Title
SPECIFIC HEAT OF (Ce,La)Ru$_2$Si$_2$ IN HIGH MAGNETIC FIELDS

Permalink
https://escholarship.org/uc/item/50s962j4

Authors
Fisher, R.A.
Phillips, N.E.
Marcenat, C.

Publication Date
1988-07-01
Specific Heat of (Ce,La)Ru$_2$Si$_2$ in High Magnetic Fields

July 1988
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SPECIFIC HEAT OF (Ce,La)Ru$_2$Si$_2$ IN HIGH MAGNETIC FIELDS

R. A. Fisher†, N. E. Phillips†, C. Marcenat†*, J. Flouquet*, P. Haen*, P. Lejay* and J.-M. Mignot*

†Materials and Chemical Sciences Division, LBL, University of California, Berkeley CA 94720, USA
*CRTBT-CNRS, BP 166 X, 38042 Grenoble-Cedex, France

ABSTRACT

Specific heat (C) measurements on Ce$_{1-x}$La$_x$Ru$_2$Si$_2$ were made in order to observe the change in C on going from a long range magnetically ordered system ($x<0.07$) to a paramagnetic system. Magnetic field measurements of C show that a maximum of the effective mass occurs at the metamagnetic-like transition.

Keywords

High field, specific heat, effective mass enhancement, heavy fermion

Presented at the International Conference on Magnetism, July 1988, Paris, France, and to be published in J. de Physique (series colloques).
The compound CeRu$_2$Si$_2$ exhibits interesting magnetic features \[1\]. Its magnetization (M) for H parallel to the tetragonal c-axis displays a metamagnetic-like transition at \(H_M \approx 8\)T, although no long range magnetic order could be detected. This field corresponds to the quenching of the antiferromagnetic (AF) correlations occurring below 60K \[2\]. In Ref. 1, it was argued by comparing the temperature dependences of the resistivity at various fields that the electronic effective mass \(m^*\) would go through a maximum at \(H_M\). In order to check this suggestion, we have made specific heat measurements on single crystals of Ce$_{1-x}$La$_x$Ru$_2$Si$_2$ \((x=0, 0.05, 0.10\) and 0.13). Substituting La for Ce reduces \(H_M\) \[3\] and induces AF order for \(x \geq 0.08\) \[4\]. The corresponding critical fields are respectively 7.9, 5.7, 3.8 and 3.65T at \(=1.4\)K (i.e., below \(T_N\) for the two last systems) \[3\]. For \(H=0\), the measurements extended from \(-0.1\)K to \(-27\)K. Magnetic fields up to 7.5T were applied along the c-direction for \(T \geq 0.4\)K.

The \(H=0\) data are displayed in Fig. 1; the inset shows the low temperature region as \(C/T\) vs. \(T\). They are consistent with previous results for polycrystals \[5\]. The value of \(C/T\) extrapolated to \(T=0(\gamma_o)\) increases from 360 \text{mJ mol}^{-1}\text{K}^{-2} for \(x=0\) to 585 \text{mJ mol}^{-1}\text{K}^{-2} for \(x=0.1\) and then decreases again. \(\gamma_o\) may reach a critical value \(\gamma_{oc} = 600\) \text{mJ mol}^{-1}\text{K}^{-2} at the magnetic-non-magnetic (M-NM) transition which occurs near \(x=0.08\) as shown by neutron diffraction experiments \[4\]. Indeed, for \(x=0.13\), AF ordering leads to a peak in \(C\) at \(T_N=3.8\)K. This anomaly is very similar to that reported \[6\] for CePb$_3$, a typical long range magnetically ordered heavy fermion compound. Although no peak in \(C(T)\) is observed for \(x=0.1\), it is worth noticing the similarity between the \(x=0.1\) and \(x=0.13\) data in the \(C/T\) representation, i.e., a sharp increase followed by an almost flattening (see Fig. 1 inset). This suggests that our \(x=0.1\) crystal orders below \(-2.5\)K which is consistent with \(T_N=2.7\)K determined by neutron experiments \[4\]. On the non-magnetic side of the M-NM transition (\(x=0\) and 0.05), the smooth increase of \(C/T\) on cooling is very similar to that reported \[7\] for CeCu$_6$.

Fig. 2 shows the field dependence of \(\gamma_o\). A clear increase of \(\gamma_o\) towards \(H_M\) is observed for the two NM compounds. For \(x=0.05\) for which it was possible to perform experiments well above \(H_M\), \(\gamma_o(H)\) goes through a maximum at a field of \(-5.5\)T, consistent with the value of \(H_M\) derived from magnetization data \[3\]. While \(\gamma_o=500\) \text{mJ mol}^{-1}\text{K}^{-2} at \(H=0\), \(\gamma_o(H_M)=655\) \text{mJ mol}^{-1}\text{K}^{-2} (an increase of 30\%).
Magnetization experiments at 1.5K lead to an increase of the differential susceptibility ($\chi=\partial M/\partial H$) by a factor of 2.7 at H_M. Such a dependence of γ_{oc} with H stresses the importance of the magnetic correlations [1,2]. $\gamma_{oc}(H_M)=655$ mJ mol$^{-1}$K$^{-2}$ is roughly the same value as the critical value γ_{oc} defined above, which suggests that this critical magnitude of γ_o drives the magnetic instabilities induced either by H or by addition of La.

No maximum in $\gamma_o(H)$ can be seen for $x=0.1$. This may be due to the fact that γ_o is already very close to γ_{oc}. However, the occurrence of a new feature (the existence of maxima in the C/T vs T curves in magnetic fields, connected to the crossing of lines of the [H,T] magnetic phase diagram [3]) prevents accurate extrapolations of C/T to T=0, making measurements at lower temperatures desirable.

Finally, $\gamma_o(H)$ decreases rapidly with H above H_M where high magnetic polarization is achieved. Further studies of these polarized phases will lead to a better understanding of the heavy fermion compounds.

Work at Berkeley supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Material Science Division of the U. S. Department of Energy under Contract DE-AC03-76SF00098.
References

Laboratoire associe a l' Universite Joseph Fourier, Grenoble.

*Present address: Dept. Mat. Cond., University of Geneva, Switzerland

Figure Captions

Fig. 1. Specific heat of Ce$_{1-x}$La$_x$Ru$_2$Si$_2$. The insert shows C/T vs T.

Fig. 2. Field variation of C/T extrapolated to T=0K.
Fig. 1