Surgical Pearl

A simplified minimally invasive technique for the treatment of venous lakes

Jonathan Weiss MD², Kathleen D. Weiss BA¹, Andrew L. Ross MD², Eduardo Weiss MD FAAD²,³,⁴

Dermatology Online Journal 20 (1): 16

¹University of Miami Miller School of Medicine, ²Department of Dermatology and Cutaneous Surgery
³Hollywood Dermatology & Cosmetic Specialists
⁴Florida International University Herbert Wertheim College of Medicine, Department of Dermatology

Correspondence:

Eduardo Weiss, MD, FAAD [Corresponding Author]
University of Miami Miller School of Medicine
Department of Dermatology and Cutaneous Surgery
Hollywood Dermatology & Cosmetic Specialists
3850 Hollywood Blvd; Suite 201
Hollywood, Fl 33021
eweiss1401@aol.com

Abstract

A simplified approach to treat venous lakes of the vermillion lip is presented. Our method involves the use of a 30 gauge hypodermic needle to deliver a low-powered, high-frequency electrical current from a hyfrecator power source into the venous lake lesion.

Introduction

Venous lakes are cutaneous vascular ectasias formed from dilated venules located in the upper dermis [1]. They are most frequently located on the vermillion lips, but can also develop in other parts of the face or the hands. Most patients seek treatment primarily for improvement of cosmetic appearance, although in some cases bleeding may be the main concern.

Although there are no comprehensive comparative therapeutic trials, multiple case reports have been published describing the successful use of various modalities to treat venous lakes. These include surgical excision [2], cryosurgery [3], infrared coagulation [4], argon lasers [5], intense pulsed light [6], pulsed dye lasers [7-9], Nd:YAG laser [10], diode lasers [11, 12], carbon dioxide lasers [13], and sclerosing agents [14]. The goal of these modalities is to deliver localized therapy to eradicate the venous lake malformation. However, many of these modalities require experience and expensive or specialized equipment that is not readily available in many offices.

Keywords: venous lake, hyfrecator, electrosurgery

Method

Guarneri et al [15] described a minimally invasive method using a modified intravenous infusion cannula to deliver diathermocoagulation intralesionally from an electroscalpel. Herein, we describe a similar but simplified approach to successfully treat venous lakes of the vermillion lip. Our method involves the use of a 30 gauge hypodermic needle to deliver a low-powered, high-frequency electrical current from a hyfrecator power source into the venous lake lesion. After anesthetizing the area with topical 4% lidocaine, the needle is inserted deep into the vascular lesion. The hyfrecator blade (McKesson 22-940™; monopolar setting; power level of 2.0) is brought into contact with the needle (Figure 1) and an electrical current is continuously delivered while the needle is slowly withdrawn towards the superficial portion of the lesion. This technique is effective in desiccating all
levels of the venous lake. In order to avoid damage to the superficial mucosa, it is important to discontinue delivering current prior to complete withdrawal of the needle.

Figure 1. The venous lake is desiccated by conducting electrical current intralesionally through the 30 gauge needle.

Figure 2A. 78 year-old woman prior to treatment of venous lake on the lower vermillion lip.

Figure 2B. Immediately after treatment using the described method.

Conclusion

We have observed excellent cosmetic improvement using this method to eradicate venous lake malformations of the vermillion lip. The results are immediate, with the added benefit of minimal recovery time (Figure 2). The use of a 30 gauge needle minimizes pain and discomfort for the patient, and the small diameter reduces the risk of collateral damage to surrounding tissue. No scarring or other adverse effects have been observed or reported at three-month follow up in our clinical experience of over eight patients treated with this method. Our simplified therapeutic approach is inexpensive, minimally invasive, effective, and requires equipment that is readily available in the offices of most dermatologists. Nonetheless, prospective trials comparing our
method to other treatment modalities are warranted to evaluate efficacy, cosmetic outcomes, and risks of adverse events such as scarring.

References