
load RL could be adjusted via a control scheme, on some larger timescale, to achieve
a desired effective damping. If a variable gearing and clutch setup were incorporated
to interface the relative motion of the masses to the PTO, rp could be a function of
various parameters and even more general control schemes could be constructed to tune
the optimal damping in real time.

Additional study of the new type of damping, and determination of its optimal value,
may reveal a great deal about the desired PTO method for a mass modulated WEC, but
such an investigation is beyond the scope of the work presented here. In the end, only
the smaller M062-FC-404B was used, as it was experimentally determined that the larger
M092-FD-416E provided excessive damping for the prototype, effectively attenuating
almost all relative motion.

3.2.2. Scheme III Mass-Modulation Mechanism

Updated optimal mass modulation boundary conditions in Diamond et al. (2013)
necessitated a new mechanism and a passive, flap-based mechanism was desired for ease
of construction. In such a case Scheme III requires closing of the flaps, resulting in the
onset of the modulated-mass regime, at the points of zero velocity of the inner float, and
the opening of the flaps, resulting in onset of the unaltered mass regime, at the points
of maximum absolute velocity. These latter points coincide in time with those where
the maximum pressure is exerted by the surrounding fluid on the flaps if they are in the
closed position. We hypothesized that we could set the force resisting this pressure by the
flaps - for the maximum inner float velocities encountered in the previous experiments -
to be just defeated at these points of maximum velocity, closely approximating the mass
modulation we desired.

One set of flaps was able to provide the mass modulation in both directions, as
opposed to the two sets required previously for Scheme II which had caused significant
problems. The remaining pair of flaps were made of newly fabricated acrylic semicircles,
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identical in thickness to those considered previously for Scheme I, cut about 0.75 cm
shorter in radius than before. Large rubber semicircles were affixed to these flaps and,
by observationally verified trial and error, were cut down to the size corresponding to
flap opening due to fluid pressure at the moment of max velocity (approximately 191mm
long 85mm wide). Similar to (Orazov, 2011), this method of resisting fluid pressure,
and thus affecting added mass, was not remotely adjustable and was still dependent on
the characteristics of the incident wave, but it was much closer to the optimal mass-
modulation Scheme III discussed in Diamond et al. (2013). The same mechanism could
be made, in a more advanced prototype, to be remotely adjustable through a variety of
methods, but such was not necessary for the scope of our experiments.

3.2.3. Experimental Testing and Results

Apart from the aforementioned changes to the prototype, a few changes to the ex-
perimental procedure used in Orazov (2011) and discussed previously in Section 3.1 were
also made. First, power collected by the PTO was monitored in real time by an oscillo-
scope placed in parallel to one of the resistors between the leads of the PTO. Secondly,
the prototype was moored by three lines to the sides of the tow tank, rather than the
test platform (or carriage), as previously. Thirdly, the range of excitation frequencies
was changed from 0.60 Hz ≤ f ≤ 0.76 Hz to 0.65 Hz ≤ f ≤ 0.85 Hz: the addition of
the PTO was determined to have made the response of the prototype more regular to
a larger range of frequencies, and reduced the relative motion at frequencies below 0.65
Hz. Additionally, the excitation wave amplitude was increased from 10 ± 1 cm to ap-
proximately 15± 1.5 cm for all excitation frequencies for the same reason. Beyond these
changes, the experimental setup, experimental procedure, and data collection methods
are as they were in Orazov (2011), and we refer readers to this dissertation for more
detailed information.

A comparison of important system responses, for the modified prototype both with
and without mass modulation, for six selected incident wave forcing frequencies is pre-
sented in Table A.1. For ease of comparison, we have also attached a table of system
responses from the initial testing in Table A.2. Additionally, we note that mean values
are computed in the root-mean-square (RMS) sense, i.e.

f(t)RMS =

√

1

Tf − T0

∫ Tf

T0

f(τ)2 dτ

Firstly, and perhaps most important, we can see the effect of changing the mass-
modulation regime; at no testing frequency in the current experiment was the RMS rela-
tive velocity with mass modulation found to be less than that without mass modulation.
Under the previous regime, this was not the case: notice that when the forcing frequency
was more than 0.2 Hz away from the estimated fundamental frequency f0 = 0.66 Hz of
the WEC prototype, the RMS relative velocity is less in the mass modulated case. No-
tably, the RMS relative velocity without mass modulation only matched that with mass
modulation at the forcing frequency of f = 0.800 Hz. It is likely that this frequency is
close to a local minimum in the system’s response ∆vRMS (f) between the fundamental
frequency f0 and some harmonic fn.

Secondly, the RMS relative velocity with mass modulation is significantly larger than
was the case without mass modulation at most frequencies, doubling the case without
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mass modulation at f = 0.650, 0.675, and 0.750 Hz. Examining the RMS inner mass
velocity at the various testing frequencies reveals that, in most of the cases, the values
with mass modulation are lower than those without, so we suspected that the mass
modulation was affecting a greater average phase lag of the velocity of the inner mass
relative to the outer float, τ̄ . These values were calculated and may be seen in Table A.3.
It is evident that mass modulation results in a larger phase lag than that seen without
mass modulation, so it can be deduced that this plays at least some part in overcoming
the reduced RMS velocity of the inner float in the mass modulated case.

Finally, and also seen in Table A.3, we calculated the RMS power delivered by the
PTO with the resistive load RL = 4.6 Ω attached at both of the lead pairs. Again we
can see that, excepting the forcing frequency f = 0.800 Hz (where the power is similar
in both cases), the addition of mass modulation results in greater generated power. It
cannot be emphasized enough that this result was for an effective damping fundamentally
dissimilar from the viscous damping assumed in the theory, and for a curve of that
dissimilar damping that was selected without much evidence as to its optimality. This
points towards the robustness of mass modulation’s effect on power harvesting. The
frequency excepted from this trend may be explained by appealing to the RMS relative
velocities in both cases: they are very close, and as such it is not at all surprising that
the RMS power extracted might be slightly lower in the mass modulated case, as the
process of producing an RMS mean in velocity would miss nonlinearities in the power
generation that would matter to the RMS mean of power.

The above results point to validation of the incorporation of phase-dependent mass
modulation on a buoy-type WEC or, more specifically, an effective modulation achieved
by blocking the free-flow of water through some part of a WEC, twice a period, thus
harnessing an added mass effect. Generally, these results also show that mass modulation
is realizable on a buoy type WEC even in the (comparatively) unrefined prototype stage.
In the authors’ opinion, it was suspected that mass modulation would be realizable on a
buoy type WEC of arbitrary geometry with appropriate alternating flow-through/flow-
blocking areas.

There are still some questions as to the robustness of Scheme III mass-modulation.
Our experimental work had taken place on a scaled-down prototype of (obviously) spe-
cific inner and outer float mass and geometry. How might the scheme perform if these
parameters were drastically different? How might hydrodynamic damping of the masses
and between the masses, particularly if taken as a function of forcing frequency, change
the performance? How might the performance change over a free selection of added mass
onset and removal in phase space? Generally, we desired the ability to perform some sort
of a numerical sensitivity analysis on a more advanced system to a wide variety of design
and environmental parameters which would be extremely difficult or impossible to change
in an experimental setup. From such an analysis, we could extend the specific conclusion
from the experiment - that mass modulation is beneficial to WEC power harvesting for
a wide range of incident frequencies - from our specific prototype to a larger subset of
WECs. Accordingly, we now examine a two-degree-of-freedom model subject to such a
numerical analysis below.
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4. Two Degree-of-Freedom Model for the Wave Energy Converter

To perform our numerical analysis, a new hybrid-dynamical model is necessitated. We
model the heaving buoy WEC as a two-degree-of-freedom mass-spring-dashpot system.
The mass M2 models the upper floating body while M1 models the submerged body
(inner float) which is connected to M2 by a PTO. A schematic of the oscillator is shown
in Figure A.11 and is a more comprehensive model than the one analyzed in earlier works
(Diamond et al., 2013; Orazov, 2011; Orazov et al., 2010, 2012; Rougirel, 2013). By way
of background, the stiffnesses k1,2,3 and viscous damping parameters c1,2,3 in the model
represent both mechanical and hydrodynamical forces on the masses. Here, c2 = c′2 +B,
where B is the damping contribution exclusively from the PTO. In a typical operating
environment for the WEC, the six parameters k1,2,3 and c1,2,3 generally depend on the
frequency ω of the incident forcing. As discussed in the forthcoming subsections, these
parameters along with the mass M1 may also depend on the mass modulation.

4.1. Mass-modulation

The unique feature of the model is that the mass M1 of the inner float varies in a
state-dependent manner. That is, if x1 denotes the displacement of M1, then the mass
of M1 depends on the value of the pair (x1, ẋ1). The locations in the x1− ẋ1 phase plane
where the mass changes (cf. Figure A.12) are known as switching boundaries S and
the conditions under which M1 changes are known as switching conditions. Referring
to Figure A.12, we follow Diamond et al. (2013) and define two angles α and β for
the locations of the switching boundaries. More simply, referring to Figure A.12, it is
convenient to define

θ = arctan

(

x1

ẋ1

)

, 0 ≤ θ < 2π (4)

so that

θ ∈

{

TA if α < θ < α+ β or α < θ − π < α+ β

T0 otherwise
(5)

where TA and T0 are the sets of all θ in the mass-modulated and rest mass regimes,
respectively. Then, between angle α in the phase plane (defined off of the positive ẋ1-
axis) and angle β (defined off of the ray created by α) the inner mass is equal to MOn

1

(its modulated mass); this is repeated between α + π and β + π. In all other regions,
the inner mass is equal to MOff

1 (its unmodulated mass). The relationship between
these two masses is represented by µ, a non-dimensional number indicating the increased
hydrodynamic mass as a fraction of the original mass:

µ =
MOn

1 −MOff
1

MOff
1

(6)

4.2. Impulse Momentum Considerations

The mass modulation of M1 is paired with a conservation condition at the boundary
S which models the momentum transfer due to the change in mass. Generally, the change
in momentum at a switching boundary is equivalent to an impulse G on the system at
that moment:

M+
1 ẋ+

1 −M−

1 ẋ−

1 = G
10



Here, ẋ−

1 is the velocity at the instant just before the phase flow (x1(t), ẋ1(t)) pierces
the switching boundary S and ẋ+

1 is the velocity at the instant just after the phase flow
pierces the switching boundary S, with M±

1 defined similarly. As G is the result of fluid-
body interactions that are difficult to characterize analytically, we choose to approximate
G as some fraction of the pre-boundary momentum:

G = −(1− ǫ)M−

1 ẋ−

1

such that
M+

1 ẋ+
1 = ǫM−

1 ẋ−

1

where (1 − ǫ) is a (constant) coefficient indicating the amount of momentum loss across
S.

By varying ǫ, we may estimate the varying effect of the impulse G without explicitly
determining it. In Orazov et al. (2010, 2012) and Rougirel (2013), the case ǫ = (1 + µ)
was exclusively considered. This prescription for ǫ can be questioned on physical grounds
because it implies that a positive impulsive force is needed to achieve the mass modu-
lation. Because such an impulsive force is absent in physical realizations of the WEC,
we expect that without external momentum impulse ǫ ≤ 1. Such a prescription makes
sense intuitively, as one would not expect an increase in momentum across any switching
boundary without external forcing. With this in mind, we may consider two cases for
the switching condition. The first pertains to when the fluid flow is blocked (the mass is
modulated):

MOn
1 ẋ+

1 = ǫMOff
1 ẋ−

1 (7)

When the fluid flow is allowed (the mass is unmodulated), the switching condition is

MOff
1 ẋ+

1 = ǫMOn
1 ẋ−

1 (8)

This condition pertains to the case when the phase flow passes through the switching
boundary S and the mass changes from MOn

1 to MOff
1 . Finally, we note that the mod-

ulation scheme is to be designed such that it is one-directional in phase space. In other
words, consulting Figure A.12, for counter-clockwise phase flow the switching is only
activated upon crossing S in a counter-clockwise direction, so any clockwise jumps due
to modulation across S do not affect a modulation.

4.3. Equations of Motion

The equations of motion for the system are, as derived from a balance of linear
momentum on the idealization of a two-degree-of-freedom oscillator presented in Figure
A.11.

[

M1ẍ1

M2ẍ2

]

+

[

c1 + c2 −c2
−c2 c2 + c3

] [

ẋ1

ẋ2

]

+

[

k1 + k2 −k2
−k2 k2 + k3

] [

x1

x2

]

=

[

F1 sin(ωf t+ φ)
F2 sin(ωf t)

]

(9)

Here φ is the phase separation of the forcing F1 on M1 relative to the forcing F2 on M2.
It is convenient to non-dimensionalize (9). To this end, we choose a length scale ℓ and a
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stiffness k1. In a standard fashion, these choices lead to a set of dimensionless variables
and parameters:

x̃λ =
xλ

ℓ
, τ =

√

k1
M20

t, κi =
ki
k1

, δi =
ci

2
√

k1M20

(10)

m1 =
M1

M20

, m2 =
M2

M20

, fλ =
Fλ

k1ℓ
, ω =

√

M20

k1
ωf (11)

with i = 1, 2, 3 and λ = 1, 2. After some straightforward manipulations, we obtain a set
of equations of motion which are equivalent to (9):

[

m1x
′′

1

m2x
′′

2

]

+ C

[

x
′

1

x
′

2

]

+ K

[

x1

x2

]

=

[

f1 sin (ωτ + φ)
f2 sin (ωτ)

]

(12)

In these dimensionless equations, we have dropped the tildes on x1,2, the
′ indicates d

dτ

and

K =

[

κ1 + κ2 −κ2

−κ2 κ2 + κ3

]

, C =

[

δ1 + δ2 −δ2
−δ2 δ2 + δ3

]

(13)

The equations of motion (12) are supplemented by switching conditions at the boundaries
S. As a result, the mass parameter m1 will be state-dependent and we can characterize
the equations of motion as an example of a hybrid dynamical system. Such hybrid
systems frequently arise in many mechanical systems as outlined in Di Bernardo (2008);
Di Bernardo et al. (2008) and Goebel et al. (2009). Within each state, the velocity and
accelerations fields are smooth and only at the boundary does a discontinuity result.

4.4. Parameter State Dependance

Before performing simulations of the equations of motion, it is necessary to assign
representative values to the parameters in (12). We generally allow the hydrodynamic
parameters to be functions of the forcing frequency ωf (see, e.g., Faltinsen (1990); Sarp-
kaya (2010)), and the modulation regime, determined by θ. Parameters νi affected by
the mass-modulated state will be as follows:

νi(θ) ∈ V =

{

νi,A ∈ VA if θ ∈ TA

νi,0 ∈ V0 if θ ∈ T0

(14)

where νi,A is the i-th parameter in the mass-modulated regime, νi,0 is the i-th parameter
in the rest mass regime, VA is the set of all parameters in the mass-modulated regime,
V0 is the set of all parameters in the rest mass regime, and V is the set of all parameters
which depend on θ.

To determine the explicit ωf and θ dependance of hydrodynamic parameters νi, we
enlisted the assistance of a hydrodynamic modeling software commonly used on marine
structures, ANSYS Aqwa. This software twice analyzed the simple model shown in Fig-
ure A.11 above, via Euler’s equations, subjected to an incident wave forcing of frequency
ωf for the geometry seen in Appendix A. In the first analysis, the response of the masses
was considered separately, and in the second, they were considered together.

12



The effective masses of the inner M1 and outer M2 floats will vary depending on the
state of modulation and the forcing frequency, so they are ∈ V, and accordingly:

Mj = Mj0 +MEI
j (θ, ωf ), j = 1, 2 (15)

where Mj0 is the rest mass of float j and MEI
j (θ, ωf ) is the effective increase in mass of

float j. From the Aqwa simulation where the masses were considered separately, seen
in Figure A.13, it became evident that MEI

1 (θ, ωf ) was a very weak function of ωf , so
explicit dependance on the forcing frequency was removed, thereby simplifying to

MEI
1 (θ) =

{

MEI
1A if θ ∈ TA

MEI
10 if θ ∈ T0

(16)

where, after neglecting the weak ωf dependance, MEI
1A and MEI

10 are constants (the
mean values of MEI

1A (ωf ) and MEI
10 (ωf ) respectively). With this simplification, µ may

be determined recalling (6):

µ =
MOn

1 −MOff
1

MOff
1

=
(M10 +MEI

1A )− (M10 +MEI
10 )

M10 +MEI
10

.

Hence µ represents a ratio of effective masses:

µ =
MEI

1A −MEI
10

M10 +MEI
10

. (17)

This representation of µ pertains to realizations such as the one shown in Figure A.3(i)1.
That is, µ is equal to the difference in the hydrodynamic added mass of M1 when the
flaps are in the open state compared to the closed state. From the Aqwa analysis where
the floats were considered together, MEI

1 (θ, ωf ) was verified to still be a weak function
of ωf . We assumed then, for a fixed M10 , that by altering the geometry or size of the
lower float the desired µ could be achieved.

Additionally, from both Aqwa analyses, MEI
2 (θ, ωf ) was found to be a linearly de-

creasing function of ωf , as seen in Figure A.13, with a very weak dependance on the
state of mass modulation and thus weak dependance on θ, thereby simplifying to:

MEI
2 (θ, ωf ) =

{

MEI
2A (ωf ) if θ ∈ TA

MEI
20 (ωf ) if θ ∈ T0

(18)

The regime dependance of other dynamical elements in the system was determined
from the Aqwa where the masses were considered together. The spring k1 and dashpot
c1 represent the buoyancy force and hydrodynamic damping on the mass M1. Although
k1 is a constant, c1 depends on whether the flaps are open/closed and the frequency ωf

of the incident waves, so c1 ∈ V. The second spring-dashpot system represents the PTO
and the coupling between the masses. In general, hydrodynamic k2 ≈ 0, B represents the

1The corresponding representation of µ for realizations such as the one shown in Figure A.3(ii) is
straightforward to infer.
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damping of the PTO, and c′2 represents hydrodynamic damping (≈ 0, removing regime
and frequency dependance) and any additional mechanical damping not encompassed in
the PTO, and thus c′2 /∈ V. Finally, the spring k3 and dashpot c3 represent the buoyancy
force and hydrodynamic damping on the mass m2. We assume that k3 is constant while
c3 is a function of ωf . Neither parameter is assumed to depend on the configuration of
the flaps. In summary:

c1 = c1 (θ, ωf ) ∈ V, c2 = c2 (c
′

2, B) /∈ V, c3 = c3 (ωf) /∈ V. (19)

Accordingly, in performing the nondimensional numerical analyses contained below, we
used the relevant mass, stiffness, and damping terms defined from the Aqwa analysis,
where relevant, and allowed µ to vary as a parameter: the specific values for these mass,
stiffness, and damping terms is contained in Appendix A.

5. Metrics for Energy Harvesting

As in works on resonant energy harvesters (see, e.g., Diamond et al. (2013); Falnes
(1999); Orazov et al. (2010, 2012); Stephen (2006); Tang and Zuo (2011)), we take the
power generated by our WEC as proportional to the velocity across the PTO device.
As such, the nondimensional average power that can be harnessed from the harvester is
defined as

P =
B

2T
√

k1M20

∫ T

0

(

x
′

2 − x
′

1

)2

dτ (20)

where T is a (nondimensional) period of integration which is much larger than the forcing
period 2π

ω
. The power P is generally a function of many parameters; if one determines

mi, κi, and δi from the Aqwa analysis, it reduces to dependence upon ℓ (a suitable
length scale), Fα, ωf , δ2, µ, ǫ, φ, and switching boundaries α and β.

For a single degree-of-freedom linear mechanical systems, one has a resonant frequency
ωr and an associated damping c and natural frequency ωn. If one wishes to optimally
harvest energy using such a system, then it is known that one tunes ωn to coincide
with the incident frequency and then B is chosen so that B = c. For two-degree-of-
freedom systems such as shown in Figure A.11, the optimal system parameters must be
determined numerically. For our case, we choose a PTO damping B that is equivalent
to the mechanical and hydrodynamic damping c′2: hence c2 = B + c′2 = 2c′2.

Selecting the optimal α and β (both equal to π
2 as in Diamond et al. (2013) and

illustrated schematically in Figure A.3) further reduced the problem - cf. Figures A.2,
A.14 and A.15. In searching for optimal values for the remaining parameters in the
system, we found that the effects of changing the values of M10 , M20 , k1, and k2 on
power harvesting could be most easily interpreted using a tuning parameter γ. This
parameter, as in Tang and Zuo (2011), is defined as a ratio of frequencies:

γ =
ωn,1

ωn,2
, (21)

where

ωn,1 =

√

k1
M10

, ωn,2 =

√

k2
M20

. (22)
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6. Optimal Energy Harvesting

A numerical code was developed to evaluate P (cf. (20)) over a multi-parameter
space consisting of ω, γ, δ2, µ, f1, f2, ǫ, φ, α and β; this code allowed for ranges of three
parameter subsets to be investigated while all other parameters remained single valued.
The resulting values of P could then be plotted, with two of the parameters of interest
corresponding to the x and y axis (the z axis always corresponding to P) and the third
parameter of interest encompassed in time or in multiple plots.

It should be noted that the phase separation φ between the forcing on M1 and M2

was chosen to be zero in all simulations. This was dually motivated: firstly, zero phase
separation is the most conservative assumption with respect to the harvested power.
As this quantity is directly related to the square of the relative velocity, any phase
separation increase above zero would naturally result in an increase in harvested power,
and we were keen to study the effect of mass modulation independent of this tendency.
Secondly, choosing a specific phase separation would be arbitrary and unmotivated, even
without the first restriction, as we had no good estimate of what it would realistically
be.

Here, the first two parameters were regularly chosen to be ω and µ: ω ranges allowed
for easy comparison in the frequency space, which was almost always desirous, and
µ ranges allowed for similar comparisons in added mass space (importantly including
µ = 0, the nominal case).

Although switching boundaries α and β were previously found to be optimal when set
to π

2 in previous work (Diamond et al., 2013), it was not definitively known if this would
be the case for the current model. As such, verification of these parameters’ optimality
was first investigated. It was verified that the prescription α = π

2 and β = π
2 was, in

fact, optimal in the two mass case as well (cf. Figures A.14 and A.15). This was to be
expected, as these parameters only affect one mass in this model as they did previously;
an intuitive explanation for optimality is discussed in Diamond et al. (2013) and is not
repeated here. Interestingly, while certain values of added mass onset α completely negate
any advantage the added mass scheme has over the nominal case, identical selections of
added mass length β do not. Rather than resulting in higher P for increasing values of
µ, these selections resulted in a shift of the dominant resonant peak at ω = ωr, with a
P on the order of magnitude of the nominal case, for increasing values of µ: cf. Figure
A.16.

The momentum coefficient ǫ was devised so we could investigate the effect of impulse
G, as we do not generally know G from first principles alone - it must be determined
experimentally. We would expect that larger ǫ, or minimized momentum loss, would
correspond to more robust peaks in P than smaller ǫ, or unminimized momentum loss,
would. Examining Figure A.17, we see that this is indeed the case; more usefully, the
simulation informs us that below a certain critical value of ǫ (which generally varies as
a function of the other parameters) the mass modulation produces a reduced P than
corresponding value of P for the nominal case.

Tuning parameter γ, the ratio of the switching mass’s natural frequency to the buoy
mass’s natural frequency, is also of interest. With non-dimensionalized driving frequency
ω as given in (11), we would expect that altering γ would shift ω in some way. Specifically
how changing γ would affect P was not known. As can be seen in Figure A.18, increasing
γ does have the expected result of increasing ωr; additionally, we can see that the peak
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value of P increases with γ up to a certain point, here at about γ = 1.5, after which
increasing γ has no effect on the peak power. This suggests that there is an optimal
range of γ, above some critical value, where P is unaffected by increasing choices of ωn,1.

As has been mentioned previously, we narrowed our investigation of the effect of
damping δ2 by selecting B = c′2. With this selection, we would expect that increasing
δ2 up to some value would similarly increase the maximum P, as it is proportional to
δ2. Beyond this point, however, the potential benefit of higher PTO damping would be
unrealized as the increased overall damping would limit the velocity between the masses
and thus the collected power. This trend was verified and can be seen in Figure A.19:
beyond δ2 = 0.05 (in this case) the ridge of peak P is broadened and reduced with
increasing choices of δ2. This suggests an optimal choice of δ2 exists for any given set of
parameters.

The parameters whose effects are the most difficult to comprehend are the forcings f1
and f2. Their values, both relative to each other and outright, are not well known from a
purely dynamical standpoint and experimentation is necessary to specify them. Despite
this, a few things may be gleaned from the numerical simulations, cf. Figures A.20 and
A.21. The most important takeaway is that, with the other forcing fixed, increasing the
direct forcing on mass one (f1) has a much greater effect on P than increasing that on
mass two (f2). This is problematic as f2 is more likely to be easily determined than f1
in practice. Further, f2 corresponds to the forcing on the buoy mass directly excited by
the incident waves - but f1 seems more critical to the WEC’s operation.
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7. Conclusions

Experimental work on a modified WEC specified in Diamond et al. (2013) was per-
formed to validate the proposed optimal mass modulation contained therein. It was
found that the addition of mass modulation was realizable - as was the mass modulation
specified in Orazov et al. (2010, 2012) and tested in Orazov (2011) - and this new scheme
improved the power harvested by the WEC significantly for a wide range of incident wave
frequencies: moreover, it was found to only be slightly worse than the case without mass
modulation at one testing frequency, which itself was significantly above the fundamental
frequency of the prototype. Regardless, we devised a more robust analysis of a buoy-type
WEC to affect a sensitivity analysis of the mass-modulation scheme to a variety of design
and environmental parameters that would be rather difficult, if not impossible, to change
on a prototype WEC. Accordingly, we introduced a two-degree-of-freedom model that
would more realistically reflect the dynamics of a buoy-type WEC. Using this more real-
istic model for the WEC we have shown the potential energy harvesting benefits of the
mass-modulation scheme. For example, the model shows that it is possible to increase
the harvesting capabilities by 200% in some instances (cf. Figure A.22). It should be
emphasized that the effectiveness of the modulation scheme is heavily dependent on the
amount of fluid momentum carried across the switching boundary. In particular, if the
design of the WEC is such that ǫ is too small, then the mass-modulation scheme does not
result in significant improvements over the nominal case and may indeed be detrimental.

In closing we wish to emphasize that the results shown in the paper verify that
the mass modulation scheme is effective. Furthermore, the modulation scheme we are
proposing can be easily generalized - all that is required is to change the hydrodynamic
added mass (with or without trapping water) of the inner float. Broadly, one can achieve
mass modulation using induced mass (virtual mass) by changing the shape of the inner
float cyclically. The flaps we have in our experiments are but one realization of this idea.
It is not too difficult to conceive of other realizations - some of which can be achieved
using active control.
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Appendix A. Numerically Determined Hydrodynamic Values

Recalling our dimensioned mass equations (15), (16) and (18):
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Mj =Mj0 +MEI
j (θ, ωf ), j = 1, 2

MEI
1 (θ) =

{

MEI
1A if θ ∈ TA

MEI
10 if θ ∈ T0

MEI
2 (θ, ωf ) =

{

MEI
2A (ωf ) if θ ∈ TA

MEI
20 (ωf ) if θ ∈ T0

Aqwa analysis was performed on the (coupled) geometry seen in Figures A.24 and A.25,
where Figure A.24 represents the system with M1 in the modulated (MOn

1 ) state and
Figure A.25 represents the system with M1 in the unmodulated (MOff

1 ) state. It was
determined using this Aqwa analysis that for our example geometry, with a limited
frequency range ωf ∈ [0.3π, 0.5π] Hz,

M10 = 18247.81 kg
MEI

1A (ωf ) = −1052.6 kg/Hz ·
(ωf

2π

)

+ 13838 kg
MEI

10 (ωf ) = −2030 kg/Hz ·
(ωf

2π

)

+ 4197.5 kg
(A.1)

Notice that, for the range of frequencies here, this means MEI
1A (ωf ) decreases from

13680.11 kg to 13574.85 kg. Such are variances of ±0.386% from the mean value of
13627.48 kg. Similarly, for MEI

10 (ωf ) we see a decrease from 3893.3 kg to 3690.3 kg. Such
are variances of ±2.677% from the mean value of 3791.8 kg. So the simplification in (16)
of MEI

1A (ωf ) → MEI
1A (= 13627.48kg, here) and MEI

10 (ωf ) → MEI
10 (= 3690.3kg, here) is

justified.
We may also look at the dependance of µ on ωf , if we had not made the simplification

of (16) that led to (17), so

µ(ωf ) =
MEI

1A (ωf )−MEI
10 (ωf )

M10 +MEI
10

(ωf )
→

977.4 kg/Hz ·
(ωf

2π

)

+ 9640.5 kg

−2030 kg/Hz ·
(ωf

2π

)

+ 22445.31 kg

which increases from 0.442 to 0.451, which are variances of −0.954% and 0.960% (re-
spectively) from the mean value of 0.446. Notably, using the simplified expression for µ
(17), we get µ = 0.446 as well.

For the values associated with the second mass, it was determined that:

M20 = 15292.09 kg
MEI

2A (ωf ) = −195789 kg/Hz ·
(ωf

2π

)

+ 97808 kg
MEI

20 (ωf ) = −185100 kg/Hz ·
(ωf

2π

)

+ 96225 kg
(A.2)

For the damping parameters, we find that

c1 (θ, ωf ) =

{

263.16 kg/(Hz · s) ·
(ωf

2π

)

+ 216.53 kg/s if θ ∈ TA

−480 kg/(Hz · s) ·
(ωf

2π

)

+ 391 kg/s if θ ∈ T0

(A.3)

c3 (θ, ωf ) =

{

309473.6 kg/(Hz · s) ·
(ωf

2π

)

− 18591.1 kg/s if θ ∈ TA

314700 kg/(Hz · s) ·
(ωf

2π

)

− 21475 kg/s if θ ∈ T0

(A.4)
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(a) (b)

M2

M1

PTO

M1

M2

Figure A.1: (a) Schematic of a heaving buoy type WEC featuring modulation of the mass M1. The
motion of M1 relative to M2 is used by the PTO to generate electricity. In the interests of clarity, several
details, including the tethering mechanism, are not shown. In (b), a two degree-of-freedom model for
this WEC is shown with various (hydrodynamic and mechanical) dampings and stiffnesses. Note that
the mass M1 in this model varies with time.

And for the stiffnesses, we find that

k1 = 46.7791 kN/m, k3 = 330.6602 kN/m. (A.5)
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Table A.1: Comparison of the experimental velocities for Scheme III at the six testing frequencies.
∆v = vi − vo, where vi is the inner mass velocity and vo is the outer mass velocity; additionally, the
subscript “no flaps” indicates testing without modulation, and the subscript “flaps” indicates testing
with modulation. The superscript “RMS” indicates and average by root-mean-square, or f(t)RMS =
√

1

Tf−T0

∫ Tf

T0
f(τ)2 dτ

f ∆vRMS
no flaps ∆vRMS

flaps vi
RMS
no flaps vi

RMS
flaps

(Hz) (m/s) (m/s) (m/s) (m/s)

0.650 0.050 0.122 0.177 0.203
0.675 0.057 0.122 0.193 0.189
0.725 0.082 0.098 0.229 0.225
0.750 0.073 0.141 0.207 0.257
0.800 0.099 0.099 0.254 0.202
0.850 0.112 0.125 0.251 0.212

Table A.2: Comparison of the experimental velocities for Scheme I at the five testing frequencies.
∆v = vi − vo, where vi is the inner mass velocity and vo is the outer mass velocity; addition-
ally, the subscript “no flaps” indicates testing without modulation, and the subscript “flaps” indi-
cates testing with modulation. The superscript “RMS” indicates and average by root-mean-square,

or f(t)RMS =

√

1

Tf−T0

∫ Tf

T0
f(τ)2 dτ

f ∆vRMS
no flaps ∆vRMS

flaps vi
RMS
no flaps vi

RMS
flaps

(Hz) (m/s) (m/s) (m/s) (m/s)

0.60 0.041 0.038 0.122 0.118
0.64 0.059 0.065 0.132 0.135
0.68 0.075 0.086 0.137 0.138
0.72 0.117 0.118 0.151 0.169
0.76 0.117 0.086 0.141 0.171

Table A.3: Comparison of the average phase lag τ̄ of the inner mass velocity vi relative to the outer
mass velocity vo and the root-mean-square (RMS) power P generated by the PTO for Scheme III at
the six testing frequencies. The subscript “no flaps” indicates testing without modulation, and the
subscript “flaps” indicates testing with modulation. The superscript “RMS” indicates and average by

root-mean-square, or f(t)RMS =

√

1

Tf−T0

∫ Tf

T0
f(τ)2 dτ

f τ̄no flaps τ̄flaps PRMS
no flaps PRMS

flaps

(Hz) (s) (s) (W) (W)

0.650 0.063 0.090 1.251 2.467
0.675 0.063 0.133 1.387 2.541
0.725 0.070 0.077 1.826 2.139
0.750 0.070 0.091 1.675 2.802
0.800 0.070 0.084 2.193 2.173
0.850 0.077 0.084 2.395 2.620
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Figure A.2: Three examples of mass-modulation schemes denoted respectively as (a), Scheme I, (b)
Scheme II, and (c) Scheme III. Scheme I is featured in the experimental work in Orazov (2011), Scheme
II is the case considered in Orazov et al. (2010, 2012) and Rougirel (2013), and Scheme III is an optimal
energy harvesting scheme considered here and in Diamond et al. (2013).
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Figure A.3: Illustration of the mass-modulation scheme III. In the top part of the figure, the idealized
modulated mass is a fraction µ of the baseline mass MOff

1
and is a function of position x1 and velocity

ẋ1 of the inner float. In the bottom portion of the figure, we see two means of achieving the mass
modulation µMOff

1
: in i. utilizing only hydrodynamic added mass and in ii. utilizing both hydrodynamic

added mass and entrapped water mass. Elements of note are an outer float of mass M2, a (primarily)
submerged inner float (featuring a hollow open ended cylinder) of mass M1, (a) mass-modulation control
flaps, (b) impeded water flow, (c) unimpeded water flow, (d) water surface, and (e) trapped water mass.
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test platform
wave maker

1.5 m beach

62 m 5 m

Figure A.4: UC Berkeley Tow Tank facility in Richmond, CA. Schematic (top) and image of the facility
with the wavemaker mechanism seen in blue in the foreground (bottom).

24



(a) (b)

(c)

Figure A.5: Images of the original scale prototype WEC. (a) Assembly: outer float, inner float and the
water entrapment system; (b) outer float with the inner float visible (marked by yellow tape); (c) 3-axis
accelerometers rigidly mounted to the outer (top of the T-beam) and inner (center of the upper cap)
floats. The signal cables are connected to a land-based Arduino microcontroller.
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Figure A.6: (a) Dimensional output of simulation of one degree-of-freedom model in (Diamond et al.,
2013, Eqns. (1)–(4)) with switching boundary momentum loss; specific parameter values utilized are:
f = 0.25, ωf = 0.68, ωn = 6, µ = 0.45, δ = 0.07, ǫ (momentum loss coefficient)= 0.8, ℓ = 0.1. (b)
Experimental data from Orazov (2011) of the inner float position xi versus the inner float velocity vi
for a wave excitation frequency 0.68 Hz, with flaps installed (i.e., with added mass effects). The dashed
vertical lines mark ± 5cm, corresponding to the 10 cm peak-to-peak input wave amplitude.
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Figure A.7: Experimental data of inner float position xi vs. inner float velocity vi for a wave excitation
frequency of 0.68 Hz without flaps installed (i.e., without mass modulation). The dashed vertical lines
mark ± 5cm, corresponding to the 10 cm peak-to-peak wave amplitude.
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Figure A.8: Angular speed-torque
(

θ̇, τM (θ̇;RL)
)

curves for the Slo-Syn M062-FC-404B stepper motor

used as a PTO in the experiment, for a variety of different load resistances RL. Restricting attention to
the area of low rotational speeds (≈< 10 radians/second), we observe that the torque τM decreases, and
the magnitude of the torque/rotational speed proportionality constant increases, with increasing RL.
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(a)

(b)

(c)

∼1.2 m

∼0.67 m

Figure A.9: Images of the current scale prototype WEC with updates. (a) The implemented PTO; (b)
Accelerometers mounted to the outer and inner floats, as before, with addition of PTO and necessary
counterweights; (c) Assembly, showing addition of PTO and updated flap mechanism.

(a) (b)

Figure A.10: Flap mechanisms used in experiments to approximate (a) Scheme I and (b) Scheme III.
In the former, a spring force resists the fluid pressure until mass modulation is desired. In the latter,
contact force between the rubber at the edges of the flaps and the cylinder wall resists the fluid pressure
until mass modulation is desired.

28



x1(t)

x2(t)

F1 sin (ωf t+ φ)

F2 sin (ωf t)

c1 k1

c′2 k2 B

c3 k3M1

M2

Figure A.11: The two-degree-of-freedom linear oscillator. The mass M1 of the inner float varies de-
pending on the sign of x1

dx1

dt
and this mass modulation is achieved using a set of flaps inside the inner

float.
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Figure A.12: The mass M1 varies depending on the sign of x1 and ẋ1: M1 = MOn
1

(in the modulated
mass region) or M1 = MOff

1
(in the unmodulated mass region). The most general case is shown; the

rays S correspond to the locations in the state space where water is either trapped or released.

29



0.15 0.17 0.19 0.21 0.23 0.24
ωf/2π (Hz)

0

4

8

12

2

6

10

M
a
ss

(k
g
×
1
0
4
)

M10

M20

M20 +MEI
20

M10 +MEI
10

M10 +MEI
1A

Figure A.13: Aqwa simulation of total effective mass and rest mass of inner and outer floats, for the
geometry specified in Appendix A, with the masses considered separately.

30



PPP

µµµ ωωω

α = 0 α = π
2 α = π

222
1.51.51.5

111
0.50.50.5

1 11

0.50.50.5

000

0.40.40.4

0.30.30.3

0.20.20.2

0.10.10.1

000

Figure A.14: Plots of non-dimensional power P (cf. (20)) comparing the effect of changing added onset
α over a two-parameter space varying µ and ω. Switching onset boundary is optimal (β = π

2
), forcing

is equivalent on both masses (f1 = f2 = 1), damping δ2 = 0.05, momentum coefficient ǫ is 0.8, and the
tuning ratio is unity (γ = 1).
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Figure A.15: Plots of non-dimensional power P (cf. (20)) comparing the effect of changing added mass
period β over a two-parameter space varying µ and ω. Switching onset boundary is optimal (α = π

2
),

forcing is equivalent on both masses (f1 = f2 = 1), damping δ2 = 0.05, momentum coefficient ǫ is 0.8,
and the tuning ratio is unity (γ = 1).
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Figure A.16: Resonance peak shift of non-dimensional P (cf. (20)) for the value of β = π and increasing
µ.
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Figure A.17: Plots of non-dimensional power P (cf. (20)) comparing the effect of changing momentum
coefficient ǫ over a two-parameter space varying µ and ω. Switching boundaries are optimal (α = π

2
and

β = π
2
), forcing is equivalent on both masses (f1 = f2 = 1), damping δ2 = 0.05, and the tuning ratio is

unity (γ = 1).
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Figure A.18: Plots of non-dimensional power P (cf. (20)) comparing the effect of changing tuning ratio
γ over a two-parameter space varying µ and ω. Switching boundaries are optimal (α = π

2
and β = π

2
),

forcing is equivalent on both masses (f1 = f2 = 1), damping δ2 = 0.05, and the momentum coefficient ǫ

is 0.8.
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Figure A.19: Plots of non-dimensional power P (cf. (20)) comparing the effect of damping δ2 over a
two-parameter space varying µ and ω. Switching boundaries are optimal (α = π

2
and β = π

2
), forcing is

equivalent on both masses (f1 = f2 = 1), momentum coefficient ǫ is 0.8, and the tuning ratio is unity
(γ = 1).
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Figure A.20: Plots of non-dimensional power P (cf. (20)) comparing the effect of forcing f1 over a
two-parameter space varying µ and ω. Switching boundaries are optimal (α = π

2
and β = π

2
), forcing

on M2 is equal to 1 (f2 = 1), damping δ2 = 0.05, momentum coefficient ǫ is 0.8, and the tuning ratio is
unity (γ = 1).

36



PPP

PPP

µµµ

µµµ

ωωω

ωωω

f2 = 0.00 f2 = 1.00 f2 = 2.00

f2 = 5.00 f2 = 10.00 f2 = 20.00

000

000

111

111

222

222

333

333

000

000

0.20.20.2

0.20.20.2

0.40.40.4

0.40.40.4

0.60.60.6

0.60.60.6

0.80.80.8

0.80.80.8

0.80.8

0.80.80.8

0.60.60.6

0.60.60.6

0.40.40.4

0.40.40.4

0.20.20.2

0.20.20.2

000

000

Figure A.21: Plots of non-dimensional power P (cf. (20)) comparing the effect of forcing f2 over a
two-parameter space varying µ and ω. Switching boundaries are optimal (α = π

2
and β = π

2
), forcing

on M1 is equal to 1 (f1 = 1), damping δ2 = 0.05, momentum coefficient ǫ is 0.8, and the tuning ratio is
unity (γ = 1).
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Figure A.22: Relative non-dimensional power harvested with mass modulation normalized to the nominal
(µ = 0) case, integrated for ω ∈ [0, 3], for a range of values of the momentum coefficient ǫ. Switching
boundaries are optimal (α = π

2
and β = π

2
), forcing is equivalent on both masses (f1 = f2 = 1), damping

δ2 = 0.05, and the tuning ratio is unity (γ = 1).
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Figure A.23: Aqwa simulation damping values.
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Figure A.24: Hydrodynamic model used to generate system parameters, with M1 in modulated (MOn
1

)
state.
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Figure A.25: Hydrodynamic model used to generate system parameters, with M1 in the unmodulated
(MOff

1
) state.
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