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Presented here are the results of a systematic study of the viscoelastic 

properties of polyurea over broad ranges of strain rates and temperatures, 

including the high-pressure effects on the material response. Based on a set of 

experiments and a master curve developed by Knauss [1] for time-temperature 

equivalence, we have produced a model for the large deformation viscoelastic 

response of this elastomer.  Higher strain-rate data are obtained using 

Hopkinson bar experiments. The data suggest that the response of this class of 

polymers is strongly pressure dependent. We show that the inclusion of linear 

pressure sensitivity successfully reproduces the results of the Hopkinson bar 

experiments.  In addition, we also present an equivalent but approximate 

model that involves only a finite number of internal state variables and is 

specifically tailored for implementation into explicit finite-element codes.  

The model incorporates the classical Williams-Landel-Ferry (WLF) time-

temperature transformation and pressure sensitivity [2], in addition to a 

thermodynamically sound dissipation mechanism.  Finally we show that using 

this model for the shear behavior of polyurea along with the elastic bulk 

response, one can successfully reproduce the very high strain rate pressure-

shear experimental results recently reported by Jiao et al. [3]. 

Keywords: Polyurea; Time, temperature, pressure effects; Elastomer; Viscous 

dissipation 
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1. Introduction 

Polyurea and polyurethane are general names for a wide range of polymeric materials 

that have extensively been used in the coating industry in solid elastomeric or rigid form. 

Here we focus mainly on the properties and applications of polyurea in its solid 

elastomeric form. From truck bed abrasion protection to concrete elements surface 

enhancement, the material shows excellent characteristics, including but not limited to 

environmental and safety compliance, long-term stability, appearance and high 

mechanical performance [4].  Introduced in 1989 by Texaco Chemical Company, 

polyurea was regarded as a product that did not fulfill the exaggerated expectations 

initially advertised, especially in the coating industry. As a result many of its true benefits 

and advantages were not fully appreciated.  Recent studies, however, have shown 

promising mechanical responses for polyurea that are not limited to only the coating 

applications but venture into critical applications such as reinforcement of metal 

structures against blast and impact loads. 

 

Initially, manufacturers did not clearly differentiate between polyurethane and polyurea, 

identifying both classes of polymers as “polyurethanes”. More recently, however, 

companies began to distinguish these products.  Polyurethane was first developed by Otto 

Bayer and coworkers in late 1930s and early 1940s [5]. The main components are di- or 

poly-isocyanate molecules (cyanate functional group –NCO) exothermically reacting 

with polyols (hydroxyl functional group –OH) and forming extended chains and 

networks bonded by urethane groups –O(CO)(NH)–. In polyurea, polyols are switched 

with amine molecules (functional group –NH2) resulting in polymers with urea bonding, 
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–(NH)(CO)(NH)–. This generally involves faster reaction times than those associated 

with polyurethane. In fact the fast reaction time makes it possible to apply polyurea as 

spray in coating applications. 

 

The physical properties of polyurea vary with the composition. The service temperature 

typically ranges between -50 to 150oC. The elongation at tearing can be as high as 800%. 

The specific material discussed in the present paper is based on Isonate® 2143L [6] and 

Versalink® P1000 [7]. A five percent excess of Isonate® 2143L is used to produce a 

lightly cross-linked polymer [8]. The glass transition temperature, Tg, is below -50oC [1, 

8]. In addition, polyurea exhibits a very stiff nearly-elastic response to volumetric 

deformations, while its (above Tg) shearing response at moderate pressures and strain 

rates is soft and viscoelastic, so that its laterally unconfined axial deformation is nearly 

incompressible.  

 

Recent studies show that applying a layer of polyurea backing to steel plates significantly 

enhances the resistance of the composite structure to impact and blast loading. Various 

tests show that this improvement can change the response from full penetration of a 

projectile to fully eliminating fracturing [9]. The real mechanism underlying this effect is 

not fully understood and formulated yet. The objective of the present paper and related 

research on modeling and impact testing of and fracturing such composites is to 

understand and illuminate this underlying mechanism and develop physics-based 

constitutive models for the high strain rate response of the elastomer. In doing so, we 

have learned that the linear viscoelasticity with the Williams-Landel-Ferry time-
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temperature transformation and linear pressure sensitivity seem to account for the 

material response with reasonable accuracy [2]. Here we show that this model 

successfully reproduces many of the observed high strain-rate test results for polyurea. 

 

2. Time-temperature superposition 

To formulate the temperature- and pressure-dependent response of polymers such as 

polyurea, tentatively consider the possibility of using linear viscoelasticity [10] and then 

seek to modify this if necessary.  For small strains, linear viscoelasticity defines the stress 

at time t in terms of the history of the strain rate by  

 ( ) ( ) ( ) .: τττ dtt
t

εχσ &−= ∫
∞−

 (1) 

Here ε&  is the (small strain) strain-rate tensor, σ  is the Cauchy stress tensor, and χ  is the 

fourth-order relaxation modulus tensor. This relation may be generalized to finite strains 

and small rotations using 

 ( ) ( ) ( ) ,: τττ dtt
t

D−= ∫
∞−

χσ  (2) 

where D is the deformation-rate tensor, i.e., the symmetric part of the velocity gradient. 

To ensure objectivity for large rotations, this equation will have to be properly modified. 

The necessary modification is only geometrical and can be implemented in various ways; 

see, for example, [11, 12].  In the present work, we focus on the material description, and 

this is not affected by such required geometric transformations. We also assume that )(tχ  

does not have a singularity at .0=t  The inclusion of a delta function singularity at 0=t  

eliminates the possibility of an instantaneous deformation under finite force. Although 
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this may be physically appropriate, it is ignored for linearly elastic materials. We simplify 

our discussion of viscoelasticity by including the assumption of instantaneous elasticity, 

i.e., regularity of the relaxation moduli at .0=t  

 

We limit attention to the isotropic case, and set 

 ( ) ( ) ( ) ,23 21 EE tGtKt +=χ  (3) 

where K and G are respectively the bulk and shear moduli, and the fourth-order tensors 

E1 and E2, have the following rectangular Cartesian components:   

 
( )

1

2 (4 ) 1

/ 3,

1 / 2 / 3,

=

= − = + −

ijkl ij kl

s
ijkl ijkl ijkl ik jl il jk ij kl

E

E E

δ δ

δ δ δ δ δ δ
 (4, 5) 

where ijδ is the Kronecker delta.  This representation separates the deviatoric and the 

dilatational response of the material, and is suitable for our analysis, since the deviatoric 

response of most polymers is significantly different from their dilatational response. At 

ordinary pressures, the bulk modulus of this class of materials is usually orders of 

magnitude larger than their shear modulus. Furthermore, in most cases, the dilatational 

response of polymers, including that of polyurea, can be effectively modeled as elastic, 

since the dissipative mechanisms that are activated in dilatational deformations of most 

polymers are usually different, especially in their time scales, from the ones that are 

activated during their volume-preserving deformations.  

 

Because of its high bulk modulus, measurement of the relaxation modulus of polyurea in 

uni-axial stress tests effectively produces its shear relaxation modulus. To see this, note 

that the Young modulus of an isotropic linearly elastic material is given by 
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 .
3
9

GK
KGE
+

=  (6) 

When KG <<  this simplifies to GE 3≈ .  For isotropic viscoelastic materials, one can 

also argue that a high bulk modulus effectively keeps the volume preserved in a uni-axial 

stress test. Therefore, the instantaneous Poisson’s ratio, defined as the ratio of the 

transverse to the longitudinal strain at instant t, is very close to 0.5, which means that 

 ( ) ( )
( ).12 .inst

tEtG
ν+

=  (7) 

In the present paper, we use 486.0. =instν  and . 0.484=instν  for polyurea. The former 

value has been obtained using confined Hopkinson-bar tests that allow for the 

measurement of the transverse strain along with the corresponding axial strain and stress; 

for details see [13].  The latter value is reported by Clifton and Jiao [14].  

 

The linear elastic response for the bulk deformation usually yields stress-strain curves 

that are concave down. In other words, the tangential stiffness decreases with increasing 

deformation. This in not what we have observed in our tests of polyurea. Therefore, for 

modeling of the Hopkinson bar tests we use a physically-based model proposed by 

Anand [15]. This model is an isotropic thermodynamics-based constitutive representation 

appropriate for compressible elastomeric solids; it generalizes the well-known Arruda-

Boyce model [16]. For bulk deformations, the model assumes  

 ,ln3)(
J
Jtr κ=σ  (8) 

where κ  is a modified bulk modulus that depends linearly on the temperature, and J is 

the Jacobian of the deformation, respectively given by 
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.det

),()()(

F=

−+=

J

TTmTT refrefκκ
 (9, 10) 

 

Equations (1) – (5) pertain to the isothermal deformations. For polymers, the temperature 

modifies the response in two ways, as discussed by Pipkin [17]. First, the long-time 

moduli change essentially in proportion to the absolute temperature, 

 ( )
( )

,
lim .

,→∞
=

′ ′t

G t T T
G t T T

 (11) 

Second, due to the higher thermal energy at higher temperatures, the molecular relaxation 

processes are more easily and frequently activated. This translates into a shift to a smaller 

time parameter. Williams et al. [2] implemented these two effects empirically using the 

following expression: 

 ( ) ( ) ., 







=

Ta
tG

T
TTtG ref
ref

 (12) 

Here refG  is the relaxation modulus measured at the reference temperature, ,refT  and 

( )Ta  is the time-temperature shift function that depends on the current temperature and 

the glass transition temperature, gT , of the material. In the literature, this formula is 

referred to as the WLF equation, after Williams et al. [2]. The range of the applicability 

of this formula is usually limited to that between the glass transition temperature, gT , and 

.100KTg +  Williams et al. [2] give an empirical expression for ( )Ta  that has only one 

material parameter, ,gT  namely 

 ( ) ( )
g

g

TT
TT

Ta
−+

−
−=

6.51
44.17

ln . (13) 
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Recently, Magnenet et al. [18] have used a theoretical approach to arrive at this result 

starting from a thermodynamic framework of relaxation processes.  

 

The values of the numerical constants in equation (13) may also be extracted directly 

from the experimental data for each specific material. This of course introduces small 

variations from the original values used by Williams et al. [2]. Knauss [1] has obtained 

the following values for polyurea ( KTg 223≈ ): 

 

( ) ( ) ( )( )

.27350
,54.107

,10
,10 /

KKTT
KB

A
Ta

gref

TTBTTA refref

=+=
=
−=
= −+−

 (14- 17) 

In the above results, the relaxation-time constants are measured isothermally at various 

temperatures, and the resulting relaxation curves are shifted accordingly and collected in 

one single master curve.  Thus, the assumed linear hereditary relation, defined by 

equations (1) and (2), is actually a reasonably good approximation for polyurea.  In this 

manner, the short-time relaxation of the material at higher temperatures is predicted using 

its relaxation data obtained at low temperatures. This master curve can be fitted using 

various explicit functional forms. A good power-law form for the shear relaxation 

modulus is 

 

( )

.146.0
,42.8
,24.22

,
)(

,

=
=
=






















+=

∞

−

∞

c

ref

MPaG
MPaG

Ta
tGG

T
TTtG

c

θ
∆

∆
θ

 (18- 21) 
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However, this compact form has two basic shortcomings that make it unsuitable for 

explicit numerical calculations. First, it has a singularity at the origin. Second, to 

calculate the stress for a general strain-rate history, the hereditary integral must be 

evaluated for each instant separately. To remedy this, one may construct a reasonably 

good representation using a series of simple exponentials, i.e., a discrete set of internal 

state variables that represent the material's internal relaxation times. Depending on the 

specific problem, one can then select the number of the relaxation times for a specific 

time interval to fit the experimental data and thereby to calculate the values of the 

relaxation times and the coefficient of the associated exponential, i.e., two material 

constants for each internal state variable.  The general form of such a representation then 

is,  

 ( ) .1
1

/ 







+= ∑

=

−
∞

n

i

qt
iref

iepGtG  (22) 

This description applies directly to the isothermal deformations. When the temperature 

changes during a deformation (e.g., because of dissipation), we introduce a new time 

scale, 

 ( ) ( )( )0

,= ∫
t dt

a T
τξ
τ

 (23) 

to replace the reduced time, ( )Tat / , in the expression for the isothermal deformation.  In 

equation (23), the integral is evaluated between 0 and t, to ensure that 0=ξ  at no 

deformation, when 0=t ; see [19]. The linear hereditary integral for the deviatoric part of 

the deformation is now replaced by  

 ( ) ( ) ( ) ,,2
0

τττ dtGt
t

D′=′ ∫σ  (24) 
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where  

 ( ) ( ) ( )( )., τξξτ −
′

= tG
T
TtG ref
ref

 (25) 

Note that here a new temperature, T ′ , is introduced, which, as pointed out by Pipkin [17] 

involves a certain  ambiguity, since there is no non-isothermal experimental evidence to 

suggest how T ′  should be evaluated. In the present work, we have chosen to set  

 ( ),τTT =′  (26) 

since this choice leads to stable numerical calculations. 

 

At high strain rates, the deformation is essentially locally adiabatic. When the only 

available heat source is that from the dissipated mechanical energy and the conductive 

and convective heat losses are slow relative to the strain rates, then the local temperature 

can be calculated using 

 ,1
t

W
Ct

T d

V ∂
∂

=
∂
∂  (27) 

where VC  is the heat capacity at constant volume (per unit original volume), and dW  is 

the dissipated work per unit original volume.  

 

In a cyclic loading, the dissipated work can be calculated for a complete cycle of 

deformation. The instantaneous rate of dissipation will of course depend on the specific 

model used to represent the material. Care is needed to ensure that the second law of 

thermodynamics is not violated by allowing the transformation of heat into stored elastic 

energy. Here, we follow Fung [20] and represent the full response of the material at 

constant temperature by 6+n  coupled first-order differential equations relating n  
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thermodynamic internal state variables and 6 strain components to their conjugate 

thermodynamic forces and the conjugate stress components. The n  hidden internal 

variables are then eliminated from the differential equations, using linear force-flux 

relations. The resulting stress-strain relations have the hereditary integral form. With n 

internal variables, we retrieve equation (22).  

 

The significance of this approach is that the stored energy can be easily calculated at each 

instant. Therefore, the amount of dissipated energy over a given time interval can be 

calculated without ambiguity. The rate of energy dissipation associated with the ith  

internal variable then is 

 ( ) ,1 2i
i

i
d F

t
W

η
=

∂
∂  (28) 

where iη  and iF  are, respectively, the viscosity and the force associated with the ith 

internal variable. Using this expression, (22) now gives 

  ( ) ( ) ( ),:2
1
∑
=

∞=
∂
∂ n

i

i
d

i
d

i

i

ref

d tt
q
p

T
tTG

t
W εε  (29) 

where we have set 

 ( ) ( ) ( )( ) ( ) .
0

/∫ ′= −−
t

qti
d det i τττξξ Dε  (30) 

We must emphasize here that this formula is based on a discrete set of internal variables 

with linear force-flux relations, as discussed by Fung and others [20–24]. For every 

relaxation function (22), one can conceive a structure of springs and dashpots that will 

have this response. Fung [20] shows that all such functions can be arrived at using a 

spring paralleled with n dashpot-springs put serially. This structure is not unique. For 
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example, the properties of a spring put serially with n paralleled dashpot-springs can be 

adjusted such that it has the same relaxation function. For these two cases one can show 

by directly calculating the dissipated energy that equation (29) is the final result when the 

p’s and q’s are calculated accordingly. This is not surprising as the strains associated with 

viscous energy dissipation in equation (30) are attributed to the normal modes of the 

deformation resulting from the linear force-flux relations and not to the specific 

representation of springs and dashpots. In short, (29) relies only on (22) and the linearity 

assumptions and it does not depend on specific representation of springs and dashpots 

model. 

 

It is of theoretical interest to note here again that equation (22) is a special function with a 

discrete set of relaxation times. For a general relaxation function (continuous spectrum) 

one can show that the dissipated power in equation (29) can be written as   

 .)()()2(2 122121∫ ∫
∞− ∞−

−−′−=
∂
∂ t t

d ddtG
t

W
τττετεττ &&  (31) 

 

3. Pressure effects 

Experimental and theoretical considerations suggest that the viscoelastic properties of 

polymers are pressure dependent. For the cases considered in the present paper, this is a 

significant effect.  The well-established explanation for this phenomenon is found in 

works of Ferry [25], Knauss and Emri [26, 27], and Losi and Knauss [28].  It is based on 

the free-volume content of a polymer:  the less available free volume the harder it 

becomes for the chains to move. Therefore, one can associate the lower free volume due 
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to the high pressure to greater constraint of the thermally activated chain motion.  In other 

words, the higher pressure makes the response of a rubbery polymer closer to that at the 

glass transition temperature. To incorporate this in our model, we may simply reduce the 

ambient temperature of the polymer by a quantity proportional to the pressure, i.e., we 

may set 

 ( , )( , ) ( ),= = − tp
ref

T Pa T P a T C Pτ
τ

 (32) 

where P is the pressure and Ctp is a time-pressure coefficient that must be established 

experimentally. In other words, the characteristic relaxation time and the time-shift 

associated with it are modified again through the reduced temperature. This is however a 

simple approach and must be modified to give appropriate results if a wide range of 

pressures occurs during a deformation history. 

 

4. Split-Hopkinson bar experiments 

We have performed a series of split-Hopkinson bar experiments on polyurea under 

various conditions. For the general setup and implementation of these tests, see [29]. To 

verify the model discussed in the previous section, a selected set of these experiments is 

presented here. The complete experimental work performed for characterization of 

polyurea at various conditions will appear in a different publication. The tests presented 

here were all performed at an effective engineering strain rate of 3000±400/s. The 

summary of the experimental parameters is given in table 1.  All 4 tests are performed 

using a 12.7mm (half inch) split-Hopkinson bar (maraging steel bars). The sample 

diameter in the unconfined test is substantially smaller than that of the bars to 

accommodate the large radial deformations that occur during the test. For the confined 
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tests, the sample is fitted inside a cylindrical tube of 17.8mm outside diameter and 26mm 

length, machined from VascoMax C-350 maraging steel. The strains in the transmitted 

bar can be as low as 10-4 (unconfined test).  Using a Nicolet MultiPro Digitizer Model 

140 with a full range of scale of 15 millivolts, these signals are recorded without 

difficulty. For all the tests, a ramped incident pulse is used which allows dynamic 

equilibrium to be established early in the test. The signals are recorded at every 0.2µs. In 

the confined tests, the Cauchy stress and the nominal stress recorded directly are equal.  

But since the diameter of the sample changes during the unconfined tests, the Cauchy 

stress must then be estimated. Since under the low pressures observed in the unconfined 

tests, polyurea is nearly incompressible, we calculated the diameter and the Cauchy stress 

assuming isochoric deformation. The resulting loading stress-strain curves are shown in 

figures 1 and 2. Upon unloading the dynamics of the test changes from being loaded by a 

pressure pulse in the incident bar to the soft polyurea releasing the applied stress. 

Therefore, the time scale of the unloading portion is significantly different from that of 

the loading portion and the elastic pulses that reflect off the far ends of the Hopkinson 

bars reach the strain gauges and thus interfere with the measurement of the unloading 

signals. From the initial part of the unloading curves one observes that, for confined tests, 

the unloading follows essentially the same stress-strain curve as that of the loading. 

However, for the unconfined tests, the stress is released much faster than the accumulated 

strain. This strain is not permanent though and, in all cases, the sample regained its initial 

length after the test was completed. Another characteristic of the stress-strain curves in 

the confined tests is a rather soft initial segment. In these tests, this segment is limited to 

1% to 2% strain and occurs at a low rate. In some preliminary tests, this segment was 
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longer and more pronounced. We believe that this is partially due to the fact that the 

confinement is not perfect at the start of the experiment where there may be some 

clearance between the sample and the bars. For the experiments discussed here, we 

manually pre-loaded the samples slightly, resulting in the disappearance of a major part 

of the soft segment. However, we believe that the remaining effect is due to a 

combination of this incomplete contact between the sample and the bars and possibly the 

material response. 

 

5. Model results and comparison with experimental data  

The results of our Hopkinson experiments appear to be in general qualitative agreement 

with the predictions of the model discussed in the previous sections. To verify this, we 

have developed a numerical subroutine that incorporates all of the components of the 

model, and is written to be compatible with the explicit finite-element code, LS-DYNA, 

which is widely used in research and industry for various applications such as automotive 

crash-safety design [30]. Some of quantities that are not usually used in normal structural 

applications, such as temperature and the reduced time, (23), are calculated explicitly and 

stored. Moreover, the strains associated with viscous flow, (30), are also calculated and 

stored at each step for all terms in the Prony series (22). The significance of this 

representation in numerical calculations is now evident. If a general relaxation expression 

is used, the entire integral in (30) will have to be evaluated at each time step. However, 

the exponential forms in (22) make it possible to calculate the increment of the creep 

strains  
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 ( ) ( ) ( ),)()1(
0

/))()(( ttdet i
d

t
qti

c
i εεε −′=′−= ∫ −− τττξξ D  (33)  

recursively using the current step loading and the information that is stored from the last 

step [12, 31 – 33]: 

 ( ) ( ) ( ) ( ) .))1(1())(1(, // tte
q

ttett ii qii
c

qi
c ∆′−

∆
−+−′−=∆∆ ∆−∆− Dξξ

ξ
εεε  (34)  

The derivation of the stress tensor and the correct form of the dissipated power, (29), 

using the inelastic strains is straightforward now.  

 ( ) ( ) ( ) .2
1









+′=′ ∑

=
∞

n

i

i
di tptGt εεσ  (35)  

The temperature history can also be stored together with the strain history. The 

simplification resulting from the finite spectrum and the ability to incrementally calculate 

various parameters at each instant, based on the deformation at the current step and the 

stored values of the variables, are crucial in most real applications.  

 

The values of the model parameters, (i.e., A, B, refT , and ∞G ,  as given in (15-17)  and 

(19), and CTE, the coefficient of thermal expansion), are listed in table 2.  These values, 

as well as the values of the  dissipation time scales, q’s, and their relative stiffnesses, p’s, 

are all based on the results reported by Knauss [1], where, here we have used a least-

square fit to the experimental data within a limited range of interest with n = 4. The heat 

capacity at constant volume per unit of original volume, VC , is measured directly. This 

value is also verified using an accurate DSC test result; see [13]. The bulk stiffness 

parameters, )( 0Tκ  and m, are based on the results of the three confined tests, discussed 
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earlier in this paper. Finally the value of tpC , equation (32), is also estimated from the 

pressure–shear experimental results presented in the next section. The final results are 

shown in figures 3 – 6 . Further mechanical measurements (using a Dynamic Mechanical 

Analyzer (DMA) and confined Hopkinson bar tests with measured hoop strain of the 

confining cylinder) give values close to those in table 2; see [13]. For the unconfined test 

the model closely predicts the initial slope of the stress-strain curve before the onset of a 

reduced instantaneous stiffness at about 8% strain. The model does not account for this 

reduced-stiffness behavior, generally observed in the unconfined uniaxial response of 

elastomers. One may approach this shortcoming by using a more elaborate elastic 

component such as the 8-chain network model of Arruda and Boyce [16]. Note that the 

effect of the soft initial segment of the confined experiments is more pronounced here. If 

we remove this segment and assume that the loading starts when full confinement is 

established, then the modeled results agree closely with the corrected experimental 

results. We do not intend to find the best fitting parameters here. Rather, we propose that 

the model discussed in the previous section can reproduce the main qualitative attributes 

of various independent test results.  

 

6. Application: FEM model of a pressure–shear experiment 

The model discussed in previous sections has been used to simulate a pressure-shear test 

performed at Brown University and documented by Jiao et al. [3]. The associated data are 

given in table 3. A steel flyer plate impacts at a velocity V0 a sandwich structure that 

consists of a front steel plate, a thin layer of elastomer, and a rear steel plate. All of the 

plates are aligned at a constant given angle θ with respect to the velocity direction; see 
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figure 7. Upon impact, two elastic waves are created that travel normal to the surface of 

the impact at two different velocities. These are: a longitudinal compression wave (high 

velocity) and a shear wave (low velocity). The impact parameters are set such that the 

steel plates remain elastic. The longitudinal pressure wave reaches the elastomer layer 

first and loads it to a maximum stress after a few reverberations. The late arrival of the 

shear wave to this pre-strained layer makes it possible to study the shear behavior of 

highly-compressed materials. Both normal and transverse particle velocities are measured 

on the back surface of the rear plate using optical methods; see Clifton (1974) for a 

discussion of pressure-shear plate impact experiments.  

 

The propagation of a finite amplitude elastic shear wave in a uniaxially pre-strained layer 

of elastomer has been discussed before by Nemat-Nasser and Amirkhizi [34]. The 

observable particle velocity on the back surface of the rear plate consists of stepped rises 

that finally converge to the impact transverse velocity regardless of the stiffness of the 

elastomer; see figure 8. Neither of these two properties is observed in the measured 

transverse velocity by Clifton and Jiao [14]. Instead, there is a single jump at the 

beginning, followed by a gradual rise in the velocity. The measured value falls 

considerably short of such predicted final values, as can be seen from data of figure 10. 

 

Full modeling of the pressure–shear test described in table 3 requires a very large number 

of elements due to the existing high aspect ratios (T:D:D ~ 1:600:600). Even a two-

dimensional plane-strain (T:D ~ 1:600) approximation requires far too many elements. 

However, one can easily retrieve most relevant information by a quasi-one-dimensional 



 Constitutive Modeling of Polyurea UCSD-CEAM 

 20 

model of the elements along the center line of the structure; see figure 7. The center of 

the whole structure, consisting of the flyer, front, and rear plates and the elastomer layer 

is modeled with three-dimensional elements using the elastic properties of steel and a 

nonlinear viscoelastic user-defined constitutive subroutine for the polyurea. The 

boundary conditions are described such that the material is confined laterally but allow 

for shear deformation. However, the free surface boundary condition violates the former 

and the fixed surface, contradicts the latter. Therefore, we constrained the top and bottom 

nodes to have the same displacement degrees of freedom; see figure 7. This maintains a 

fixed lateral dimension and hence the confining pressure is applied automatically by the 

finite-element solver. At the same time the element can be sheared laterally. This scheme 

enables us to study the full impact test (until the boundary waves arrive) with a very low 

number of elements compared to what is required for a full three-dimensional simulation.   

 

The results of the numerical simulations for the transverse particle velocity are shown in 

figure 10.  The bulk properties are modeled as linearly elastic with a constant bulk 

modulus, GPa5.22=κ . The curves in figure 10 depict the rich spectrum of responses 

that can result under these conditions by varying only two material parameters, the 

equilibrium shear modulus, ∞G , and the pressure-sensitivity parameter, tpC . The other 

parameters are the same as those discussed earlier in this paper. 

 

7. Discussion 

The calculated normal velocity of the particles at the back face of the rear plate agrees 

very closely with the experiment up until the unloading; see figure 9. This includes the 
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rise time to the maximum velocity (~0.6µs) and the time when the unloading waves 

arrive (~2.2µs). The numerical results predict a full drop of the velocity at the unloading. 

This is because the unloading waves from both sides, the flyer plate face and the rear 

plate face, arrive at the same time at the two faces of the elastomer layer. However, the 

experimental data do not show a complete drop, possibly due to a slight difference in the 

arrival times of these two release waves. After this unloading, the elastomer undergoes 

normal tension. The response of polyurea under tension and compression is asymmetric. 

The numerical model does not incorporate this fact and therefore the results are not valid 

after the unloading waves have arrived. The timing of the events up to this point is 

predicted remarkably accurately. If the nonlinearly elastic bulk model discussed before is 

used in the simulations, the general responses in the normal and shear waves do not 

change significantly. However, the event timing will not be similar to the experiment, 

namely the rise time will be much longer than that observed. It must be mentioned here 

that the significantly higher bulk stiffness observed in this test relative to the Hopkinson 

data, occurs at about twice the corresponding normal strain, i.e., 21.3% for the pressure-

shear test as compared with about 12% for the Hopkinson tests. This amount of 

volumetric deformation can significantly change the response of the material. It must be 

noted here that alternative models have been suggested for the elastic bulk response that 

relate the results of the lower strain levels, such as the ones observed in Hopkinson bar 

experiments, to the higher level of volumetric strain that is observed in the pressure–shear 

test; see, for example [3]. 
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The transverse velocity of the particles has complex characteristics. It was previously 

mentioned that the profile of the measured results does not show step-wise rise except at 

the beginning of the loading. The flattening of the step-wise profile as observed in the 

experiment can easily be captured by an appropriate choice of the parameters in the 

viscoelastic model. This and the fact that the measured transverse velocity rises much 

more slowly than can be calculated through elasticity considerations are most likely due 

to the relaxation of the shear stress in the viscoelastic material. The latter phenomenon is 

readily captured by the viscoelastic model. Finally, the abrupt drop in the measured 

transverse particle velocity observed at the final stage of the experiment is attributed to 

the loss of the shear stiffness due to the release of the normal pressure. This release of the 

normal pressure and the associated particle velocity travel at the longitudinal wave speed. 

However, the resulting effect on the shear stiffness and transverse particle velocity travels 

at the transverse wave speed. Therefore, this effect is seen later than the arrival of the 

normal unloading which is observed in the normal velocity measurement. If the measured 

velocity pulses are shifted back by the time of travel of the normal and shear waves in 

steel, the unloading of the elastomer and its effect on the shear stiffness will be 

simultaneous, both in numerical and experimental results. This is confirmed by 

considering the stresses in the elastomer; see figure 11. This loss of shear stiffness due to 

the drop in the pressure can be attributed directly to the pressure sensitivity of the 

viscoelastic relaxation in polyurea; see equation (32). 
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8. Summary 

A complete temperature, pressure, and strain-rate dependent nonlinearly viscoelastic 

constitutive model is developed for the viscoelastic response of polyurea under various 

conditions. The model parameters are extracted from the experimental results. A fortran 

code is developed in order to apply the model to predict the experimental results. This 

code is compatible for use as a user-defined material constitutive subroutine with LS-

DYNA, a general purpose large-scale finite-element program. Finally the model is used 

to reproduce the results of various independent tests, such as confined and unconfined 

split-Hopkinson bar pressure tests and a pressure–shear test. The predictions of the model 

are in good agreement with the experimental results under a very wide range of 

conditions. 
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Table 1: Values of Experimental Parameters. 

Name Confinement Diameter (mm) Length(mm) Effective Strain Rate (/s) Temperature (K)
UC No 6.17 1.78 3400 294 
CL Yes 12.7 5.08 2600 273 
CR Yes 12.7 5.08 2800 294 
CH Yes 12.7 5.08 2800 333 

 
 
 
Table 2: Values of constitutive parameters used in the numerical model 

Tref(K) A B(K) Ctp(K/GPa) CV(J/mm3/K) CTE(/K) m(GPa/K) n refκ (GPa) ∞G (GPa)
273 -10 107.54 7.2 1.977×10-3 2×10-4 -0.015 4 4.948 0.0224 

 
p1 p2 p3 p4 q1(ms) q2(ms) q3(ms) q4(ms) 

0.8458 1.686 3.594 4.342 463.4 0.06407 1.163×10-4 7.321×10-7

 
 
 
Table 3: Values of geometrical parameters of the pressure – shear test TJ0404; Courtesy of R. 
Clifton, Brown University. 

Diameter 
(mm) 

Flyer Plate 
Thickness 

(mm) 

Front Plate 
Thickness 

(mm) 

Rear Plate 
Thickness 

(mm) 

Polyurea 
Thickness 

(mm) 

V0  

(m/s) 

θ  

(deg) 

60 6.991 2.896 7.041 0.11 112.6 18 
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Figure captions 

Figure 1: The Cauchy stress – logarithmic strain curve for unconfined polyurea at room 

temperature, calculated from the nominal stress assuming incompressibility. 

Figure 2: The stress-strain data obtained from confined polyurea Hopkinson bar 

experiments at indicated temperatures. 

Figure 3: The unconfined polyurea Hopkinson bar test results obtained at T=273K, and 

the constitutive-model result. The instantaneous stiffness of the material reduces at 

around 8% is not considered in the model. The Cauchy stress is estimated based on the 

lateral expansion predicted by the model. 

Figure 4: The confined polyurea Hopkinson bar test data obtained at T=273K, and the 

constitutive-model results. The Corrected Data (CL) curve is obtained by slightly time-

shifting and re-centering. 

Figure 5: The confined polyurea Hopkinson bar test data obtained at T=294K, and the 

constitutive-model results. The Corrected Data (CL) curve is obtained by slightly time-

shifting and re-centering. 

Figure 6: The confined polyurea Hopkinson bar test data obtained at T=333K, and the 

constitutive-model results. The Corrected Data (CL) curve is obtained by slightly time-

shifting and re-centering. 

Figure 7: Schematics of the pressure–shear experiment and the FEM model. Top: Flyer 

plate impacts the front plate at velocity V0, creating normal and transverse waves that 

travel and load the polyurea layer and eventually the back plate. Middle: The elements 

along the center line passing through the plates and polyurea layer are modeled using LS-
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DYNA. Bottom: The displacement field of these elements is constrained to produce 

approperiate lateral confinement while allowing shearing. 

Figure 8: The profile of the normalized transverse particle velocity (divided by V0 sinθ) 

on the back surface of the rear plate for a fully elastic material. The time is normalized 

through dividing by (l/(V0 sinθ)), where l is the thickness of elastomer. 

Figure 9: The calculated profile of normal particle velocity. The times shown represent 

the elapsed time between the arrival of the wave, reaching the maximum velocity/stress, 

and the arrival of the release wave. The experimental values for these time intervals 

reported by Jiao et al. [3] are respectively 0.6 and 2.2 microseconds which is in good 

agreement with the numerically calculated values 0.6 and 2.4 microseconds. 

Figure 10: The profile of the transverse particle velocity as measured and calculated on 

the back surface of the rear plate. The solid curve depicts the experimental results [14] 

and other curves show the various possible responses by varying two parameters: the 

equilibrium shear modulus G∞ (in MPa) and the pressure sensitivity parameter Ctp (in 

K/GPa).  

Figure 11: The time history of the normal and shear stress in a typical element in 

elastomer. The stress scales are different. As the normal stress is released and the 

elastomer undergoes tension, the shear stiffness immediately drops. 
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Figure 9 
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Figure 10  
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