UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
A Unified Synthetic Approach Toward the Kalihinanes

Permalink
https://escholarship.org/uc/item/5133j2rr

Author
Daub, Mary Elisabeth

Publication Date
2016

Peer reviewed|Thesis/dissertation
A Unified Synthetic Approach Toward the Kalihinanes

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Chemistry

by

Mary Elisabeth Daub

Dissertation Committee:
Professor Christopher D. Vanderwal, Chair
Professor Larry E. Overman
Professor Scott D. Rychnovsky

2016
DEDICATION

To my mom for her endless love and support.
To my dad for our shared passion for organic synthesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>xv</td>
</tr>
<tr>
<td>ABSTRACT OF THE DISSERTATION</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION TO THE KALIHINANES</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Isolation and Structure Determination</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Initial Isolation by Scheuer and Co-Workers</td>
<td>1</td>
</tr>
<tr>
<td>1.2.2 Subsequent Isolation Reports and Subclasses of Kalihinanes</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 Absolute Configuration of the Kalihinanes</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4 A Structurally Related Sesquiterpene, 10-Isocyano-4-cadinene</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Antimalarial Activity and Biological Properties of the Kalihinanes and Related ICTs</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Proposed Biosynthesis of the Kalihinanes</td>
<td>13</td>
</tr>
<tr>
<td>1.4.1 Proposed Biosynthesis of the Kalihinanes and Kalipyrans</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2 Biosynthetic Origins of Isonitriles and Isothiocyanates</td>
<td>16</td>
</tr>
<tr>
<td>1.5 Methods for the Synthesis of Isonitriles</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1 Synthesis of Isonitriles from the Corresponding Amine</td>
<td>17</td>
</tr>
<tr>
<td>1.5.2 Synthesis of Isonitriles by Nucleophilic Substitution and Other Cationic Methods</td>
<td>18</td>
</tr>
<tr>
<td>1.6 Previous Syntheses of Kalihinanes and Related ICTs</td>
<td>22</td>
</tr>
<tr>
<td>1.6.1 Taber’s Synthesis of (+)-Torreyol</td>
<td>22</td>
</tr>
<tr>
<td>1.6.2 Matsuda’s Synthesis of (+)-10-Isocyano-4-cadinene</td>
<td>23</td>
</tr>
<tr>
<td>1.6.3 Shenvi’s Synthesis of (±)-10-Isocyano-4-cadinene from (±)-Cedrelanol</td>
<td>26</td>
</tr>
<tr>
<td>1.6.4 Yamada’s Synthesis of Kalihinene X</td>
<td>27</td>
</tr>
<tr>
<td>1.6.5 Wood’s Synthesis of Kalihinol C</td>
<td>29</td>
</tr>
<tr>
<td>1.6.6 Miyaoka’s Synthesis of Kalihinol A, Kalihinol Y, and 10-Epi-</td>
<td>32</td>
</tr>
<tr>
<td>1.7 A Unified Strategy for the Synthesis of the Kalihinanes and Analogues</td>
<td>34</td>
</tr>
<tr>
<td>1.8 Notes and References</td>
<td>35</td>
</tr>
</tbody>
</table>
CHAPTER 2: A UNIFIED SYNTHETIC APPROACH TOWARD THE KALIHINANES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>40</td>
</tr>
<tr>
<td>2.2 Synthesis of (±)-10-Isocyano-4-cadinene</td>
<td>42</td>
</tr>
<tr>
<td>2.2.1 An Intermolecular Diels–Alder Approach to the Decalin Core</td>
<td>43</td>
</tr>
<tr>
<td>2.2.2 A Piers-type Annulation to Complete the Synthesis of (±)-10-Isocyano-4-cadinene</td>
<td>45</td>
</tr>
<tr>
<td>2.3 Progress Toward the Synthesis of THP Kalihinanes</td>
<td>48</td>
</tr>
<tr>
<td>2.4 Synthesis of Kalihinol B</td>
<td>56</td>
</tr>
<tr>
<td>2.5 Progress Toward the Synthesis of Other THF Kalihinanes</td>
<td>65</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>71</td>
</tr>
<tr>
<td>2.7 Experimental Procedures</td>
<td>72</td>
</tr>
<tr>
<td>2.8 Notes and References</td>
<td>123</td>
</tr>
</tbody>
</table>

CHAPTER 3: SYNTHESIS AND ANTIMALARIAL ACTIVITY OF KALIHINANE ANALOGUES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>127</td>
</tr>
<tr>
<td>3.2 Synthesis of Kalihinane Analogues</td>
<td>128</td>
</tr>
<tr>
<td>3.3 Synthesis of Kalihinane-Based Small-Molecule Probes</td>
<td>132</td>
</tr>
<tr>
<td>3.4 Evaluation of Antimalarial Activity</td>
<td>136</td>
</tr>
<tr>
<td>3.5 Conclusions</td>
<td>140</td>
</tr>
<tr>
<td>3.6 Experimental Procedures</td>
<td>141</td>
</tr>
<tr>
<td>3.7 Notes and References</td>
<td>175</td>
</tr>
</tbody>
</table>

APPENDIX A: NMR and Chiral HPLC Data 177

APPENDIX B: X-Ray Crystallographic Data 384
LIST OF FIGURES

Figure 1.1	Select members of the kalihinane family.	1
Figure 1.2	Kalihinanes reported by Scheuer and co-workers.	3
Figure 1.3	Structure of kalihinol N (1.36), an isokalihinane bearing a pendant THP.	5
Figure 1.4	The kalipyrans.	7
Figure 1.5	Structurally related cavernenes and isocyanobifloradiene epoxides 1.62 and 1.64.	8
Figure 1.6	Structure of 10-isocyano-4-cadinene (1.68), a sesquiterpene isocyanide.	9
Figure 1.7	Select isocyanoterpenes included in the mechanistic studies by Wright and co-workers.	13
Figure 1.8	Structures of axisonitrile-3 (1.76) and axisothiocyanate-3 (1.90).	17
Figure 2.1	(a) Select kalihinanes targeted in our unified strategy. (b) Key intermediate for our divergent synthesis.	40
Figure 3.1	The most potent antimalarial ICTs share a similar cyclohexane/tertiary isonitrile motif.	127
Figure 3.2	(a) Structure of kalihinol B (3.8) and analogues. (b) Synthesis of kalihinol B analogues 3.9 and 3.10.	128
Figure 3.3	IC₅₀ (µg/mL) of kalihinol B (3.8) against wild-type (3D7) and chloroquine-resistant (Dd2) strains of *P. falciparum*.	175
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Kalihinanes bearing a pendant THP.</td>
<td>4</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Kalihinanes bearing a pendant THF.</td>
<td>5</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Isokalihinanes bearing a pendant THF.</td>
<td>6</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Kalihinenes containing a cis-decalin and a pendant THF.</td>
<td>6</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Kalihinenes containing a trans-decalin and a pendant THF.</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Kalihinenes containing a cis- or trans-decalin and a pendant THP.</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.7</td>
<td>Antimalarial activities of kalihinanes that have been assayed.</td>
<td>10</td>
</tr>
<tr>
<td>Table 1.8</td>
<td>Kalihinane analogues displaying antiplasmodial activity.</td>
<td>12</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Iminium-catalyzed intramolecular oxa-Michael reaction.</td>
<td>52</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Intermolecular Michael reaction of trans-2.83 with methyl vinyl ketone.</td>
<td>59</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Optimization of the aldol condensation of keto-aldehyde 2.85.</td>
<td>60</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Diastereoselectivity of epoxidation of the mixture of cis- and trans-decalones 2.7.</td>
<td>62</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Comparison of 13C NMR data (CDCl$_3$) for synthetic and natural kalihinol B (2.2).</td>
<td>109</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Results of antiplasmodial assays of synthetic terpene isonitriles against P. falciparum.</td>
<td>137</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Activity of synthetic ICTs against wild-type (3D7) and chloroquine-resistant (Dd2) P. falciparum.</td>
<td>174</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

Scheme 1.1. Biogenesis of the kalihinanes proposed by Garson and co-workers. 15
Scheme 1.2. Biogenesis of the kalipyrans proposed by Garson and co-workers. 16
Scheme 1.3. (a) Caine and Deutsch’s isonitrile installation in the synthesis of axisonitrile-3 (1.76). (b) Piers and Llinas-Brunet’s use of a Curtius rearrangement in the synthesis of 1.94. 18
Scheme 1.4. Cationic methods for isonitrile synthesis: (a) Corey and Magriotis’s synthesis of 7,20-diisocynoadociane (1.77). (b) Shenvi and co-workers’ synthesis of 1.79, an amphilectene isonitrile. (c) Srikrishna and co-workers’ synthesis of ent-2-(isocyno)trachyopsane (1.101). 20
Scheme 1.5. Synthesis of a β-trimethylsilyloxy-isonitrile (1.103) or a β-trimethylsilyloxy-nitrile (1.106) from cyclohexene oxide (1.102). 22
Scheme 1.6. Taber’s synthesis of (±)-torreyol (1.116). 23
Scheme 1.7. Epimerization of decalones 1.114 and 1.115. 24
Scheme 1.8. Matsuda’s synthesis of (+)-10-isocyano-4-cadinene (1.68). 25
Scheme 1.9. Shenvi’s synthesis of (±)-10-isocyano-4-cadinene (1.68). 26
Scheme 1.10. Yamada’s synthesis of kalihinene X (1.54). 28
Scheme 1.11. Wood’s synthesis of kalihinol C (1.4). 31
Scheme 1.12. Miyaoka’s synthesis of kalihinol A (1.1). 33
Scheme 1.13. Miyaoka’s synthesis of (a) kalihinol Y (1.11) and (b) 10-epi-kalihinol I (1.17). 34
Scheme 2.1. A unified, divergent approach to key decalone intermediates 2.7 and 2.14. 41
Scheme 2.2. Previous approaches to decalone 2.16 compared to our strategies. 43
Scheme 2.3. (a) Synthesis of cryptone (2.19). (b) Synthesis of silyl diene 2.18. 44
Scheme 2.4. (a) Attempted Lewis acid-catalyzed intermolecular Diels–Alder cycloaddition. (b) Intermolecular Diels–Alder cycloaddition using iminium catalysis. 45
Scheme 2.5. Cuprate addition to cryptone (2.19) used in (a) Piers’s synthesis of (±)-oplopanone (2.31) and (b) Molander’s synthesis of the core of the sclerophytin diterpenes.

Scheme 2.6. Synthesis of vinyl iodides for conjugate addition.

Scheme 2.7. Comparison of the conjugate addition of cuprates derived from 2.38 and 2.39.

Scheme 2.8. Synthesis of (±)-10-isocyano-4-cadinene (2.17).

Scheme 2.9. A closer look at the proposed organocatalytic oxa-Michael/Robinson annulation cascade.

Scheme 2.10. Related oxa-Michael/intermolecular Michael cascade for (a) THP formation and (b) THF formation.

Scheme 2.11. Gellman’s enantioselective organocatalytic intermolecular Michael reaction.

Scheme 2.12. Evaluation of the oxa-Michael reaction to make THP 2.66.

Scheme 2.13. The reversibility of the oxa-Michael reaction.

Scheme 2.15. Synthesis of enantioenriched THP 2.66.

Scheme 2.16. Attempted intermolecular Michael reaction of aldehyde 2.66.

Scheme 2.17. A detailed examination of the formal Diels–Alder cycloaddition.

Scheme 2.18. Evaluation of the oxa-Michael/Robinson annulation sequence toward kalihinol B (2.2).

Scheme 2.19. A Piers-type annulation to provide the decalin core of kalihinol B.

Scheme 2.20. Elaboration of cis- and trans-2.7: (a) an epoxidation/nucleophilic methylation sequence and (b) a nucleophilic methylation/epoxidation sequence.

Scheme 2.21. Completion of the synthesis of kalihinol B (2.2).

Scheme 2.22. A divergent approach toward other THF kalihinanes.

Scheme 2.23. Initial approach toward the synthesis of kalihinene B (2.5).

Scheme 2.24. Revised strategy targeting kalihinene B (2.5).
Scheme 2.25. Synthesis of THFs bearing the tertiary (a) hydroxyl or (b) silyl ether. 67

Scheme 2.26. Synthesis of the decalin core (2.126) using the Robinson annulation and Piers-type annulation. 68

Scheme 2.27. Synthesis of kalihinene B (2.5) thwarted by a hydride shift. 69

Scheme 2.28. (a) Proposed synthesis of kalihinanes containing a C15 isonitrile by hydroazidation of an intermediate in the synthesis of kalihinol C (2.4). (b) Carreira’s method for hydroazidation of alkenes. 70

Scheme 2.29. Synthesis of THF 2.139 bearing the pendant alkene. 71

Scheme 3.1. Synthesis of (+)-cedrelanol (3.20) and (+)-torreyol (3.21). 129

Scheme 3.2. Synthesis of (a) (±)-10-isocyano-4-cadinene (3.22) and (b) cis-decalin analogue 3.23. 130

Scheme 3.3. Synthesis of C7 isopropyl analogues. 131

Scheme 3.4. Synthesis of isocyanides 3.40 and 3.41 from (+)-sclareolide (3.38). 132

Scheme 3.5. Synthesis of the trans-decalin framework of the kalihinane-based chemical probe. 133

Scheme 3.6. Synthesis of the kalihinane-based chemical probe precursor. 134

Scheme 3.7. Biotinylation of (a) a terpene isonitrile and (b) the kalihinane-based probe. 135

Scheme 3.8. Synthesis of (a) a terpene isonitrile fluorescent probe and (b) a kalihinane-based fluorescent probe. 136
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Ångstrom</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
</tr>
<tr>
<td>ν</td>
<td>frequency</td>
</tr>
<tr>
<td>[α]_D</td>
<td>specific rotation at wavelength of sodium D line</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>ap</td>
<td>apparent</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>bp</td>
<td>boiling point</td>
</tr>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>nBu</td>
<td>n-butyl</td>
</tr>
<tr>
<td>tBu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>ca.</td>
<td>about (Latin circa)</td>
</tr>
<tr>
<td>calcd</td>
<td>calculated</td>
</tr>
<tr>
<td>cat.</td>
<td>catalytic</td>
</tr>
<tr>
<td>CI</td>
<td>chemical ionization</td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>wavenumber(s)</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-dichloroethane</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-p-benzoquinone</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMDO</td>
<td>dimethyldioxirane</td>
</tr>
<tr>
<td>DME</td>
<td>1,2-dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DMM</td>
<td>dimethoxymethane</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess–Martin periodinane</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>dr</td>
<td>diastereomeric ratio</td>
</tr>
<tr>
<td>EC₅₀</td>
<td>half maximal effective concentration</td>
</tr>
<tr>
<td>EDC</td>
<td>N-(3-dimethylaminopropyl)-N’-ethylearbodiimide</td>
</tr>
<tr>
<td>EI</td>
<td>electron impact</td>
</tr>
<tr>
<td>equiv</td>
<td>equivalent</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>e.g.</td>
<td>for example (Latin exempli gratia)</td>
</tr>
<tr>
<td>er</td>
<td>enantiomeric ratio</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HRMS</td>
<td>high-resolution mass spectrometry</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>ICT</td>
<td>isocyanoterpene</td>
</tr>
<tr>
<td>IDCP</td>
<td>iodonium di-sym-collidine perchlorate</td>
</tr>
<tr>
<td>i.e.</td>
<td>that is (Latin id est)</td>
</tr>
<tr>
<td>IMDA</td>
<td>intramolecular Diels–Alder</td>
</tr>
<tr>
<td>IPA</td>
<td>isopropanol, 2-propanol</td>
</tr>
<tr>
<td>iPr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>half maximal inhibitory concentration</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin (absolute temperature)</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalorie</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>lit.</td>
<td>literature value</td>
</tr>
<tr>
<td>LLS</td>
<td>longest linear sequence</td>
</tr>
<tr>
<td>m</td>
<td>multiplet; milli</td>
</tr>
<tr>
<td>M</td>
<td>molar; molecular ion</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>mCPBA</td>
<td>meta-chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mol</td>
<td>mole(s)</td>
</tr>
<tr>
<td>mp</td>
<td>melting point</td>
</tr>
<tr>
<td>Ms</td>
<td>methanesulfonyl (mesyl)</td>
</tr>
<tr>
<td>MVK</td>
<td>methyl vinyl ketone</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
</tr>
<tr>
<td>n.d.</td>
<td>not determined; non detected</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear Overhauser enhancement spectroscopy</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>PhMe</td>
<td>toluene</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium p-toluenesulfonate</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>py</td>
<td>pyridine</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>SAR</td>
<td>structure–activity relationships</td>
</tr>
<tr>
<td>SI</td>
<td>selectivity index</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>TBAB</td>
<td>tetrabutylammonium bromide</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Name</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butyldiphenylsilyl</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetoxy</td>
</tr>
<tr>
<td>TCAA</td>
<td>trichloroacetic anhydride</td>
</tr>
<tr>
<td>TES</td>
<td>triethylsilyl</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-tetramethylpiperidin-1-oxyl</td>
</tr>
<tr>
<td>Teoc</td>
<td>2-trimethylsilylethyl carbamate</td>
</tr>
<tr>
<td>Tf</td>
<td>trifluoromethanesulfonyl</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetoxy</td>
</tr>
<tr>
<td>TFAA</td>
<td>trifluoroacetic anhydride</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>THP</td>
<td>tetrahydropyran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin-layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>N,N,N',N'-teramethylethlenediamine</td>
</tr>
<tr>
<td>TMP</td>
<td>2,2,6,6-tetramethylpiperidine</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TMSCN</td>
<td>trimethylsilyl cyanide</td>
</tr>
<tr>
<td>TOF</td>
<td>time-of-flight</td>
</tr>
<tr>
<td>Ts</td>
<td>p-toluenesulfonyl (tosyl)</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

I would like to thank my Ph.D. advisor, Professor Chris Vanderwal. Chris has been an exceptional mentor, and I am grateful for all the support he has provided over the past five years. He fosters a productive, yet fun working environment that makes the Vanderwal lab a special place to work. Chris has also been fully supportive of my career goals, and the experiences I have had teaching with Chris as a co-instructor and a teaching assistant have been invaluable.

I appreciate the guidance I have received from my other committee members, Professors Larry Overman and Scott Rychnovsky. I would also like to thank Professor Sergey Pronin for providing advice as I explored isonitrile synthesis using the methodology he developed during his postdoctoral studies. A special thanks goes to Phil Dennison, John Greaves, Beniam Berhane, and Shirin Sorooshian, the UCI staff running the NMR Spectroscopy and Mass Spectrometry facilities.

I would like to thank our collaborators—Professor Karine Le Roch, Jacques Prudhomme, and Professor Choukri Ben Mamoun—for determining the antimalarial activity of the terpene isocyanides I prepared and for helping us study their mechanism of action. I would also like to acknowledge Dr. Luke Lavis at Janelia Research Campus for generously providing a sample of Janelia Fluor™ 549 dye, which I used to make a small-molecule fluorescent probe.

I was fortunate to receive an Allergan Graduate Fellowship and a Regent’s Dissertation Fellowship during my graduate career. The Allergan Foundation generously funded my research during part of my fourth year, and the UCI Chemistry Department provided financial support during the spring quarter of my fifth year. I would also like to thank Zef Könst, Alex Karns, and Brian Atwood for editing my thesis, and the members of the Overman and Rychnovsky groups for helpful discussions about chemistry.

The Vanderwal lab is a special place, and I am grateful for the labmates and friends I have worked with every day. I benefitted immensely from the expertise of the senior lab members, Theo Michels, Evan Horn, Anne Szklarski, Sam Tartakoff, and Jon Lam, during my first few years in the Vanderwal lab. I also must thank the excellent postdoctoral researchers—Won-jin Chung, Yvonne Schmidt, Peter Mai, Allen Hong, Diane Lim, and Florian de Nanteuil—who have helped me with some of the challenges I have faced. The other Vanderwal lab members, Lucas Nguyen, Carl Vogel, Dmitriy Uchenik, Alex White, Brian Atwood, Bryan Ellis, Sharon Michalak, and Michael Freidberg, have made the Vanderwal lab a wonderful place to work. I am grateful for the opportunity I had to mentor Kathy Dao, an undergraduate student, during my fourth and fifth years; her excitement for chemistry and eagerness to learn have made working with her an enjoyable, rewarding experience. In particular, I would like to thank Joey Carlson, Gregg Schwarzwalder, and Alex Karns for the adventures and for keeping each day interesting. Lastly, I would like to thank Zef Könst, without whom I could not imagine my graduate research experience. Our conversations about chemistry and everything else have been integral to my success over the past four years.

My friends at UCI—Olivia Cromwell, Hanna and James Neal, Juliet Khosrowabadi, Chris Kotyk, Nick Tallarida, Greg Lackner, Greg Suryn, Aaron Hollas, Domarin Khago, Dave
McCutcheon, Krysten Jones, Ethan Hill, and Sarah Block—have made my graduate research experience incredible. Olivia, Hanna, Juliet, and Sarah have been especially important to me, and I have enjoyed all of our adventures together. Additionally, Professor Tom Smith, my friends from college, and my college softball coach and teammates have been especially supportive during the past five years.

I am incredibly lucky to have an amazing family, and I would never have been able to finish my doctoral studies without their support. I am thankful for the love and encouragement I have received from all my siblings, Eric, Camille, Brian, Ginger, Michael, and Taryn. Finally, I would like to thank my parents for their unwavering love and support over the past 26 years, without which I could not imagine my life.
CURRICULUM VITAE

Mary Elisabeth Daub

1102 Natural Sciences 2
University of California, Irvine
Irvine, CA 92697-2025
E-mail: mdaub@uci.edu

EDUCATION

Ph.D., Organic Chemistry, University of California, Irvine, CA, 2016
 • Advisor: Professor Chris Vanderwal
 • Thesis: A Unified Synthetic Approach Toward the Kalihinanes

B. A., Chemistry (cum laude), Williams College, Massachusetts, 2011
 • Advisor: Professor Thomas E. Smith
 • Thesis: Toward the Asymmetric Total Synthesis of Jerangolid D
 • Graduated with highest honors in chemistry

RESEARCH EXPERIENCE

Graduate Research Assistant
University of California, Irvine, CA Sept. 2011 – June 2016
 • Worked on developing a unified synthesis of the kalihinanes, a family of isonitrile-containing marine diterpenoids known for their antimalarial activity
 • Explored the regioselective functionalization of donor-acceptor dienes for the synthesis of substituted pyridines

Undergraduate Researcher
Williams College, Williamstown, Massachusetts June 2010 – June 2011
 • Advisor: Professor Thomas E. Smith
 • Worked toward the asymmetric total synthesis of jerangolid D and achieved a formal synthesis of ambruticin

Summer Undergraduate Researcher
Williams College, Williamstown, Massachusetts June 2009 – Aug. 2009
 • Advisor: Professor Thomas E. Smith
 • Worked toward a stereochemistry versatile synthesis of the C1 – C12 fragment of tedanolide C

Summer Undergraduate Researcher
Harvey Mudd College, Claremont, California June 2008 – Aug. 2008
 • Advisor: Professor Kerry K. Karukstis
 • Developed the phase diagram of n-heptyl-β-thioglucoside in various solvent systems using polarized light and fluorescence microscopy and fluorescence spectroscopy
PUBLICATIONS

PRESENTATIONS

• 64th Gordon Research Conference: Natural Products, Andover, NH, July 2015
 Daub, M. E., Prudhomme, J., Le Roch, K., Vanderwal, C. D. “A Unified Synthetic Approach Toward the Kalihinanes”

• UCI Graduate Student and Post-Doctoral Colloquium, Irvine, CA, June 2014
 Daub, M. E., Vanderwal, C. D. “A Unified Synthetic Approach Toward the Kalihinanes”

AWARDS AND HONORS

Regents’ Dissertation Fellowship Award (UCI) 2016
Allergan Graduate Fellowship Recipient 2014
NSF Graduate Research Fellowship Program Honorable Mention Recipient 2013
American Institute of Chemists Award, Williams College 2011
ACS Summer Undergraduate Research Fellowship (SURF) 2010

TEACHING EXPERIENCE

Teaching Instructor
University of California, Irvine August 2015 – Sept. 2015
Co-Instructor for Introductory Organic Chemistry

Graduate Student Mentor
University of California, Irvine March 2015 – June 2016
Mentored an undergraduate researcher working toward the synthesis of pustulosaisonitrile

Teaching Assistant
University of California, Irvine Sept. 2011 – March 2016
Organic Synthesis Discussion Leader (Graduate Level)
 • Winter 2016

Organic Chemistry Lab Instructor (Undergraduate Level)

Organic Chemistry Discussion Leader (Undergraduate Level)
 • Winter 2013, Fall 2013, Fall 2015

General Chemistry Discussion Leader (Undergraduate Level)
 • Summer 2013
Teaching Assistant
Williams College Sept. 2009 – June 2010
Organic Chemistry Lab Assistant
• Fall 2009 and Spring 2010

Chemistry Tutor
Williams College Sept. 2008 – June 2010
Chemistry Peer Tutor
• General Chemistry – Fall 2008
• Introductory Level Organic Chemistry – Spring 2009
• Intermediate Level Organic Chemistry – Fall 2009
• Physical Chemistry – Spring 2010

AFFILIATIONS
American Chemical Society 2011 – Present
Associate Membership in Sigma Xi 2011 – Present
Iota Sigma Pi – Honor Society for Women in Chemistry 2012 – Present
Calcium Chapter
Chapter President, 2015–2016
Chapter Vice President, 2014–2015
Chapter Secretary, 2013–2014
Chapter Activity Coordinator, 2012–2013
ABSTRACT OF THE DISSERTATION

A Unified Synthetic Approach Toward the Kalihinanes

By

Mary Elisabeth Daub

Doctor of Philosophy in Chemistry

University of California, Irvine, 2016

Professor Christopher D. Vanderwal, Chair

This dissertation describes our efforts toward developing a unified synthesis of the kalininane family of antimalarial marine isocyanoterpenes. Chapter 1 focuses on the isolation, structure determination, subclass specification, biological activity, and proposed biogenesis of the kalihinanes. Additionally, methods for the synthesis of isonitriles and previous syntheses of kalihinanes and related isocyanoterpenes are described.

Chapter 2 describes our divergent synthetic plan, featuring an oxa-Michael/Robinson annulation sequence and a Piers-type annulation for the rapid synthesis of the decalin framework of the kalihinanes. This strategy was validated with a formal synthesis of 10-isocyno-4-cadinene, and was subsequently applied toward the synthesis of kalihinanes bearing a pendant tetrahydropyran (kalihinol A) or tetrahydrofuran (kalihinol B). While the synthesis of the tetrahydropyran-containing kalihinanes has yet to be accomplished, our efforts toward tetrahydrofuran-containing kalihinanes culminated in the first synthesis of kalihinol B. An unexpected hydride shift has thwarted efforts to extend the synthesis to other tetrahydrofuran-containing kalihinanes.
Chapter 3 focuses on the application of our strategy to the synthesis of unnatural kalihinane analogues. Several analogues have been prepared and subjected to an antiplasmodial assay. All of the synthetic isocyanoterpenes exhibited antiplasmodial activity against drug-sensitive and drug-resistant strains of *Plasmodium falciparum* (IC$_{50}$ < 1.2 µM). Furthermore, kalihinane-based small-molecule probes have been prepared, and will be used for protein profiling in *P. falciparum*.
CHAPTER 1: INTRODUCTION TO THE KALIHINANES

1.1 Introduction

The kalihinanes are marine diterpenoids isolated primarily from sponges of the *Acanthella* genus, and are part of a larger family of antimalarial isocyanoterpenes (ICTs).\(^1-^6\) This structurally diverse family is characterized by a cis- or trans-decalin core bearing a pendant tetrahydropyran (THP) or tetrahydrofuran (THF) and a variable set of isonitrile, isocyanate, isothiocyanate, formamido, hydroxyl, and chloride substituents (Figure 1.1). Of the more than 50 kalihinanes reported to date, the antimalarial activities of only five members have been reported, exhibiting low nanomolar activity against *Plasmodium falciparum*, the malaria-causing parasite, with good to excellent selectivity.\(^7\) With the emergence of drug-resistant *P. falciparum* strains, research into any compounds with reported antimalarial activity and selectivity would be valuable.\(^8,^9\) The following chapter focuses on the isolation and biological activity of the kalihinanes, the proposed biosynthesis, general methods for the synthesis of isonitriles, and previous syntheses of kalihinanes and structurally related ICTs.

Figure 1.1. Select members of the kalihinane family. (FCR-3 is a drug-resistant strain of *P. falciparum*; SI = selectivity index).

1.2 Isolation and Structure Determination

1.2.1 Initial Isolation by Scheuer and Co-Workers

In 1984, Scheuer and co-workers reported the isolation and characterization of kalihinol A (1.1) from a marine sponge of the genus *Acanthella*.\(^10\) The sponge was collected off the coast
of Guam, and extraction and chromatographic purification of the freeze-dried sample (30 g) afforded 11.5 mg of kalihinol A (1.1), along with 28.1 mg of a fraction that required subsequent purification. Both components exhibited in vitro activity against *Candida albicans*. After obtaining the spectral data, Scheuer and co-workers confirmed the structure and relative configuration of kalihinol A (1.1) using X-ray crystallography. Kalihinol A features a highly functionalized trans-decalin core with a pendant chloride-containing THP, an equatorial isonitrile at C10, and an axial isonitrile at C5 anti to an axial tertiary alcohol at C4. Following the initial report, Scheuer and co-workers reported the structures of kalihinol B (1.3), kalihinol C (1.4), kalihinol E (1.5), and kalihinol F (1.6), which were isolated from the other bioactive fraction. While the structures of kalihinol E (1.5) and kalihinol F (1.6) were elucidated using X-ray crystallography, the structures of kalihinol B (1.3) and kalihinol C (1.4) were determined by comparison of their spectral properties to the other natural products. Kalihinol E (1.5) is the C14 epimer of kalihinol A (1.1), and while Scheuer and co-workers initially reversed the stereochemistry of the C14 chloride for kalihinols A and E, this was corrected in a subsequent report. Kalihinol B (1.3), kalihinol C (1.4), and kalihinol F (1.6) share the same trans-decalin framework and substitution as kalihinol A (1.1), but rather than a pendant THP, they bear differentially substituted pendant THFs. In 1987, Scheuer and co-workers reported the structures of six additional kalihinananes: kalihinol D (1.7), kalihinol G (1.8), kalihinol H (1.9), kalihinol Z (1.10), kalihinol Y (1.11), and kalihinol X (1.12). These kalihinananes retain the trans-decalin core with pendant THF or THP and a variable set of isonitrile, isothiocyanate, chloride, and hydroxyl substitution (Figure 1.2).
1.2.2 Subsequent Isolation Reports and Subclasses of Kalihinanes

In the three decades following the initial reports by Scheuer and co-workers, work by numerous research groups has led to the isolation of over 50 kalihinanes from Acanthella cavernosa, Acanthella klethra, and Phakellia pulcherrima. The kalihinanes can be divided into three general subclasses based on the substitution pattern of the decalin core.

The first subclass encompasses kalihinanes that contain the same substitution pattern of the decalin core as kalihinol A (1.1). These kalihinanes are characterized by a trans-decalin core containing an isonitrile, isothiocyanate, or formamide at C10, an axial isonitrile, isothiocyanate, or chloride at C5 anti to an axial tertiary alcohol at C4, and a pendant THP or THF at C7. The subclass can be further divided into two groups: (1) kalihinanes bearing a pendant THP (Table 1.1) and (2) kalihinanes bearing a pendant THF (Table 1.2).
Table 1.1. Kalihinanes bearing a pendant THP.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1: kalihinol A</td>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.10: kalihinol Z</td>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.11: kalihinol Y</td>
<td>NC</td>
<td>==CH₂</td>
<td></td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.12: kalihinol X</td>
<td>NC</td>
<td>CH₃</td>
<td>NCS</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.13: 10-epi-kalihinol X</td>
<td>NC</td>
<td>NCS</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.14: kalihinol P</td>
<td>NCS</td>
<td>NC</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.15: 10-formamido-kalihinol A</td>
<td>NC</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.16: kalihinol l</td>
<td>NCS</td>
<td>CH₃</td>
<td>NCS</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.17: 10-epi-kalihinol l</td>
<td>NCS</td>
<td>NCS</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.18: kalihinol J</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>NCS</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.19: 10-formamido-5-isothiocyanato-kalihinol A</td>
<td>NCS</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.20: kalihinol S</td>
<td>NHCHO</td>
<td>NCS</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.21: 10-formamido-5-isocyanato-kalihinol A</td>
<td>NCO</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>1.5: kalihinol E</td>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>H</td>
<td>Cl</td>
</tr>
<tr>
<td>1.22: kalihinol O</td>
<td>NC</td>
<td>NCS</td>
<td>CH₃</td>
<td>H</td>
<td>Cl</td>
</tr>
<tr>
<td>1.23: kalihinol Q</td>
<td>NCS</td>
<td>NC</td>
<td>CH₃</td>
<td>H</td>
<td>Cl</td>
</tr>
<tr>
<td>1.24: 10-formamido-kalihinol E</td>
<td>NC</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>H</td>
<td>Cl</td>
</tr>
<tr>
<td>1.25: kalihinol R</td>
<td>NCS</td>
<td>NCS</td>
<td>CH₃</td>
<td>H</td>
<td>Cl</td>
</tr>
</tbody>
</table>
Table 1.2. Kalihinanes bearing a pendant THF.

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>Cl</td>
<td>CH₃</td>
<td>11</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>≥CH₂</td>
<td>CH₂</td>
<td>11</td>
</tr>
<tr>
<td>NC</td>
<td>NCS</td>
<td>CH₃</td>
<td>≥CH₂</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Cl</td>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>12</td>
</tr>
<tr>
<td>CI</td>
<td>NC</td>
<td>CH₃</td>
<td>NCS</td>
<td>CH₃</td>
<td>26</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>11</td>
</tr>
<tr>
<td>NC</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>24</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>24</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>NCS</td>
<td>CH₃</td>
<td>12</td>
</tr>
<tr>
<td>NC</td>
<td>NCS</td>
<td>CH₃</td>
<td>NCS</td>
<td>CH₃</td>
<td>22</td>
</tr>
<tr>
<td>NCS</td>
<td>NCS</td>
<td>CH₃</td>
<td>NCS</td>
<td>CH₃</td>
<td>7</td>
</tr>
<tr>
<td>NC</td>
<td>NCS</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>12</td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NCS</td>
<td>NC</td>
<td>CH₃</td>
<td>22</td>
</tr>
<tr>
<td>NC</td>
<td>≥CH₂</td>
<td>NC</td>
<td>CH₃</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>NCS</td>
<td>≥CH₂</td>
<td>NC</td>
<td>CH₃</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

The isokalihinanes comprise the second subclass of the kalihinanes, retaining the trans-decalin core, the equatorial isonitrile or isothiocyanate at C10, and the pendant THP or THF at C7. However, these compounds are regioisomers of the kalihinanes, containing an equatorial isonitrile or formamide at C4 anti to an equatorial secondary alcohol at C5. The isokalihinanes, like the kalihinanes, can be further separated into two categories: (1) isokalihinanes containing a pendant THP (kalihinol N (1.36), Figure 1.3), and (2) isokalihinanes bearing a pendant THF (Table 1.3).

Figure 1.3. Structure of kalihinol N (1.36), an isokalihinane bearing a pendant THP.⁵⁶
The kalihinenes are the final subclass of the kalihinanes, whose defining structural feature is C4–C5 unsaturation. Interestingly, the kalihinenes are the only subclass containing members exhibiting a cis-decalin core, C6 oxidation, or a dihydropyran appendage. Like the other subclasses, the kalihinenes can also be divided into categories based on the presence of a THF appendage (Tables 1.4 and 1.5), a THP appendage (Table 1.6), or a dihydropyran appendage (Figure 1.4).

Table 1.3. Isokalihinanes bearing a pendant THF.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
<td>R₅</td>
<td>Reference</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
<td>14</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>NC</td>
<td>H</td>
<td>16</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>OH</td>
<td>23</td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NCS</td>
<td>NC</td>
<td>H</td>
<td>16</td>
</tr>
<tr>
<td>NHCHO</td>
<td>NCS</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
<td>26</td>
</tr>
</tbody>
</table>

Table 1.4. Kalihinenes containing a cis-decalin and a pendant THF.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
<td>R₅</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>H</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHCHO</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>H</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>H</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHCHO</td>
<td>CH₃</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>H</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>OH</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NHCHO</td>
<td>CH₃</td>
<td>OH</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHCHO</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>OH</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHCHO</td>
<td>CH₃</td>
<td>NCS</td>
<td>CH₃</td>
<td>OH</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference 14, 13, 16, 12, 18, 27.
Table 1.5. Kalihinenes containing a *trans*-decalin and a pendant THF.

![Table 1.5]

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>NC</td>
<td>NC</td>
<td>CH₃</td>
<td>16, 17</td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NC</td>
<td>CH₃</td>
<td>16, 17</td>
</tr>
<tr>
<td>NC</td>
<td>CH₃</td>
<td>NCS</td>
<td>CH₃</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 1.6. Kalihinenes containing a *cis*- or *trans*-decalin and a pendant THP.

![Table 1.6]

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHCHO</td>
<td>Cl</td>
<td>H</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>NHCHO</td>
<td>H</td>
<td>Cl</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>NHCHO</td>
<td>Cl</td>
<td>H</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Kalihinenes bearing a dihydropyran appendage are known as the kalipyrans (Figure 1.4). Faulkner and co-workers first isolated kalipyran (1.58) in 1994 from *Acanthella cavernosa*. Three additional kalipyrans, kalipyran A (1.59), kalipyran B (1.60), and kalipyran C (1.61), containing a C10 formamide, a *trans*- or *cis*-decalin framework, and a dihydropyran appendage bearing an isopropenyl substituent or a tertiary chloride have subsequently been reported. The relative C14 stereochemistry of the kalipyrans has yet to be determined.

Figure 1.4. The kalipyrans.
The kalihinene decalin core is shared with structurally related isocyanobifloradiene epoxides 1.62 and 1.64 and the cavernenes, which lack a tricyclic framework. Garson and co-workers isolated isocyanobifloradiene epoxides 1.62 and 1.64 from Acanthella cavernosa. These compounds have been proposed as intermediates in the biosynthesis of the kalihinanes. The isolation and structural determination of cavernenes A–D, related formamido-diterpenes, was recently reported.

Figure 1.5. Structurally related cavernenes and isocyanobifloradiene epoxides 1.62 and 1.64.

1.2.3 Absolute Configuration of the Kalihinanes

While the relative configuration of the kalihinanes was determined using X-ray crystallography, the absolute configuration was not established until 1999, when Yamada and co-workers determined the absolute configuration of kalihinol A (1.1) using circular dichroism spectroscopy. The circular dichroism spectra of a derivative of kalihinol A suggested the absolute configuration of kalihinol A is 1S, 4R, 5R, 6S, 7S, 10S, 11R, and 14S, or as drawn in Figure 1.1. Yamada and co-workers confirmed the absolute stereochemistry of kalihinene X (1.54) when they completed its synthesis in 2001, which matched the provisional assignment established for kalihinol A. The absolute configuration of kalihinol A was confirmed in 2011, when Miyaoka and co-workers completed the synthesis of kalihinol A (1.1).
1.2.4 A Structurally Related Sesquiterpene, 10-Isocyano-4-cadinene

The kalihinanes comprise only a portion of the larger family of isocyanoterpenes. In 1996, Fusetani and co-workers isolated 10-isocyano-4-cadinene (1.68), a sesquiterpene isocyanide, from nudibranchs of the Phyllidiidae family. Due to its structural similarities to the kalihinanes, including the trans-decalin core with C4–C5 unsaturation, the equatorial C10 isonitrile, and the equatorial isopropyl substituent at C7, 10-isocyano-4-cadinene (1.68) has often been the starting point for synthetic approaches to the kalihinanes. Similarly, we targeted 10-isocyano-4-cadinene (1.68) as we evaluated our synthetic strategy to access the trans-decalin framework of the kalihinanes.

Figure 1.6. Structure of 10-isocyano-4-cadinene (1.68), a sesquiterpene isocyanide.

1.68: 10-isocyano-4-cadinene

1.3 Antimalarial Activity and Biological Properties of the Kalihinanes and Related ICTs

While the kalihinanes exhibit a diverse array of biological activities, including anthelmintic, antifouling, antimicrobial, antifungal, and cytotoxic activity, the kalihinanes are best known for their potent antimalarial activity. Despite the fact that the antimalarial activity of ICTs has been known since 1992, a systematic evaluation of the kalihinane family has yet to be accomplished. Of the 50+ members of the kalihinane family, only five have been evaluated for antimalarial activity, likely because many were isolated before the antimalarial activity of ICTs was known. Three of those compounds tested exhibited potent antimalarial activity against *P. falciparum* with good to excellent selectivity, which is essential for antimalarial therapy (Table 1.7). The selectivity index (SI) is defined as the ratio of *P. falciparum* to FM3A cell cytotoxicity. Kalihinol A (1.1) was both more potent and more
selective (EC\textsubscript{50} = 1.2 nM, SI = 317) than the antimalarial standard mefloquine (1.69) (EC\textsubscript{50} = 32 nM, SI = 90). While kalihinene (1.2) and 6-hydroxy-kalihinene (1.46) also exhibited potent antimalarial activity (EC\textsubscript{50} = 10 nM and 80 nm, respectively), their selectivities (SI = 4 and 15, respectively) were lower than the mefloquine standard (SI = 90). From this study, it becomes clear that the isonitrile functionality is essential for high activity (compare kalihinol A (1.1) and 10-epi-kalihinol I (1.17)).

Table 1.7. Antimalarial activities of kalihinanes that have been assayed.

<table>
<thead>
<tr>
<th>Compound</th>
<th>FCR-3a EC\textsubscript{50} (nM)</th>
<th>FM3A EC\textsubscript{50} (nM)</th>
<th>SIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1.2</td>
<td>380</td>
<td>317</td>
</tr>
<tr>
<td>1.2</td>
<td>10</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>1.46</td>
<td>80</td>
<td>1200</td>
<td>15</td>
</tr>
<tr>
<td>1.32</td>
<td>2600</td>
<td>700</td>
<td>-</td>
</tr>
<tr>
<td>1.17</td>
<td>>1800</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.69c</td>
<td>32</td>
<td>2900</td>
<td>90</td>
</tr>
</tbody>
</table>

aFCR-3 is a drug-resistant strain of \textit{P. falciparum}.
bSelectivity index (SI) is defined as the ratio of FM3A cells cytotoxicity to FCR-3.
cMefloquine was used as the antimalarial standard.

Since the 1998 report of the antimalarial activity of the kalihinanes, no further studies evaluating their antimalarial activity have been reported. Work by Wood and co-workers have prepared a number of simpler kalihinane analogues and determined their antiplasmodial activity, revealing limited structure-activity relationships (Table 1.8).34,35 Wood and co-workers evaluated nineteen kalihinane analogues in addition to six commercially-available isonitriles. They found
that all of the kalihinane analogues containing an isonitrile displayed in vitro antiplasmodial activity, as did one of the commercially available isonitriles (1,4-diisocyanobenzene (1.74)). The kalihinane analogues containing isothiocyanate, nitrile, formamide, and azide functionality in place of the isonitrile were inactive against P. falciparum. Of particular interest is diisocyanide 1.70, which displays nanomolar activity against drug-resistant P. falciparum (IC$_{50}$ = 80 nM). Diisocyanide 1.70 is structurally similar to kalihinol A (1.1), lacking only the pendant THP ring, suggesting that the THP is not essential for achieving high antiplasmodial activity (compare to kalihinol A (1.1), EC$_{50}$ = 1.2 nM). However, since diisocyanide 1.70 was assayed as a racemate, the question remains whether one enantiomer is a more effective antimalarial than its antipode. These studies indicate that the presence of two isonitriles is required for potent antimalarial activity, as 1.70 is significantly more potent than compounds containing only one isonitrile (i.e. 1.68, 1.71, 1.72, 1.73).
Table 1.8. Kalihinane analogues displaying antiplasmodial activity.34,35

<table>
<thead>
<tr>
<th>Compound</th>
<th>HB3a</th>
<th>Dd2b</th>
<th>Cytotoxicityc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC\textsubscript{50} (µM)</td>
<td>IC\textsubscript{50} (µM)</td>
<td></td>
</tr>
<tr>
<td>1.68</td>
<td>2.20</td>
<td>2.20</td>
<td>Yes</td>
</tr>
<tr>
<td>1.70</td>
<td>0.08</td>
<td>0.08</td>
<td>No</td>
</tr>
<tr>
<td>1.71</td>
<td>0.80</td>
<td>2.00</td>
<td>No</td>
</tr>
<tr>
<td>1.72</td>
<td>2.20</td>
<td>2.20</td>
<td>No</td>
</tr>
<tr>
<td>1.73</td>
<td>0.50</td>
<td>2.00</td>
<td>No</td>
</tr>
<tr>
<td>1.74</td>
<td>0.50</td>
<td>0.50</td>
<td>Yes</td>
</tr>
<tr>
<td>1.75d</td>
<td>0.02</td>
<td>0.20</td>
<td>-</td>
</tr>
</tbody>
</table>

a HB3 is a chloroquine-sensitive strain of \textit{P. falciparum}.
b Dd2 is a chloroquine-resistant strain of \textit{P. falciparum}.
c \textit{In vitro} cytotoxicity was evaluated at two concentrations: 100 µM and 25 µM.
d Chloroquine (1.75) was used as the antimalarial standard.

Outside of the limited SAR determined by Yamada and Wood’s studies on the kalihinananes and analogues, work towards elucidating the mechanism of action for the kalihinananes has been limited. In general, the malaria parasite feeds by catabolizing hemoglobin, releasing free heme. However, \textit{P. falciparum} lacks the ability to catabolize free heme, which is toxic to the parasite. To avoid the toxic effects of free heme, \textit{P. falciparum} sequesters the free heme that is released into hemozoin, an insoluble crystalline form of heme. While the mode of action for antimalarial drugs is not entirely understood, many clinically used antimalarial drugs are believed to disrupt hemozoin formation, allowing for the build-up of free heme, which degrades parasitic membranes, ultimately leading to parasite death.6 Wright and co-workers published a study suggesting the same mechanism of action for some of the isonitrile terpenoids, including those drawn in Figure 1.7.36 They determined that isocyanoterpenes, including
7,20-diisocyanoadociane (1.77), effectively inhibit the formation of hemozoin, and also showed that they form isonitrile–heme(II) complexes. While this single-point binding of isonitriles to heme seems logical since isonitriles are known to be good ligands to metals, the question remains whether this mode of action can also be applied to the kalihinanes. Furthermore, this proposed mechanism of action for ICTs has failed to explain some general observations of SAR. For ICTs that exhibit potent antimalarial activity, isonitriles are known to be required, and in most cases, the corresponding isocyanates, formamides, and isothiocyanates are ineffective \textit{in vitro} against \textit{P. falciparum}. Yet, if single-point binding is the mechanism of action, then any isonitrile in theory should exhibit antimalarial activity. However, many mono-isonitriles have been shown to display modest to no \textit{in vitro} activity against \textit{P. falciparum}.35,37 Further mode of action studies for ICTs are required to understand these general observations.

\textbf{Figure 1.7.} Select isocyanoterpenes included in the mechanistic studies by Wright and co-workers. (W2 is a chloroquine-resistant strain of \textit{P. falciparum}).33,36,38

\begin{align*}
\textbf{1.76:} & \text{ axisonitrile-3} \\
& \text{W2: 71 nM, SI: 1212}
\end{align*}

\begin{align*}
\textbf{1.77:} & \text{ 7,20-diisocyanoadociane} \\
& \text{W2: 13 nM, SI: 1000}
\end{align*}

\begin{align*}
\textbf{1.78:} & \text{ an amphilectene isonitrile} \\
& \text{W2: 31 nM, SI: 340}
\end{align*}

\begin{align*}
\textbf{1.79:} & \text{ } \\
& \text{ }
\end{align*}

\textbf{1.4 Proposed Biosynthesis of the Kalihinanes}

\textit{1.4.1 Proposed Biosynthesis of the Kalihinanes and Kalipyrans}

Garson and co-workers have proposed a biosynthesis of the kalihinanes, based on a modification of earlier reports by Clardy and co-workers and Chang and Scheuer (Scheme 1.1).5,18,39 The proposed biosynthesis begins with the enzymatic conversion of geranylgeranyl diphosphate (1.80) to intermediate 1.81, which under the action of a \textit{trans}-cyclase or a \textit{cis}-cyclase leads to \textit{trans}-decalin 1.83 and \textit{cis}-decalin 1.84, respectively. The isolation of
metabolites 1.85 and 1.86 supports this biosynthetic pathway. Subsequent addition of an HCN equivalent followed by enzymatic epoxidation of either the C11–C12 alkene or the C14–15 alkene affords isocyanobifloradiene epoxide 1.62 or proposed intermediates 1.87 and 1.88. In addition to providing support for the proposed biosynthesis, the isolation of isocyanobifloradiene epoxide 1.62 proves that Acanthella cavernosa has the ability to epoxidize alkenes. Nucleophilic attack at C14 of the epoxide (pathway a) ultimately leads to the formation of THP kalihinols (e.g. 1.1) and THP kalihinenes (e.g. 1.54), while opening of the epoxide at C15 (pathway b) provides THF kalihinols (e.g. 1.3), THF isokalihinols (e.g. 1.38), and THF kalihinenes (e.g. 1.2). Lastly, the kalihinol and isokalihinol substitution pattern at C4 and C5 results from epoxidation of the C4–C5 alkene followed by nucleophilic attack of cyanide at either C4 (isokalihinols) or C5 (kalihinols).
Scheme 1.1. Biogenesis of the kalihinanes proposed by Garson and co-workers.5

Isocyanobifloradiene epoxide 1.64 can be invoked as an intermediate in the proposed biosynthesis of the kalipyans (Scheme 1.2). From \textit{trans}-decalin 1.83, addition of an HCN equivalent, followed by alkene migration and epoxidation leads to isocyanobifloradiene epoxide 1.64, a metabolite isolated from \textit{A. cavernosa}. Subsequent oxidation, intramolecular epoxide opening, and dehydration completes the proposed biosynthesis of the kalipyans (\textit{e.g.} 1.58).
1.4.2 Biosynthetic Origins of Isonitriles and Isothiocyanates

Because isocyanoterpenes are often isolated alongside their formamide and isothiocyanatoterpene counterparts, the formamide and the isothiocyanate were initially postulated as potential biogenetic precursors to the isocyanide. However, studies have since discounted formamides as intermediates in isonitrile biosynthesis, and have further suggested that the isonitrile is the biogenetic precursor to the formamide and isothiocyanate groups found in ICTs.\(^{40-42}\) The isonitrile has been proposed to arise from the incorporation of inorganic cyanide. Isotopic labeling studies by Garson and by Karuso and Scheuer have shown that \(^{14}\text{C}\)-cyanide is incorporated into the isonitrile functionality of several ICTs.\(^{43,44}\) In particular, Karuso and Scheuer found that *Acanthella* sp. incorporated \(^{14}\text{C}\)-cyanide (1.5\%) into kalihinol F (1.6). Upon hydrolysis of isotopically labeled kalihinol F (1.6), all radioactivity of the corresponding triamine was lost, indicating that the radioactivity was associated with the isocyanide carbons alone. Furthermore, Karuso and Scheuer determined that incorporation of cyanide was an enzymatic process; in the absence of sponge tissue, no incorporation of \(^{14}\text{C}\)-cyanide was observed.

Isonitriles and isothiocyanates have been shown to interconvert in marine sponges. Garson and co-workers have shown that \(^{14}\text{C}\)-cyanide is incorporated into both axisonitrile-3 (1.76) and axisothiocyanate-3 (1.90), and that \(^{14}\text{C}\)-thiocyanate is incorporated into
axisonitrile-3 (1.76) as well as axisothiocyanate-3 (1.90) in *A. cavernosa*. These results suggested that *A. cavernosa* has either the ability to interconvert the inorganic cyanide ion and the thiocyanate ion or the ability to interconvert the secondary metabolites 1.76 and 1.90. A later study by Garson and co-workers in *Axinyssa* n.sp. suggests that both interconversions occur enzymatically.46

Figure 1.8. Structures of axisonitrile-3 (1.76) and axisothiocyanate-3 (1.90).

1.5 Methods for the Synthesis of Isonitriles

Due to the interest in ICTs from the synthetic community and the utility of isonitriles as intermediates in synthesis (*e.g.* multi-component reactions), several methods for the synthesis of isonitriles have been developed.6,47 In general, these methods can be separated into two categories: (1) synthesis of isonitriles by formylation and dehydration of an amine, and (2) synthesis of isonitriles by nucleophilic substitution. Unfortunately, both methods suffer from limitations, which will be described below.

1.5.1 Synthesis of Isonitriles from the Corresponding Amine

Perhaps one of the most widely used methods for the synthesis of isonitriles is formylation and dehydration of an amine. This method is versatile because any primary amine can be a precursor to an isonitrile. However, the stereoselective synthesis of secondary alkyl and tertiary alkyl amines can be challenging, limiting the utility of this method. Furthermore, the overall transformation of the amine to the isonitrile is a two-step sequence. This formylation/dehydration sequence has been widely utilized in the synthesis of ICTs. In 1978, Caine and Deutsch completed the first synthesis of an ICT, axisonitrile-3 (1.76), by formylation
and dehydration of amine 1.91 (Scheme 1.3a). Several synthetic groups have solved the problem of stereoselective synthesis of tertiary alkyl isonitriles by taking advantage of the stereospecificity of the Curtius rearrangement. The stereochemistry of the carboxylic acid, which can often be introduced via stereoselective alkylation, dictates the stereochemistry of the resulting isocyanate, which is usually trapped as a carbamate or reduced directly to a formamide. In their synthesis of (±)-8.15-diisocyno-11(20)-amphilectene (1.94), Piers and Llinas-Brunet subjected diacid 1.92 to a Curtius rearrangement, trapping the intermediate diisocyanate as dicarbamate 1.93 (Scheme 1.3b). Treatment of dicarbamate 1.93 with TBAF to unmask the primary amines followed by formylation and dehydration afforded amphilectene 1.94. While this approach affords tertiary alkyl isonitriles stereospecifically, several steps are required to convert the carboxylic acid to the isonitrile. Additionally, late-stage homologation of a ketone into the carboxylic acid, a method often employed to install the requisite carboxylic acid for the Curtius rearrangement (see Section 1.6.2 and 1.6.4), requires a significant number of steps.

Scheme 1.3. (a) Caine and Deutsch’s isonitrile installation in the synthesis of axisonitrile-3 (1.76). (b) Piers and Llinas-Brunet’s use of a Curtius rearrangement in the synthesis of 1.94.

1.5.2 Synthesis of Isonitriles by Nucleophilic Substitution and other Cationic Methods

While formylation/dehydration of amines is a reliable method for the synthesis of isonitriles, a one-step, stereoselective synthesis of isonitriles from a general, easily accessible precursor is the ideal approach. While this ideal has yet to be realized, several methods for the direct installation of isonitriles via nucleophilic substitution have been developed. Because the
conversion of primary alcohols into isonitriles via S_N2 substitution is straightforward, the following discussion will be limited to the synthesis of secondary and tertiary alkyl isonitriles. One of the biggest challenges in the synthesis of tertiary alkyl isonitriles using cationic methods is the issue of stereocontrol. Until recently, the stereochemical outcome of S_N1 substitution reactions to install isonitriles was limited to substrate control owing to the intermediate solvent-separated carbocation.

Alcohols are attractive precursors to isonitriles, as many reliable, robust methods for their stereoselective synthesis have been developed. In their synthesis of 7,20-diisocyanoadociane (1.77), Corey and Magriotis found that trimethylsilyl cyanide (TMSCN) in conjunction with a Lewis acid displaces tertiary trifluoroacetates to afford tertiary alkyl isonitriles (Scheme 1.4a).^53 Unfortunately, this reaction suffered from poor stereoselectivity as a result of a presumed intermediate solvent-separated carbocation. Exposure of bis(trifluoroacetate) 1.96 to an excess of TMSCN (15 equiv) and titanium tetrachloride (20 equiv) afforded 7,20-diisocyanoadociane (1.77) along with three other diastereomers. Recently, Shenvi and co-workers have developed a general method for the invertive displacement of tertiary trifluoroacetates, which they had previously utilized in their synthesis of the amphilectene isonitrile 1.79 (Scheme 1.4b).^54,55 They discovered that TMSCN displaces tertiary trifluoroacetates in the presence of scandium(III) triflate with high levels of stereoinversion. Shenvi and co-workers invoke an intermediate contact ion pair in the S_N1 reaction mechanism to explain the observed stereoselectivity. Exposure of trifluoroacetate 1.98 to catalytic scandium(III) triflate and TMSCN afforded amphilectene 1.79 with good diastereoselectivity. This is currently the only stereoselective method for the synthesis of tertiary alkyl isonitriles from alcohols.
Isonitriles can also be prepared from alkenes via a Ritter reaction followed by formamide dehydration. Srikrishna and co-workers utilized this sequence in their synthesis of ent-2-(isocyano)trachyopsane (1.101) (Scheme 1.4c). Capture of a carbocation generated from alkene 1.99 with TMSCN followed by hydrolysis afforded formamide 1.100. The ketone of 1.100 was converted into a thioketal and reduced with Raney Nickel. Subsequent dehydration of the formamide provided ent-2-(isocyano)trachyopsane (1.101). While the high diastereoselectivity of the Ritter reaction in this case was due to the tricycle[4.3.1.0\(^3,8\)]decane skeleton, the Ritter reaction often suffers from poor stereoselectivity.

Scheme 1.4. Cationic methods for isonitrile synthesis: (a) Corey and Magriotis’s synthesis of 7,20-diisocyanoadociane (1.77). (b) Shenvi and co-workers’ synthesis of 1.79, an amphilectene isonitrile. (c) Srikrishna and co-workers’ synthesis of ent-2-(isocyano)trachyopsane (1.101).

The isocyanosilylation of epoxides is another tactic for the synthesis of isonitriles. This method is particularly relevant to the kalihinanes owing to the β-hydroxy-isonitrile contained in many of the natural products. Yet, it remains surprisingly absent in the synthesis of kalihinanes.
and other ICTs (see Section 1.6). Because cyanide is an ambident nucleophile, reaction of cyanide nucleophiles with electrophiles can afford the nitrile or the isonitrile as the product. In general, reaction at carbon is preferred for the free cyanide ion, leading to nitriles, and only in cases where another group (e.g. Ag⁺ or Me₃Si⁺) blocks the carbon atom of the nucleophile is the isonitrile observed.⁵⁷,⁵⁸ Furthermore, reversible reactions afford the nitrile exclusively. Depending on the identity of the Lewis acid, reaction of epoxides with TMSCN can afford β-trimethylsilyloxy-nitriles or β-trimethylsilyloxy-isonitriles (Scheme 1.5). Lewis acids such as zinc iodide, palladium(II) cyanide, tin(II) chloride, and trimethylgallium produce the β-trimethylsilyloxy-isonitrile.⁵⁹–⁶¹ Formation of a Lewis acid–TMSCN complex with these Lewis acids has not been detected and, therefore, they are believed to afford β-trimethylsilyloxy-isonitriles simply by Lewis acid activation of the epoxide and nucleophilic attack of TMSCN on nitrogen. Other Lewis acids, including aluminum chloride, diethylaluminum chloride, aluminum isopropoxide, diisobutylaluminum isopropoxide, ytterbium tricyanide, and titanium(IV) isopropoxide, yield the β-trimethylsilyloxy-nitrile.⁶₀,⁶²–⁶⁷ Lewis acids that generate the nitrile product have been shown to react with TMSCN to generate metal cyanide complexes. While these complexes have not been studied extensively, diethylaluminum cyanide has been reported to exist as a polymer, allowing for facile isomerization of an Al–CN complex to an Al–NC complex.⁶₀ Isomerization to an Al–NC complex and subsequent cyanosilylation of the epoxide is a mechanism consistent with the observed β-trimethylsilyloxy-nitrile product. However, the mechanism has not been fully elucidated.
Scheme 1.5. Synthesis of a β-trimethylsilyloxy-isonitrile (1.103) or a β-trimethylsilyloxy-nitrile (1.106) from cyclohexene oxide (1.102).

1.6 Previous Syntheses of Kalihinanes and Related ICTs

Owing to their diverse biological activity and complex structure, the kalihinanes have garnered interest from several synthetic groups, resulting in reported syntheses of five natural products. Yamada and co-workers reported the synthesis of kalihinene X (1.54) in 2002.29 Wood and co-workers reported the synthesis of kalihinol C (1.4) in 2004.32,68 Miyaoka and co-workers reported syntheses of kalihinol A (1.1), kalihinol Y (1.11), and 10-epi-kalihinol I (1.17) in 2011 and 2012.30,69 Because Taber’s synthesis of (±)-torreyol provided the inspiration for the synthesis of the decalin core in all reported approaches toward the kalihinanes, the synthesis of (±)-torreyol will be included in addition to a discussion of the previous syntheses of the kalihinanes below.70 The densely functionalized decalin core in conjunction with the attached ring motif71,72—the oxygen heterocycle attached to the decalin with its attendant vicinal C7/C11 stereogenic centers—are arguably the most challenging structural features of the kalihinanes. While Yamada, Wood, and Miyaoka devised strategies to solve these problems, the length and efficiency of their syntheses suffered.

1.6.1 Taber’s Synthesis of (±)-Torreyol

Taber and co-workers recognized that a type 1 intramolecular Diels–Alder cycloaddition would provide the cis-decalin core of torreyol (1.116), a sesquiterpene of the cadinene family
Enamine-mediated Michael addition of isovaleraldehyde (1.108) to ethyl acrylate (1.109) followed by Wittig olefination of the resulting keto-ester (1.110) afforded diene 1.112. Conversion of ethyl ester 1.112 to an aldehyde by a reduction/oxidation sequence and subsequent addition of vinyl Grignard provided alcohol 1.113. In their synthetic design, Taber and co-workers predicted the cycloaddition would occur *endo* via a boat transition structure to avoid nonbonding interactions incurred in the chair transition structure, leading to the *cis* ring fusion and the desired *syn* relationship between the isopropyl group and the angular hydrogens. Indeed, upon oxidation of the allylic alcohol to an enone, intramolecular Diels–Alder cycloaddition occurred spontaneously, favoring desired *cis*-decalone 1.115. Nucleophilic methylation of decalone 1.115 completed the synthesis of (±)-torreyol (1.116).

Scheme 1.6. Taber’s synthesis of (±)-torreyol (1.116).

1.6.2 Matsuda's Synthesis of (+)-10-Isocyano-4-cadinene

In 2010, Matsuda and co-workers reported the first synthesis of 10-isocyano-4-cadinene (1.68) and determined its absolute configuration. While Matsuda and co-workers initially evaluated the same intramolecular Diels–Alder reaction toward the decalone core as Taber and...
co-workers, they found epimerization of the mixture of 1.114 and cis-1.115 to lead to an inseparable 42.7:47.2:10.1 mixture of trans-1.115, cis-1.115, and 1.114 (Scheme 1.7).

Scheme 1.7. Epimerization of decalones 1.114 and 1.115.

Matsuda and co-workers hoped to develop a stereoselective synthesis of trans-decalone 1.115 using an intermolecular Diels–Alder cycloaddition, isomerization, and a Barbier-type annulation (Scheme 1.8). They prepared diene 1.118 in nine steps from oxazolidinone 1.117. Lewis acid-catalyzed Diels–Alder cycloaddition of diene 1.118 and methyl acrylate afforded cyclohexene 1.119 as a mixture of four diastereomers. Treatment of the mixture of diastereomers with sodium methoxide followed by selective hydrolysis yielded ester 1.120 and carboxylic acid 1.121 in a 1:2 ratio. While they examined a number of Lewis acids, ultimately methylaluminum dichloride afforded the best diastereomeric ratio (2:1 dr) of the two trans-cyclohexenes after the epimerization of the Diels–Alder cycloadducts.

Having established the trans-relationship of the substituents on cyclohexene 1.121, a Barbier-type cyclization was employed to build the decalin core. A series of functional group interconversions (four steps) transformed carboxylic acid 1.121 into aldehyde 1.122. A SmI₂-induced Barbier-type cyclization followed by DMP oxidation of the resulting alcohol provided trans-1.115. Homologation of ketone 1.115 to carboxylic acid 1.125 required several steps. Conversion of ketone 1.115 into aldehyde 1.123 was achieved by treatment with p-toluenesulfonylmethyl isocyanide (TosMIC) and subsequent reduction of the nitrile. Alkylation of aldehyde 1.123 with p-methoxybenzyl chloromethyl ether and Wolff–Kishner
reduction afforded decalin 1.124. This sequence of events was required as alkylation of 1.123 yielded the equatorial alkylation product exclusively. Cleavage of the PMB ether, oxidation of the resulting alcohol with DMP, and Lindgren oxidation provided carboxylic acid 1.125. Installation of the isonitrile was accomplished over a three-step sequence. A Curtius rearrangement of carboxylic acid 1.125 followed by reduction of the isocyanate generated formamide 1.126. Lastly, dehydration of formamide 1.126 completed the synthesis of (+)-10-isocyano-4-cadinene (1.68).

Scheme 1.8. Matsuda’s synthesis of (+)-10-isocyano-4-cadinene (1.68).\(^{73}\)

Although Matsuda and co-workers completed the first synthesis of 1.68 and the only enantioselective one to date, only 6 steps of the 29-step synthesis form carbon-carbon bonds. While the trans relationship of the substituents on cyclohexene 1.119 could be established exclusively by isomerization of the Diels–Alder adduct, Lewis acid-catalysis failed to control the
C6–C7 stereochemical relationship. Furthermore, after accessing decalone 1.115 in 19 steps, Matsuda and co-workers take an additional ten steps to accomplish the isonitrile installation.

1.6.3 Shenvi’s Synthesis of (±)-10-Isocyano-4-cadinene from (±)-Cedrelanol

Recently, Shenvi and co-workers completed a number of syntheses of simple ICTs to demonstrate the utility of their method for the synthesis of isonitriles from alcohols (Scheme 1.4b).54 Included in their paper was the synthesis of (±)-10-isocyano-4-cadinene (1.68), which employed a modified version of Taber’s synthesis of torreyol (Scheme 1.9). Shenvi and co-workers employed the same general strategy, but with the addition of an epimerization step of intermediate cis-decalone 1.115 prior to nucleophilic methylation, ultimately providing both (±)-torreyol (1.116) and (±)-cedrelanol (1.127). Exposure of the trifluoroacetate of cedrelanol to scandium(III) triflate in TMSCN afforded (±)-10-isocyano-4-cadinene (1.68). Shenvi’s synthesis of 1.68 (8 steps) is significantly shorter than Matsuda’s synthesis (29 steps). Shenvi and co-workers’ major contribution to this synthesis was the development of a method to prepare isonitriles from alcohols stereoselectively. With this method, they elaborated trans-decalone 1.115 to 1.68 in only three steps; Matsuda and co-workers used ten steps for this seemingly simple transformation. While the Shenvi synthesis is racemic, application of an asymmetric Michael reaction of isovaleraldehyde (1.108) and ethyl acrylate (1.109) could render the synthesis enantioselective.

Scheme 1.9. Shenvi’s synthesis of (±)-10-isocyano-4-cadinene (1.68).54
1.6.4 Yamada’s Synthesis of Kalihinene X

In 2002, Yamada and co-workers reported the synthesis of kalihinene X (1.54) (Scheme 1.10), the first synthesis of any of the kalihinanes, although Wood and co-workers had published synthetic studies toward the kalihinanes during the previous year.29,32 Kalihinene X (1.54) features a cis-decalin core characteristic of the kalihinenes with a C4–C5 alkene, a pendant chloride-containing THP, and a formamide at C10. Yamada approached kalihinene X in three stages: (1) THP formation after independently setting the C7, C11, and C14 stereogenic centers, (2) construction of the decalin core using an intramolecular Diels–Alder reaction, and (3) installation of the tertiary alkyl formamide. Their approach began with a three-step sequence to accomplish the mono-protection of diol 1.128, which was derived from geranyl acetate in four steps. Sharpless asymmetric epoxidation of allylic alcohol 1.129 provided epoxide 1.130. Nucleophilic ring opening of epoxide 1.130 with the anion of sulfone 1.131 yielded diol 1.132, establishing the correct C7/C11 stereochemical relationship. Reductive cleavage of the sulfone and acetate protection of the alcohols provided diacetate 1.133. Cleavage of the silyl ether and S_N2 displacement of the allylic alcohol with a chloride nucleophile set the C14 stereochemistry of the alkyl chloride. Subsequent reduction of the acetates and protection of the primary alcohol as the pivalate ester yielded alcohol 1.134, the THP precursor. Treatment of 1.134 with mercury(II) acetate effected a 6-exo oxymercuration to form THP 1.136 after reduction of intermediate organomercurial 1.135.
Having successfully constructed the THP, Yamada and co-workers tackled the cis-decalin, using a strategy analogous to that employed in Taber’s torreyol synthesis. Elaboration of benzyl alcohol 1.136 to TBS ether 1.137 proceeded over a four-step sequence to install the dienophile for the intramolecular Diels–Alder cycloaddition. The requisite diene was appended by cleavage of the pivalate ester of 1.137, oxidation of the resulting alcohol to the
aldehyde, and Horner–Wadsworth–Emmons olefination with phosphonate 1.138. Subsequent deprotection of the TBS ether provided THP 1.139. After DMP oxidation of allylic alcohol 1.139, the intramolecular Diels–Alder cyclization occurred spontaneously to afford cis-decalin 1.140 with high diastereoselectivity. Yamada and co-workers accomplished the formamide installation in an additional six steps. A Van Leusen reaction converted ketone 1.140 into a nitrile, and alkylation of the nitrile anion from predominantly the convex face provided decalin 1.141. Nitrile reduction and Lindgren oxidation afforded a carboxylic acid, which was converted into kalihinene X (1.54) by a Curtius rearrangement and reduction of the resulting isocyanate.

Yamada and co-workers took advantage of the high diastereoselectivity of the intramolecular Diels–Alder cycloaddition to forge the cis-decalin core of the kalihinenes, but the iterative installation of the C7, C11, and C14 stereocenters and the Curtius rearrangement employed to install the formamide detracted from the efficiency of the synthesis, which was completed in 32 steps from geranyl acetate.

1.6.5 Wood’s Synthesis of Kalihinol C

In 2004, Wood and co-workers reported the synthesis of kalihinol C (1.4), following up their initial studies toward the decalin framework.32,68 The trans-decalin core of kalihinol C (1.4) is highly functionalized, featuring a C10 isonitrile, a C4 hydroxyl anti to a C5 isonitrile, and a pendant isopropenyl-containing THF. Like Yamada and co-workers, Wood and co-workers employed a Diels–Alder cycloaddition to construct the decalin core, but instead appended the THF onto the completed core (Scheme 1.11). They initiated their synthesis with a Fráter–Seebach alkylation of 1.142 to afford anti-aldol product 1.144 with the precursor to the dienophile for the IMDA in place. Benzyl ether formation and a two-step transformation of the t-butyl ester to an aldehyde provided ester 1.145. Synthesis of the diene by Horner–Wadsworth–
Emmons olefination followed by cleavage of the TBS ether and oxidation of the allylic alcohol to the enone triggered the IMDA cycloaddition, affording cis-decalone 1.148 as the major diastereomer (5:1 dr). Epoxidation of the alkene with DMDO and treatment with sodium methoxide provided a 3:2 mixture of trans- and cis-decalones, which converged to trans-decalin 1.149 after Wittig olefination. The success of this dynamic resolution of the mixture of trans- and cis-decalones relies on two factors: (1) rapid equilibration of the two decalones, and (2) a difference in reaction rate. Wittig olefination of the trans-decalone occurs faster than olefination of the cis-decalone. Because the basic reaction conditions allowed for rapid equilibration of the trans- and cis-decalones, the mixture of decalones funneled to trans-decalin 1.149 via the lower energy reaction pathway. Cleavage of the benzyl ether and DMP oxidation yielded ketone 1.150.

After completing a stereoselective synthesis of the trans-decalin core, Wood and co-workers focused on functionalization of the core. Diastereoselective copper-catalyzed aziridination of exocyclic alkene 1.150 led to aziridine 1.151. While Wood and co-workers initially tried to convert 1.151 into alcohol 1.155 directly with the addition of homoprenyl Grignard, they found that nucleophilic addition into sterically hindered ketone 1.151 could only be accomplished with sp-hybridized nucleophiles. Therefore, the synthesis of 1.155 took an additional three steps. Nucleophilic addition of the anion of ethyl propiolate (1.152) followed by reduction of the alkyne and lactol formation yielded 1.154, which after Wittig olefination provided decalin 1.155. THF closure was accomplished by selenoetherification and subsequent elimination. While the THF ring was formed exclusively, only modest levels of diastereoselectivity were observed (3:2 in favor of 1.156). Reductive ring opening of the aziridine (1.156) and epoxide azidolysis provided azide 1.157. Tosyl deprotection and azide
reduction were achieved in a single step, and formylation and dehydration of the resulting diamine afforded kalihinol C (1.4).

Scheme 1.11. Wood’s synthesis of kalihinol C (1.4).\(^{68}\)

Although their synthesis of kalihinol C ultimately suffered from poor diastereoselectivity in the formation of the THF and required 26 steps to complete, Wood and co-workers discovered several solutions to synthetic problems along the way. For example, while epimerization of the epoxide derived from 1.148 afforded only modest mixtures of *trans-* and *cis*-decalones (3:2 dr), the *trans*-decalin 1.149 was isolated almost exclusively after Wittig olefination. Furthermore,
Wood and co-workers used the C7 stereocenter to control nucleophilic addition into ketone 1.151, setting the stereochemistry at C11. Lastly, they found that aziridination of an exocyclic alkene and reductive ring opening of the aziridine lead to an equatorial amine, the precursor to the C10 equatorial isonitrile. This aziridination/reductive ring opening sequence was significantly more efficient than the other methods for the synthesis of tertiary alkyl isonitriles that were known at the time (i.e. Curtius rearrangement of a carboxylic acid).

1.6.6 Miyaoka’s Synthesis of Kalihinol A, Kalihinol Y, and 10-Epi-kalihinol I

In 2011, Miyaoka and co-workers reported the synthesis of kalihinol A (1.1), the kalihinane with the most potent antimalarial activity to date, and later used synthetic intermediates to make kalihinol Y (1.11), and 10-epi-kalihinol I (1.17).30,69 Kalihinol A (1.1) has the same functionalized decalin framework as kalihinol C (1.4), but bears the same pendant chloro-THP as kalihinene X (1.54). In their synthesis of kalihinol A (1.1), Miyaoka and co-workers combined their previous strategy for the synthesis of the THP appendage and the decalin core with Wood’s strategy for the isonitrile installations (Scheme 1.12). Miyaoka and co-workers prepared decalin 1.140 from geranyl derivative 1.128 in a sequence nearly identical to the first generation synthesis of 1.140 (Scheme 1.10), making a few improvements along the way. The only major difference in this second generation synthesis is that THP formation was accomplished via an intramolecular iodoetherification and reductive deiodination sequence rather than oxymercurcation and reduction to afford THP 1.136, although these two cyclization methods are conceptually identical.
With a 21-step sequence to cis-decalin 1.140, Miyaoka and co-workers turned to the Wood strategy for the installation of the isonitriles. Unfortunately, epoxidation of 1.140 suffered from poor diastereoselectivity, yielding unfavorable mixtures of β- and α-epoxides. However, after ketone reduction and TBS protection, epoxidation with mCPBA led to α-epoxide 1.158 as the only product. Deprotection of the TBS ether, IBX oxidation, and epoxide azidolysis provided cis-decalin 1.159. Exposure of cis-decalin 1.159 to potassium tert-butoxide effected C1
epimerization, leading to a 3:2 mixture of trans- and cis-1.159. Julia-Kocienski olefination of trans-1.159 with 2-(methylsulfonyl)benzothiazole installed the exocyclic alkene of 1.161. Application of the same copper-catalyzed aziridination employed by Wood yielded aziridine 1.162, which was converted to amine 1.163 by reduction of the azide and reductive ring-opening of the aziridine. Finally, tosyl deprotection, formylation of the diamine, and dehydration afforded kalihinol A (1.1).

Miyaoka and co-workers also prepared kalihinol Y (1.11) and 10-epi-kalihinol I (1.17) from intermediates in their synthesis of kalihinol A (1.1). Reduction of azide 1.161 to the amine and subsequent formylation and dehydration provided kalihinol Y (1.11) (Scheme 1.13a). Tosyl deprotection of 1.163 and conversion of the diamine to the diisothiocyanate by decomposition of the dithiocarbamic acid salt yielded 10-epi-kalihinol I (1.17) (Scheme 1.13b). While Yamada and Miyaoka’s divergent synthetic strategy allowed them to elaborate one common intermediate, cis-decalin 1.140, to kalihinene X (1.54), kalihinol A (1.1), kalihinol Y (1.11), and 10-epi-kalihinol I (1.17), they were limited to the synthesis of THP kalihinanes. Furthermore, the synthesis of cis-decalin 1.140 takes 25 steps from geranyl acetate, and the isonitrile installations for kalihinol A (1.1) require an additional 14 steps.

Scheme 1.13. Miyaoka’s synthesis of (a) kalihinol Y (1.11) and (b) 10-epi-kalihinol I (1.17).

1.7 A Unified Strategy for the Synthesis of the Kalihinanes and Analogues

Although kalihinol A is the most potent of all ICTs tested to date, few kalihinanes have been studied for antimalarial properties. While Yamada, Wood, and Miyaoka completed
syntheses of several kalihinanes, the synthetic material was not subjected to the evaluation of antimalarial activity. Because of the wealth of structural diversity in the kalihinanes, an efficient synthesis providing naturally occurring kalihinanes as well as synthetic analogues would allow for an evaluation of SAR. Furthermore, a strategy amenable to the synthesis of biological probe molecules would provide insight into the mode of action of the kalihinanes against *Plasmodium* spp., which remains unclear. Therefore, we initiated a unified synthetic strategy that would ideally be applicable to many members of the kalihinane family. Our novel strategy targets the attached ring motif in a way distinct from previous approaches, allowing for the rapid construction of the decalin core. In the following chapters, our synthetic efforts toward naturally occurring kalihinanes (Chapter 2) and unnatural analogues (Chapter 3) are described. Additionally, studies on antimalarial activity and preliminary determination of SAR are included in Chapter 3.

1.8 Notes and References

CHAPTER 2: A UNIFIED SYNTHETIC APPROACH TOWARD THE KALIHINANES

2.1 Introduction

The structural diversity and complexity of the kalihinanes make them interesting synthetic targets; they share several structural features that might enable the design of a unified synthesis (Figure 2.1a). Virtually, all kalihinanes contain a *trans*- or a *cis*-decalin core with a C10 isonitrile, isothiocyanate, or formamide and a pendant THP or THF at C7. While the kalihinenes differ from the kalihinols and isokalihinols in their C4–C5 functionalization, we envisioned the β-hydroxy-isonitrile of the kalihinols and the isokalihinols would arise from the C4–C5 alkene in the biogenetic sense via epoxidation and ring opening with trimethylsilyl cyanide at C4 or C5.

Figure 2.1. (a) Select kalihinanes targeted in our unified strategy. (b) Key intermediate for our divergent synthesis.

Decalone 2.7 was identified as a key intermediate in our unified approach toward the THF kalihinanes, containing three important features (Figure 2.1b): (1) the C10 ketone would serve as a functional handle for isonitrile installation, and would facilitate C1 epimerization for access to the *trans*-decalin core of the kalihinols (*e.g.* 2.1); (2) the C4–C5 alkene, which is
retained in the kalihinenes (e.g. **2.5** and **2.6**), would function as the precursor to the β-hydroxyisonitrile in the kalihinols (e.g. **2.1** and **2.2**) and the isokalihinols (e.g. **2.3**); (3) the C15 chloride would provide direct access to kalihinol B (**2.2**) and isokalihinol B (**2.3**), and would facilitate late-stage divergence to access several THF kalihinanes. For example, elimination of the C15 chloride would provide kalihinol C (**2.4**), and conversion of the C15 chloride into an isonitrile would address kalihinanes with a C15 isonitrile (e.g. **2.5** and **2.6**). A similar decalone bearing a pendant THP in place of the THF would serve as a key intermediate for late-stage diversification of the THP kalihinanes.

With these targets in mind, we designed a divergent, unified approach to decalones **2.7** and **2.14** to access several THF and THP kalihinanes (Scheme 2.1). Regioselective chlorinolysis of 6,7-epoxynerol (**2.8**) and subsequent oxidation would provide chlorohydrins **2.9** and **2.12**. An organocatalyst-controlled cascade featuring an oxa-Michael/Robinson annulation would afford enones **2.11** and **2.13** with the attached ring motif in place. Lastly, we envisioned utilizing a Diels–Alder cycloaddition or a Piers-type annulation to prepare decalone **2.7**, the precursor to the THF kalihinanes, and decalone **2.14**, the precursor to the THP kalihinanes.

Scheme 2.1. A unified, divergent approach to key decalone intermediates **2.7** and **2.14**.
We hoped to distinguish our synthesis from previous approaches to the kalihinanes in four ways: (1) our unified approach would give access to THF and THP kalihinanes as well as many analogues; (2) early generation of the attached rings using an organocatalyst-controlled cascade would quickly deliver the key cyclohexenone intermediates; (3) building the ether rings via C11–O bond construction as opposed to the C14(15)–O bond would facilitate divergence and provide new opportunities for stereocontrol, especially for C7 and C11; (4) installation of the isonitriles in a single step would significantly reduce step count. The following chapter describes the application of our approach to the synthesis of 10-isocyno-4-cadinene (2.17), toward the synthesis of the THP kalihinanes, to the synthesis of kalihinol B (2.2), and toward the synthesis of other THF kalihinanes.

2.2 Synthesis of (±)-10-Isocyno-4-cadinene

Our synthetic studies toward the kalihinanes began with the synthesis of 10-isocyno-4-cadinene (2.17), which serves as a good model system for the kalihinanes, containing an isopropyl group in place of the pendant THF or THP. All previous approaches to the kalihinanes employ an IMDA first utilized in Taber’s synthesis of torreyol (Scheme 2.2).\(^1\) We recognized that a cycloaddition or an annulation onto cryptone (2.19), which can be prepared using an asymmetric Robinson annulation, would rapidly construct the decalin framework of 10-isocyno-4-cadinene (2.17).\(^2\) The following section details our initial evaluation of an intermolecular Diels–Alder cycloaddition toward the decalin framework and the successful completion of a formal synthesis of (±)-10-isocyno-4-cadinene (2.17) using a Piers-type annulation.\(^3\)
Scheme 2.2. Previous approaches to decalone 2.16 compared to our strategies.

2.2.1 An Intermolecular Diels–Alder Approach to the Decalin Core

Our strategies toward the decalin core of 10-isocyano-4-cadinene (2.17) began with the synthesis of cryptone (2.19) using a two-step Robinson annulation sequence (Scheme 2.3a). Cryptone (2.19) was prepared via Michael addition of isovaleraldehyde (2.18) to methyl vinyl ketone (2.10) followed by an aldol condensation under phase transfer conditions. Preparation of silyl diene 2.18 proceeded over a three-step sequence (Scheme 2.3b) analogous to the known synthesis of \((E) \)-1-trimethylsilyl-1,3-butadiene. \(^4\) Copper-catalyzed carbometalation of propargyl alcohol 2.23 afforded allylic alcohol 2.25. \(^5\) Chelation of the alkoxide to vinylmagnesium species 2.24 is responsible for the high \(E \) selectivity of the carbometalation. \(^6\) Oxidation of 2.25 under Swern conditions yielded enal 2.26 in up to 73% over two steps. Wittig olefination of enal 2.26 afforded diene 2.18 in up to 71%. The variable yields of these reactions are due to the volatility of these substrates and the instability of diene 2.18 to protic conditions.
Scheme 2.3. (a) Synthesis of cryptone (2.19).2 (b) Synthesis of silyl diene 2.18.

With cryptone (2.19) and diene 2.18 in hand, various conditions were examined to effect the intermolecular Diels–Alder reaction (Scheme 2.4). Lewis acids known to promote Diels–Alder cycloadditions of enones with unactivated dienes, including EtAlCl₂,⁷ SnCl₄,⁹ Sc(OTf)₃,¹⁰ and TMSOTf,⁷,₈,¹¹ led only to decomposition of the diene and recovered enone, except for TMSOTf, which did not produce identifiable products. Additionally, a 5:1 AlBr₃/AlMe₃ combination,¹² which is known to catalyze sterically demanding cycloadditions, led to recovered starting material. Heating a neat 4:1 mixture of diene 2.18 and enone 2.19 to 190 °C for 36 hours did not afford cycloadduct 2.27; however, the same conditions with the addition of one equivalent of pyrrolidine led to cycloadduct 2.27, albeit in 6% yield.¹³ Although the stereochemistry of cycloadduct 2.27 was never determined, the endo product with addition of the diene to the face opposite the isopropyl group (2.27, Scheme 2.4a) was the predicted product.¹⁴ Furthermore, the methyl group should direct the regioselectivity of the cycloaddition. Typically, 1-substituted dienes with electron-donating groups lead to ortho cycloadducts. However, theoretical studies for 1-trimethylsilyl-1,3-butadiene have shown that the HOMO is only slightly polarized, and Diels–Alder cycloadditions with unsymmetrical dienophiles revealed poor regioselectivity.⁴,¹⁵ Because the trimethylsilyl group is only a poor directing group, the methyl
group on C2 of the diene should direct regioselectivity and afford desired cycloadduct 2.27. Because this Diels–Alder reaction proved to be challenging owing to its sterically demanding nature and the poorly activated diene and dienophile, we explored a Piers-type annulation as an alternative strategy to access the decalin framework.

Scheme 2.4. (a) Attempted Lewis acid-catalyzed intermolecular Diels–Alder cycloaddition. (b) Intermolecular Diels–Alder cycloaddition using iminium catalysis.

2.2.2 A Piers-type Annulation to Complete the Synthesis of (±)-10-Isocynano-4-cadinene

After abandoning the intermolecular Diels–Alder approach to the decalin core, we evaluated a conjugate addition/intramolecular alkylation sequence. Piers and co-workers first developed annulations of this type, which have been used extensively in natural product synthesis for ring annulation onto cyclic enones.16 Not only have several groups utilized vinyl cuprate addition to cryptone (2.19) in synthesis, but Piers and co-workers have also had success completing an annulation onto 2.19 in their synthesis of (±)-oplopanone (2.31) (Scheme 2.5).17–19 Several reports of successful conjugate addition to cryptone (2.19) utilize a cuprate derived from a Grignard reagent (e.g. 2.28) and copper(II) bromide dimethylsulfide complex. The presence of the γ-isopropyl substituent results in a strong preference for anti addition (>20:1 dr), but requires a Lewis acid (e.g. BF₃•OEt₂ or TMSCl) to promote reactivity.
Scheme 2.5. Cuprate addition to cryptone (2.19) used in (a) Piers’s synthesis of (±)-oplopanone (2.31) and (b) Molander’s synthesis of the core of the sclerophytin diterpenes.17,19

We prepared two vinyl iodides (2.38 and 2.39) to determine the optimal conditions for the conjugate addition with cryptone (Scheme 2.6). The desired trans-relationship of the methyl group and the iodide can be accessed using a zirconium-catalyzed carboalumination procedure developed by Negishi and co-workers.20,21 Zirconium-catalyzed carboalumination of 3-butyn-1-ol (2.34) initially gives the (E)-intermediate organoalane 2.35. The addition of aluminum chloride promotes E to Z-isomerization (2.35 to 2.36), yielding the desired vinyl iodide 2.37 after treatment with iodine. Alcohol 2.37 can be easily converted into TBS ether 2.38 or chloride 2.39.

Scheme 2.6. Synthesis of vinyl iodides for conjugate addition.

We first evaluated the Piers conditions for conjugate addition to cryptone (Scheme 2.7).17 Conjugate addition of a cuprate derived from 2.38 to cryptone (2.19) in the presence of BF₃•OEt₂
afforded ketone 2.40 as a single diastereomer. However, application of these reaction conditions to vinyl iodide 2.39 led to a 4.5:1 ratio of 1,4- to 1,2-addition products 2.41 and 2.42 when BF$_3$•OEt$_2$ was used as the Lewis acid. Fortunately, we found that using TMEDA as an additive and TMSCl as the Lewis acid suppressed the competitive 1,2-addition, providing 2.41 as the sole product.19

Scheme 2.7. Comparison of the conjugate addition of cuprates derived from 2.38 and 2.39.

![Scheme 2.7](image)

Intramolecular alkylation of conjugate addition product 2.41 was accomplished with potassium tert-butoxide, yielding decalones 2.16 as a 1.1:1 mixture of diastereomers (Scheme 2.8).22 While alkylation initially affords cis-decalone 2.16, the kinetic product, excess base allows for equilibration to a thermodynamic mixture of cis- and trans-2.16. We also examined potassium hydride as a base for this intramolecular alkylation. However, alkylation with potassium hydride proved to be irreproducible with competitive elimination of the alkyl chloride as the major byproduct. With the synthesis of decalones 2.16, we intercepted Shenvi’s synthesis of (±)-10-isocyano-4-cadiene (2.17).3 Nucleophilic methylation of the mixture of decalones 2.16 afforded the sesquiterpenes cedrelanol (2.42) and torreyol (2.43). Formation of a trifluoroacetate from cedrelanol and treatment with TMSCN and scandium(III) triflate yielded (±)-10-isocyano-4-cadinene (2.17) in 34% along with 9% of a mixture of two diastereomers.
While this transformation was lower yielding in our hands, we were able to reproduce the stereoselective transformation reported by Shenvi and co-workers to complete the synthesis of the natural product.

Scheme 2.8. Synthesis of (±)-10-isocyano-4-cadinene (2.17).

![Chemical structure diagram](image)

2.3 Progress Toward the Synthesis of THP Kalihinanes

Having validated our strategy to access the decalin core of the kalihinanes using a Piers-type annulation, we evaluated the oxa-Michael/Robinson annulation sequence to prepare the cyclohexenone containing the attached ring motif characteristic of the kalihinanes (Scheme 2.9). When we designed the oxa-Michael/Robinson annulation sequence, we hoped to find an organocatalyst that would perform three functions: (1) the organocatalyst would control oxa-Michael addition of the pendant alcohol to α,β-unsaturated iminium ion 2.45, setting the desired C11 stereocenter; (2) the organocatalyst would control Michael addition of enamine 2.46 to MVK (2.10), setting the C7 stereocenter; (3) the organocatalyst would effect an intramolecular aldol condensation *via* enamine intermediate 2.48 to complete the cascade, providing enone 2.13. Not only would our proposed sequence use catalyst control to establish the C7/C11 stereochemical relationship, but it would also forge the attached ring motif early in the synthesis in a single step.
Scheme 2.9. A closer look at the proposed organocatalytic oxa-Michael/Robinson annulation cascade.

Brenner-Moyer and co-workers have examined a related oxa-Michael/intermolecular Michael cascade with β-nitrostyrene for the synthesis of THPs and THFs (Scheme 2.10).23,24 For unsubstituted THPs, they found that exposure of aldehyde 2.49 to diphenylprolinol silyl ether 2.50 effected an oxa-Michael/Michael cascade affording a 1:1 mixture of THPs 2.54 and 2.55 after reduction (Scheme 2.10a). For this system, the catalyst effectively controlled the α-stereocenter, but was unable to control the β-stereocenter. Unlike the THP system, treatment of enal 2.56 with diphenylprolinol silyl ether 2.50 accomplished the oxa-Michael/Michael cascade leading to 2.58 after reduction as a single diastereomer in high enantiomeric excess (Scheme 2.10b). In this case, the catalyst was able to control both the α- and β-stereocenters. Furthermore, the addition of a substituent at the 5 position of the THF had no impact on the stereochemical outcome; the catalyst continued to control both the α- and β-stereocenters. These results indicated that we might be able to find a catalyst to accomplish our proposed oxa-Michael/Robinson annulation cascade and control the C7 and C11 stereocenters.
Scheme 2.10. Related oxa-Michael/intermolecular Michael cascade for (a) THP formation and (b) THF formation.23,24

\begin{align*}
\text{a) } & \begin{align*}
\text{CHO} & \xrightarrow{\text{Ph}_2\text{Me}, -30^\circ \text{C}, 7 \text{ d}} \text{PhCHNO}_2 \\
\text{OH} & \xrightarrow{\text{PhCO}_2\text{H}} \text{OH}_2 \quad \text{NO}_2 \\
\text{CHO} & \xrightarrow{\text{Ph}_2\text{Me}, -30^\circ \text{C}, 7 \text{ d}} \text{PhCHNO}_2 \\
\text{OH} & \xrightarrow{\text{PhCO}_2\text{H}} \text{OH}_2 \quad \text{NO}_2 \\
\end{align*} \\
\text{b) } & \begin{align*}
\text{CHO} & \xrightarrow{\text{Ph}_2\text{Me}, -30^\circ \text{C}, 6 \text{ d}} \text{PhCHNO}_2 \\
\text{OH} & \xrightarrow{\text{PhCO}_2\text{H}} \text{OH}_2 \quad \text{NO}_2 \\
\text{CHO} & \xrightarrow{\text{Ph}_2\text{Me}, -30^\circ \text{C}, 6 \text{ d}} \text{PhCHNO}_2 \\
\text{OH} & \xrightarrow{\text{PhCO}_2\text{H}} \text{OH}_2 \quad \text{NO}_2 \\
\end{align*} \\
\end{align*}

Gellman and co-workers have shown that diphenylprolinol methyl ether (2.59) is an effective catalyst for the intermolecular Michael addition of simple aldehydes to methyl vinyl ketone (2.10) (Scheme 2.11).25 While several classes of amines have been shown to be competent for both iminium and enamine catalysis, we first examined the diphenylprolinol catalysts because of the studies by Gellman and Brenner-Moyer.26,27

Scheme 2.11. Gellman’s enantioselective organocatalytic intermolecular Michael reaction.25

Studies toward THP kalihinanes initiated with the synthesis of enal 2.12, which can be prepared from nerol in five steps via chlorinolysis of 6,7-epoxyneryl trichloroacetate (2.62) (Scheme 2.12). Epoxidation of neryl trichloroacetate (2.61) with mCPBA provided 6,7-
epoxyneryl trichloroacetate (2.62). Chlorinolysis of epoxide 2.62 with triphenylphosphine dichloride yielded a mixture of chlorohydrins 2.63 and 2.64. Removal of the trichloroacetate and allylic oxidation yielded enal 2.12. This sequence required the use of the trichloroacetate protecting group instead of the more commonly used acetate owing to the sensitivity of chlorohydrin 2.64 to epoxide formation under basic conditions.

Scheme 2.12. Evaluation of the oxa-Michael reaction to make THP 2.66.

We used enal 2.12 to determine the optimal conditions for the oxa-Michael reaction (Table 2.1). Both diphenylprolinol silyl ether 2.50 and diphenylprolinol methyl ether 2.59 are competent iminium catalysts for the oxa-Michael reaction, leading to similar conversions and diastereomeric ratios (compare entries 1 and 2). We observed similar outcomes without an additive (entry 3), with acidic additives (entries 2 and 6), and with basic additives (entry 5). Lastly, increasing the catalyst loading (compare entries 3, 8, and 9) had no impact on the reaction conversion. Because of the reversibility of the oxa-Michael reaction, we suspected that we were observing a thermodynamic distribution of products. Therefore, we subjected 2.66 (1:1.4 *trans*:cis) to the reaction conditions, resulting in a 3:1 mixture of 2.66 (2:1 *trans*:cis) and enal 2.12, indicating that the retro-oxa Michael reaction occurred (Scheme 2.13).
Table 2.1. Iminium-catalyzed intramolecular oxa-Michael reaction.

![Catalyst, additive, temperature, solvent, time](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (mol%)</th>
<th>Additive (mol%)</th>
<th>Temp.</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Conversion<sup>a</sup></th>
<th>dr (trans:cis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.50 (20)</td>
<td>PhCO₂H (20)</td>
<td>0 °C</td>
<td>PhMe</td>
<td>18</td>
<td>62%</td>
<td>2:1</td>
</tr>
<tr>
<td>2</td>
<td>2.59 (20)</td>
<td>PhCO₂H (20)</td>
<td>0 °C</td>
<td>PhMe</td>
<td>18</td>
<td>62%</td>
<td>1.7:1</td>
</tr>
<tr>
<td>3</td>
<td>2.59 (20)</td>
<td>none</td>
<td>0 to 23 °C</td>
<td>PhMe</td>
<td>24</td>
<td>70%</td>
<td>1.7:1</td>
</tr>
<tr>
<td>4</td>
<td>2.59 (20)</td>
<td>TBAB (100)</td>
<td>0 to 23 °C</td>
<td>CH₂Cl₂</td>
<td>48</td>
<td>Trace<sup>b</sup></td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>2.59 (20)</td>
<td>LiOAc (20)</td>
<td>0 to 23 °C</td>
<td>PhMe</td>
<td>18</td>
<td>74%</td>
<td>1.8:1</td>
</tr>
<tr>
<td>6</td>
<td>2.59 (20)</td>
<td>CSA (20)</td>
<td>0 to 23 °C</td>
<td>PhMe</td>
<td>48</td>
<td>61%</td>
<td>1.5:1</td>
</tr>
<tr>
<td>7</td>
<td>2.59 (20)</td>
<td>4-NO₂-phenol (20)</td>
<td>0 to 23 °C</td>
<td>PhMe</td>
<td>6</td>
<td>Trace<sup>b</sup></td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>2.59 (30)</td>
<td>none</td>
<td>0 °C</td>
<td>PhMe</td>
<td>24</td>
<td>78%</td>
<td>1.7:1</td>
</tr>
<tr>
<td>9</td>
<td>2.59 (40)</td>
<td>none</td>
<td>0 °C</td>
<td>PhMe</td>
<td>24</td>
<td>77%</td>
<td>1.7:1</td>
</tr>
<tr>
<td>10</td>
<td>2.59 (20)</td>
<td>none</td>
<td>0 °C</td>
<td>PhMe<sup>c</sup></td>
<td>24</td>
<td>80%</td>
<td>2:1</td>
</tr>
<tr>
<td>11</td>
<td>2.59 (20)</td>
<td>none</td>
<td>0 °C</td>
<td>MeOH<sup>c</sup></td>
<td>24</td>
<td>45%</td>
<td>3.5:1</td>
</tr>
</tbody>
</table>

^aDetermined by integration of aldehyde peaks in the crude 'H NMR spectrum.
^bDecomposition of starting material was observed.
^cSolvent used without drying by passage over an alumina column.

Scheme 2.13. The reversibility of the oxa-Michael reaction.

![Scheme](image)

Upon exposure of enal 2.12 to prolinol catalyst 2.59 in the presence of methyl vinyl ketone (2.10), methyl ketone 2.67 was isolated as the major product; presumably, this product
was formed by a formal Diels–Alder cycloaddition of dienamine 2.68 and methyl vinyl ketone (Scheme 2.14).\(^9\) Neither the desired intermolecular Michael adduct (2.47) nor the desired Robinson annulation product (2.13) was observed. We examined a few additives and a number of solvents, but in all cases, we observed formation of methyl ketone 2.67 as the major product of a complex mixture. We suspected that the other minor products observed were diastereomic annulation products, a result of using racemic material. Therefore, we decided to prepare enantiopure THP 2.66 using a different method to simplify the reaction outcome. Furthermore, by starting with cyclized adduct 2.66 rather than enal 2.12, we hoped that the intermolecular Michael reaction to afford 2.47 would outcompete the undesired annulation (2.67).

Scheme 2.14. Evaluation of the oxa-Michael/Michael cascade.

The synthesis of enantioenriched \((R)-6,7\)-epoxygeraniol (2.70) can be accomplished in two steps using a Sharpless asymmetric dihydroxylation of geranyl acetate (2.69) followed by chemoselective mesylation of the secondary alcohol and epoxide formation (Scheme 2.15).\(^{30}\) Protection of the primary alcohol as the acetate followed by epoxide chlorinolysis provided chlorohydrins 2.72 and 2.73. We found the combination of lithium chloride and PPTS to be a reliable alternative to triphenylphosphine dichloride.\(^{31-33}\) However, we were unable to find conditions to favor the formation of 2.73 exclusively, and a 1:1.2 ratio of 2.72 to 2.73 is the best we have achieved. Iron-catalyzed cationic \(\pi\)-cyclization of chlorohydrin 2.73 provided a 1:1.4

Scheme 2.15. Synthesis of enantioenriched THP 2.66.

Treatment of a mixture of trans- and cis-aldehydes (2.66) with prolinol catalyst 2.59 and 4-EtO₂C-catechol in MVK afforded only the undesired Diels–Alder products 2.67 and 2.75, arising from intermediate dienamines 2.68 and 2.76, respectively (Scheme 2.16). In addition to the prolinol derived catalysts, we evaluated bifunctional thiourea catalysts 2.77 and 2.78, which have been shown to be competent catalysts for intermolecular Michael reactions of simple aldehydes with nitroalkenes. Unfortunately, exposure of trans-2.66 and cis-2.66 to thiourea 2.77 and MVK provided methyl ketone 2.67, along with a thermodynamic mixture of trans-2.66, cis-2.66, and retro-oxa-Michael product 2.12. Furthermore, the use of thiourea 2.78 as the catalyst led only to recovery of starting material (2.66) and retro-oxa-Michael product 2.12. Lastly, we attempted to use a more electron-deficient Michael acceptor, β-nitrostyrene (2.51), but again, only Diels–Alder cycloadducts resulting from reaction of dienamines 2.68 and 2.76 with β-nitrostyrene were observed.
While we have not extensively examined all classes of organocatalysts, the thermodynamic mixture of enal 2.12 and oxa-Michael adduct 2.66 limits the success of the cascade (Scheme 2.17). We have shown that diphenylprolinol methyl ether 2.59 catalyzes the intermolecular oxa-Michael reaction of enal 2.12 via presumed intermediate α,β-unsaturated iminium ion 2.45 to provide oxa-Michael adduct 2.66 after hydrolysis of enamine 2.46. Furthermore, oxa-Michael adduct 2.66 is thermodynamically preferred over enal 2.12. However, the reaction of dienamine 2.68 with MVK is faster than that for enamine 2.46, likely due to the fully substituted center at C11 of enamine 2.46. Therefore, the starting materials funneled to the undesired annulation product (2.67) via the lowest energy reaction pathway. The unfavorable reaction outcome encouraged us to consider the THF ring system instead as we postulated the oxa-Michael reaction would be thermodynamically favored.
Scheme 2.17. A detailed examination of the formal Diels–Alder cycloaddition.

2.4 Synthesis of Kalihinol B

Our studies toward the kalihinanes bearing the THF appendage met with more success and have resulted in the first synthesis of kalihinol B.39 Synthesis of the THF kalihinanes begins with (S)-6,7-epoxygeraniol (2.70), the enantiomer of (R)-2.70 used toward the synthesis of kalihinol A (2.1). Shi epoxidation of geraniol (2.79) afforded (S)-6,7-epoxygeraniol (2.70) in one step with moderate enantioselectivity (89:11 er) (Scheme 2.18).40 Alternatively, a two-pot procedure using Sharpless dihydroxylation of geranyl acetate (2.69) provided (S)-2.70 in 97:3 er.30 Regioselective epoxide chlorinolysis using dilithium tetrachlorocuprate in the presence of tert-butylidimethylchlorosilane yielded desired chlorohydrin 2.82 (74% yield) along with 16% of the regioisomer (2.81).41 Allylic oxidation triggered cyclization of the secondary alcohol, affording THF 2.83 with predominantly the incorrect C11 configuration. Unlike the allylic oxidation of 2.65 in our studies toward the THP kalihinanes, we never observed enal 2.84. While the spontaneous oxa-Michael reaction gave THF 2.83 with the undesired C11 configuration, the reversibility of the oxa-Michael reaction during the subsequent intermolecular Michael reaction provided a pathway for correction of the C11 stereocenter.
Scheme 2.18. Evaluation of the oxa-Michael/Robinson annulation sequence toward kalihinol B (2.2).

Exposure of aldehyde 2.83 to prolinol catalyst 2.59 effected the desired intermolecular Michael reaction, resulting in a 1:1 mixture of Michael adducts epimeric at C11 with 23–30% of 2.85 isolated. The catalyst effectively controlled the configuration at C7 and facilitated a partial correction of the C11 center, a result of the reversibility of the oxa-Michael reaction under the reaction conditions.\(^{23,24}\) In fact, the diastereomeric ratio of 2.83 (1.2:1 favoring the desired cis-isomer) rapidly reaches equilibrium under the reaction conditions. However, unlike the THP system, the equilibrium for the THF oxa-Michael reaction completely favors the cyclized products (2.83). As a result, the desired intermolecular Michael reaction between THF 2.83 and methyl vinyl ketone is the favored pathway rather than the formal Diels–Alder cycloaddition observed for THP kalihinanes (Scheme 2.17).

While we ultimately determined diphenylprolinol methyl ether 2.59 to be the most effective catalyst for the intermolecular Michael reaction of trans-2.83 with MVK, we examined three other catalysts for this transformation (Table 2.2). When (diethylamino)trimethylsilane
(2.91) was used without any additives, the retro-oxa-Michael reaction was slow, leading to a higher ratio of trans-THFs 2.87 and 2.89 in the product distribution (entry 2). However, upon addition of ethyl 3,4-dihydroxybenzoate to the reaction mixture, equilibration of trans-2.83 was observed, and (diethylamino)trimethylsilane (2.91) effected the intermolecular Michael reaction with low diastereoselectivity (entry 3). Diphenylprolinol methyl ether 2.59 proved to be the most effective catalyst, providing keto-aldehydes 2.85 and 2.87 in a nearly 1:1 ratio (entries 4–6). While imidazolidinone catalyst 2.92 favored formation of the desired keto-aldehyde (2.85) over the C11 epimer (2.87), the overall low conversion to product limited its synthetic utility (entries 8 and 9). Nevertheless, this result suggests that an imidazolidinone catalyst could be found to accomplish a dynamic kinetic resolution of cis- and trans-2.83 to provide keto-aldehyde 2.85 exclusively.
Table 2.2. Intermolecular Michael reaction of *trans*-2.83 with methyl vinyl ketone (MVK).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (mol%)</th>
<th>4-EtO₂C-catechol (mol%)</th>
<th>Time</th>
<th>Approx. Conversion (%)<sup>b</sup></th>
<th>dr 2.85:2.87:2.88:2.89<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.90 (20)</td>
<td>20</td>
<td>2 d</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>2.91 (50)</td>
<td>0</td>
<td>5 d</td>
<td>45</td>
<td>1.1 : 2.8 : 1.0 : 5.3<sup>c</sup></td>
</tr>
<tr>
<td>3</td>
<td>2.91 (50)</td>
<td>20</td>
<td>6 d</td>
<td>67</td>
<td>1.9 : 1.0 : 1.4 : 1.4</td>
</tr>
<tr>
<td>4<sup>d</sup></td>
<td>2.59 (5)</td>
<td>20</td>
<td>3 d</td>
<td>90<sup>e</sup></td>
<td>6.1 : 6.0 : 1.0 : 1.4</td>
</tr>
<tr>
<td>5</td>
<td>2.59 (20)</td>
<td>20</td>
<td>9 d<sup>f</sup></td>
<td>100</td>
<td>15.7 : 15.3 : 1.0 : 1.4</td>
</tr>
<tr>
<td>6<sup>d</sup></td>
<td>2.59 (20)</td>
<td>20</td>
<td>9 d<sup>f</sup></td>
<td>100</td>
<td>3.5 : 3.8 : 1.0 : 1.1</td>
</tr>
<tr>
<td>7<sup>g</sup></td>
<td>2.59 (5)</td>
<td>20</td>
<td>3 d</td>
<td>61</td>
<td>1.2 : 1.0 : 8.8 : 10.6<sup>h</sup></td>
</tr>
<tr>
<td>8<sup>g</sup></td>
<td>2.92 (20)</td>
<td>20</td>
<td>3 d</td>
<td>13</td>
<td>14.3 : 3.8 : 1.0 : 2.4<sup>h</sup></td>
</tr>
<tr>
<td>9<sup>g</sup></td>
<td>2.92 (50)</td>
<td>20</td>
<td>3 d</td>
<td>23</td>
<td>8.1 : 2.6 : 1.0 : 1.7<sup>h</sup></td>
</tr>
</tbody>
</table>

^aThe enantiomeric excess of *trans*-2.83 used in the reaction was 93% unless otherwise indicated. ^bDetermined by integration of aldehyde peaks in the crude ¹H NMR spectrum. ^cThe retro-oxa-Michael reaction was slow under the reaction conditions. ^dThe enantiomeric excess of *trans*-2.83 was 78%. ^eThe crude reaction mixture was more complex and the isolated yields of keto-aldehydes 2.85 and 2.87 were lower than those for the reaction run at 7 °C. ^fReaction temperature: 7 °C. ^gUsed the enantiomer of *trans*-2.83. ^hDr of the enantiomers of 2.85:2.87:2.88:2.89.

Prolinol catalyst 2.59 did not accomplish the desired Robinson annulation in one step; therefore, aldol condensation of 2.85 was catalyzed by diamine 2.86 to afford enone 2.11 in 75% yield (Scheme 2.18).⁴⁴ Keto-aldehyde 2.85 proved sensitive to basic conditions, and more typical aldol condensation conditions with hydroxide/alkoxide bases were less reliable (Table 2.3).² Because diamine 2.86 is known to be a poor catalyst for intermolecular Michael additions, we combined 2.83, methyl vinyl ketone (MVK), and catalysts 2.59 and 2.86 in the hopes of completing a one-pot Robinson annulation.⁴⁵ While Michael product 2.85 slowly accumulated in
the usual 1:1 diastereomeric ratio, cyclohexenone 2.11 was not observed. Nonetheless, we were able to complete the synthesis of cyclohexenone 2.11 in only five or six steps from geraniol or geranyl acetate.

Table 2.3. Optimization of the aldol condensation of keto-aldehyde 2.85.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield 2.11 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nBu₄NOH, KOH, THF/Et₂O/H₂O, 50 °C, 3 h</td>
<td>26<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>KOtBu, THF, 0 °C, 5 min</td>
<td>N/A<sup>b</sup></td>
</tr>
<tr>
<td>3</td>
<td>LiOH•H₂O (1 equiv), MeOH, 0 °C, 1h; then Et₃N, DCM, MsCl</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>LiOH (1 equiv), iPrOH, rt, 48 h</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>LiOiPr (1 equiv), iPrOH, rt, 24 h</td>
<td>43<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td>Catalyst 2.86 (30 mol%), hexanes, 21 h</td>
<td>75<sup>d</sup></td>
</tr>
</tbody>
</table>

^aThe major product isolated was 2.94 (40%). ^bDecomposition of 2.85. ^cOther products isolated: 2.93 (14%) and 2.94 (8%). ^dIsolated an additional 8% of 2.11 as a mixture of diastereomers.

A Piers-type annulation was accomplished via diastereoselective conjugate addition followed by intramolecular alkylation (Scheme 2.19). The conditions for the conjugate addition of a cuprate derived from 2.39 into cryptone (Scheme 2.7) were not effective for the conversion of enone 2.11 to ketone 2.95. Fortunately, changing the copper source to lithium 2-thienylcyanocuprate with BF₃•OEt₂ as the Lewis acid proved to be high yielding and diastereoselective, providing ketone 2.95 as a single diastereomer in 83% yield. Subsequent intramolecular alkylation using potassium tert-butoxide afforded 2.7 as a 1.3:1 mixture of cis- and trans-decalins that was not easily resolved. The 1.3:1 ratio of decalin isomers likely reflects the thermodynamic ratio of 2.7. Mixtures enriched (by chromatography) in either isomer converged under similar conditions to a 1.2:1 ratio favoring the cis-decalin isomer.
We examined a few methods for the epoxidation of the mixture of cis- and trans-2.7 (Table 2.4). For both the cis- and trans-decalones (2.7), epoxidation with mCPBA slightly favored the undesired β-epoxides (2.97 and 2.99) (entries 1 and 2). Switching to DMDO reversed the diastereoselectivity for both cis- and trans-decalones (2.7), affording the desired α-epoxides (2.96 and 2.98), although the diastereoselectivity was modest (3:1 α:β for cis, 9:1 α:β for trans, entry 3). Complete diastereoselective epoxidation for both cis- and trans-2.7 could be achieved using a Shi epoxidation (entry 4). However, Shi epoxidation of trans-2.7 was slower than that for cis-2.7, and this reaction stalled at 57% conversion.
Table 2.4. Diastereoselectivity of epoxidation of the mixture of cis- and trans-decalones 2.7.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Product Distribution<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mCPBA, NaHCO<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C</td>
<td>1:1.5; 1:1.3</td>
</tr>
<tr>
<td>2</td>
<td>mCPBA, NaHCO<sub>3</sub>, Et<sub>2</sub>O, 0 °C</td>
<td>1:1.4; 1:2.3</td>
</tr>
<tr>
<td>3</td>
<td>Oxone, acetone, NaHCO<sub>3</sub>, 0 °C</td>
<td>3:1; 9:1</td>
</tr>
<tr>
<td>4</td>
<td>Shi catalyst<sup>d</sup>, oxone, K<sub>2</sub>CO<sub>3</sub></td>
<td>>20:1; >20:1<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Bu<sub>4</sub>NHSO<sub>4</sub>, MeCN/DMM/H<sub>2</sub>O, −10 °C</td>
<td></td>
</tr>
</tbody>
</table>

^aPerformed on a 1.3:1 mixture of cis- and trans-2.7. ^bDetermined by integration of the C5-H resonance in the crude ¹H NMR spectrum. ^cReaction stalled at 57% conversion. ^dShi catalyst: Shi catalyst:

After epoxidation of the C4–C5 alkene, we discovered that the decalones equilibrated to a 1:2.2 <i>cis:trans</i> mixture of 2.96 and 2.98 under basic conditions (Scheme 2.20a). Nucleophilic methylation of the 1:2.2 mixture afforded cyclized product 2.100 and <i>trans</i>-decalin 2.101. Cyclized product 2.100 resulted from the addition of methyl Grignard reagent to the convex face of <i>cis</i>-decalone 2.96 followed by epoxide ring-opening with the resulting alkoxide. Alternatively, we explored a nucleophilic methylation/epoxidation sequence to access <i>trans</i>-decalin 2.101 (Scheme 2.20b). Stereoselective nucleophilic methylation of the isomeric mixture of 2.7 affords <i>cis</i>-decalin 2.102 and <i>trans</i>-decalin 2.103. While <i>trans</i>-decalin 2.103 failed to crystallize, X-ray crystal structure analysis of <i>cis</i>-decalin 2.102 indicated that the stereochemistry of the attached ring motif matched that found in the natural product. Epoxidation of <i>trans</i>-decalin 2.103 using DMDO generated <i>in situ</i> yielded the desired α-epoxide (2.101) as a single diastereomer, whereas
a decrease in diastereoselectivity was observed for epoxidation of 2.103 with mCPBA (2:1 α:β). The model for diastereoselectivity remains unclear; DMDO epoxidation of the C7 isopropyl analogue of 2.103 suffers from poor diastereoselectivity (1.6:1 α:β, see Section 3.2), suggesting that the C7 THF appendage is responsible for the high levels of diastereoselectivity observed (>20:1 dr). Even though the ratio of cis- and trans-decalones was more favorable after epoxidation of the C4–C5 alkene, we ultimately determined the nucleophilic methylation/epoxidation sequence to be more attractive for three reasons: (1) diastereoselective epoxidation of trans-decalin 2.103 could be achieved without the use of chiral reagents; (2) cis-decalin 2.102 and trans-decalin 2.103 are easily separable; (3) cis-decalin 2.102 is potentially useful for the synthesis of the kalihinenes (2.6).

Scheme 2.20. Elaboration of cis- and trans-2.7: (a) an epoxidation/nucleophilic methylation sequence and (b) a nucleophilic methylation/epoxidation sequence.

At this stage, we looked to Shenvi’s conditions for invertive tertiary trifluoroacetate displacement by trimethylsilyl cyanide for the installation of the isonitriles (Scheme 2.21).³ Conversion of tertiary alcohol 2.101 to trifluoroacetate 2.104 followed by exposure to
scandium(III) triflate and trimethylsilyl cyanide effected rapid isocyanosilylation of the epoxide and much slower invertive displacement of the trifluoroacetate, providing diisocyanide 2.105. Desilylation of tertiary TMS ether 2.105 gave (+)-kalihinol B (2.2). The isonitrile introduction result is noteworthy for the two aspects of regiocontrol in the epoxide isocyanolysis. While the Fürst–Plattner principle predicts trans-diaxial nucleophilic opening of the epoxide at the least hindered C5 position, it was not clear whether the isonitrile or the nitrile would predominate (see Section 1.5.2). While the relatively low overall yield of this three-step sequence is largely due to competitive elimination of the axial tertiary trifluoroacetate, it is a marked improvement on the alternative known method for installing the requisite isonitriles (formylation and dehydration of a primary amine). Direct installation of the isonitriles is critical to achieving a concise synthesis, in which the natural product is obtained in 12 or 13 steps from geraniol or geranyl acetate. Synthetic (+)-kalihinol B (2.2) was subjected to the SYBR Green parasite proliferation assay to test for antiplasmodial activity against wild-type *P. falciparum* (3D7 strain) and the chloroquine-resistant parasite (Dd2 strain). It exhibited potent antimalarial activity against both drug-sensitive and drug-resistant strains of *P. falciparum* (IC$_{50}$ = 8.4 nM for 3D7 and 4.6 nM for Dd2, see Section 3.4 for details).

Scheme 2.21. Completion of the synthesis of kalihinol B (2.2).
2.5 Progress Toward the Synthesis of Other THF Kalihinanes

Having validated our approach with the synthesis of kalihinol B (2.2), we targeted other THF kalihinanes with intermediates in the kalihinol B synthesis (Scheme 2.22). We planned to prepare kalihinol F (2.106) and kalihinol C (2.4) from kalihinol B (2.2). Conversion of the tertiary chloride of kalihinol B (2.2) to an isonitrile would provide kalihinnol F (2.106); alternatively, elimination of the tertiary chloride would afford kalihinol C (2.4). Additionally, we proposed to elaborate 2.103 to kalihinene B (2.5) via a three-step isonitrile installation sequence. Lastly, we planned to access kalihinol K (2.107) from trans-2.7 via an epoxidation, Wittig olefination, and isonitrile installation sequence.

Scheme 2.22. A divergent approach toward other THF kalihinanes.

The ability to access kalihinol F (2.106), kalihinol K (2.107), and kalihinene B (2.5) hinged on the conversion of the tertiary chloride to the tertiary alkyl isonitrile; therefore, we targeted kalihinene B (2.5) to find a method to accomplish this (Scheme 2.23). Invertive displacement of the trifluoroacetate of 2.103 using scandium(III) triflate and trimethylsilyl cyanide provided isocyanide 2.108. We found this reaction to be higher yielding for substrates
containing a C4–C5 alkene instead of the epoxide; however, the lower yield of the diisocyanide installation could simply be a reflection of a modest yield for successive isonitrile syntheses. Treatment of isocyanide 2.108 with AgCN did not accomplish the desired substitution reaction. Only starting material was observed after stirring 2.108 and AgCN in DMF at room temperature for 12 hours, and heating to 80 °C resulted in decomposition. Generally, isonitrile synthesis using AgCN is an S_N2 process, and only works well for primary alkyl halides.47 Therefore, we turned our attention to chloride abstraction with other silver(I) salts and subsequent carbocation capture with a nucleophile.48–50 We employed both cis-decalin 2.102 and enone 2.109 as model systems to evaluate this transformation. Unfortunately, the only reactivity we observed for both 2.102 and 2.109 was chloride abstraction followed by a hydride shift to generate an oxocarbenium ion and subsequent trapping with the nucleophile to provide rearranged products (2.110). Because we had difficulty manipulating the tertiary chloride, we targeted diol 2.111, which would facilitate isonitrile synthesis in a single step from the corresponding bis(trifluoroacetate) (Scheme 2.24).

\textit{Scheme 2.23.} Initial approach toward the synthesis of kalihinene B (2.5).
Scheme 2.24. Revised strategy targeting kalihinene B (2.5).

Installation of a C15 hydroxyl was easily accomplished via Sharpless dihydroxylation of geranyl acetate (2.69) (Scheme 2.25a). Subsequent cleavage of the acetate followed by allylic oxidation provided desired THF 2.114 (6:1 dr) in low yield. Oxidative cleavage of the diol accompanied the desired allylic oxidation, giving aldehydes 2.115 and 2.116 as byproducts. Therefore, we turned to the iron-catalyzed cationic π-cyclization of diol 2.112—previously used for THP synthesis (Scheme 2.15)—to overcome the overoxidation, affording linalyl oxide 2.117 in 94% yield as a 1.7:1 mixture of trans- and cis-isomers. Protection of the tertiary hydroxyl, followed by a hydroboration-oxidation/oxidation sequence gave a mixture of cis- and trans-2.119.

Scheme 2.25. Synthesis of THFs bearing the tertiary (a) hydroxyl or (b) silyl ether.
The two-step Robinson annulation developed in the synthesis of kalihinol B (2.2) worked well for the synthesis of enone 2.122. Exposure of the mixture of trans- and cis-2.119 to the optimized intermolecular Michael conditions provided a 1:1 mixture of keto-aldehydes 2.120 and 2.121, epimeric at C11. Aldol condensation of pure 2.121 (isolated in 19% from the mixture of 2.120 and 2.121) using diamine catalyst 2.86 afforded enone 2.122 in 71% yield. Application of the Piers-type annulation used toward kalihinol B yielded decalone 2.124 as a 1.3:1 mixture of cis- and trans-isomers, favoring the undesired cis-isomer as before. Diastereoselective nucleophilic methylation of the mixture of decalones afforded cis-decalin 2.125 and trans-decalin 2.126.

Scheme 2.26. Synthesis of the decalin core (2.126) using the Robinson annulation and Piers-type annulation.

With the trans-decalin core in hand, we evaluated conditions for the installation of the isonitriles (Scheme 2.27). Cleavage of the TMS ether using TBAF provided target diol 2.111, which was converted into bis(trifluoroacetate) 2.127. Treatment of 2.127 with scandium(III) triflate in TMSCN provided hydride shift product 2.128. While the invertive displacement of the
C10 trifluoroacetate was accomplished under the reaction conditions to afford isocyanide 2.129, subsequent ionization of the C15 trifluoroacetate triggered a C14–C15 hydride shift to form oxocarbenium ion 2.131. Finally, capture of the oxocarbinum ion 2.131 with TMSCN gave the hydride shift product 2.128, bearing a C14 nitrile. While we were able to isolate isocyanide 2.129 in addition to elimination products, kalihinene B (2.5) was not observed. Reaction of TMSCN with cyclic oxocarbenium ions is known to provide the nitrile as the product. Woerpel and co-workers have shown that cyanide addition of silyl cyanides to cyclic oxocarbenium ions proceeds via nucleophilic activation of silicon to form a pentacoordinate siliconate ion, which is responsible for cyanide transfer. We were unable to confirm the relative stereochemistry of the C14 nitrile, but nucleophilic addition proceeding via a staggered transition-state structure to the more stable conformation of the five-membered ring oxocarbenium ion would provide 2.128.

Scheme 2.27. Synthesis of kalihinene B (2.5) thwarted by a hydride shift.

Our results indicated that the installation of a C15 isonitrile using cationic methods would be challenging to accomplish. However, by using radical methods for isonitrile synthesis, we hoped to avoid the undesired the hydride shift. We envisioned that we would be able to
accomplish a hydroazidation of 2.132, an intermediate toward the synthesis of kalihinol C (2.4) (Scheme 2.28a). By targeting the THF bearing the pendant isopropenyl substituent (2.132), not only would we be able to access kalihinol C after elaboration of the decalin core, but we would also be able to access kalihinanes containing a C15 isonitrile (e.g. kalihinol F) via reduction of the azide and formylation/dehydration of the resulting amine. Carreira and co-workers have shown that hydroazidation of several alkenes, including 1,1-disubstituted allylic ethers, can be accomplished using a cobalt catalyst (Scheme 2.28b).

Scheme 2.28. (a) Proposed synthesis of kalihinananes containing a C15 isonitrile by hydroazidation of an intermediate in the synthesis of kalihinol C (2.4). (b) Carreira’s method for hydroazidation of alkenes.

We have been able to access allylic alcohol 2.138 via regiospecific isomerization of 6,7-epoxygeraniol (2.70) using diethylaluminum 2,2,6,6-tetramethylpiperidine, a method developed by Yamamoto and co-workers (Scheme 2.29). While we were initially concerned with the selective oxidation of the primary allylic alcohol of 2.138 in the presence of a secondary allylic alcohol, the desired oxidation with MnO2 was faster than oxidation of the secondary allylic alcohol. Furthermore, the spontaneous oxa-Michael reaction was fast enough to function as a protecting group for the secondary allylic alcohol, and we were able to prepare THF 2.139 in
good yield as a 5:1 mixture of trans- and cis-isomers. After preparing enantiopure THF 2.139, subjection to the Robinson annulation and Piers-type annulation sequence will provide decalin 2.140. From decalin 2.140, we plan to prepare kalihinol C (2.4) and to explore the hydroazidation approach toward the THF kalihinanes containing a C15 isonitrile.

Scheme 2.29. Synthesis of THF 2.139 bearing the pendant alkene.

2.6 Conclusions

We have validated our approach toward the THF kalihinanes with the first synthesis of kalihinol B in only 12 steps from geraniol. While some transformations in our synthesis would benefit from improved selectivity, even in its current form our achievement is the most concise synthesis of any of the kalihinanes because nearly all of the steps generate key C–O, C–Cl, C–C, or C–N bonds. In principle, this design would permit access to THP-containing kalihinanes, but they remain elusive owing to an undesired, formal [4+2] cycloaddition. Furthermore, we have attempted to access other THF kalihinanes using our unified synthetic design, but an undesired hydride shift has precluded the use of cationic methods for the synthesis of the C15 isonitrile.
2.7 Experimental Procedures

General Experimental Methods. All reactions were performed under an inert atmosphere of argon using oven-dried or flame-dried glassware and Teflon® coated stir bars. Solvents were dried by passage through columns of activated alumina, and tert-butyl alcohol was distilled from calcium hydride prior to use. Trimethylsilyl cyanide and methyl vinyl ketone were purified by distillation prior to use. Commercial reagents were used as received unless noted otherwise, and all other reagents were prepared using known literature procedures. Lithium chloride was flame-dried under vacuum prior to use. Reactions were monitored by thin-layer chromatography (TLC) performed on 250 µm silica gel 60 plates with 254 nm fluorescent indicator from EMD Chemicals using UV light as a visualizing agent and KMnO₄/H₂SO₄, p-anisaldehyde or ceric ammonium molybdate and heat as developing agents. Flash chromatography was performed on EMD Chemicals (40-63 µm) silica gel. NMR spectra were recorded on a Bruker 500 MHz or a Bruker 600 MHz spectrometer. Chemical shifts are reported in parts per million using residual non-deuterated solvent as an internal standard (CDCl₃: 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR). Data are reported as follows: chemical shift, multiplicity (ap = apparent, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broad), coupling constant(s) in Hz, integration. NMR spectra were obtained at 298 K unless otherwise noted. FT-IR spectra were recorded on a Varian 640-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-1010 polarimeter operating on the sodium D-line (589 nm) using a 50 mm path-length cell and are reported as: [α]D¹ (concentration in g/100 mL, solvent). Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC using a Chiralpak AS-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries Ltd. with visualization at 254 nm. High resolution mass spectra (HRMS)
were recorded on a Waters LCT Premier spectrometer using ESI-TOF (electrospray ionization-time of flight) or CI-TOF (chemical ionization-time of flight). Melting points (mp) are uncorrected and were measured on a Mel-Temp II melting point apparatus.

Experimental Procedures and Characterization Data

(±)-**Cryptone (2.19).** The title compound was prepared according to the literature procedure using a two-step Robinson annulation sequence.\(^2\) The spectral data for this compound are consistent with those reported in the literature.\(^5\) \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta\) 6.89 (dt, \(J = 10.5, 2.0\) Hz, 1H), 6.00 (dd, \(J = 10.5, 2.5\) Hz, 1H), 2.50 (dt, \(J = 16.5, 4.0\) Hz, 1H), 2.38 – 2.32 (m, 1H), 2.32 – 2.25 (m, 1H), 2.04 – 1.96 (m, 1H), 1.86 – 1.71 (m, 1H), 0.96 (t, \(J = 7.0\) Hz, 6H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 200.2, 154.5, 129.8, 42.6, 37.5, 31.6, 25.4, 19.8, 19.6.

(\(E\))-**2-methyl-3-(trimethylsilyl)prop-2-en-1-ol (2.25).** The title compound was prepared according to the literature procedure.\(^5\) The spectral data for this compound are consistent with those reported in the literature. \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta\) 5.51 (s, 1H), 4.01 (d, \(J = 6.0\) Hz, 2H), 1.77 (s, 3H), 0.13 (2, 9H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 153.3, 121.1, 69.0, 18.5, 0.11.
(E)-2-Methyl-3-(trimethylsilyl)prop-2-en-1-ol (2.26). To a solution of oxalyl chloride (1.81 mL, 21.1 mmol) in CH₂Cl₂ (42 mL) at −78 °C was added DMSO (2.99 mL, 42.1 mmol) in CH₂Cl₂ (8.4 mL) dropwise via addition funnel over 15 min. After gas evolution ceased (ca. 15 min), a solution of (E)-2-methyl-3-(trimethylsilyl)prop-2-en-1-ol (2.25) (2.76 g, 19.1 mmol) in CH₂Cl₂ (38 mL) was added dropwise via addition funnel over 25 min. After 45 min, triethylamine (13.3 mL, 95.7 mmol) was added dropwise via addition funnel over 15 min. The solution was allowed to warm to room temperature, and was stirred at room temperature for 1 h. Water was added to the reaction mixture, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by flash column chromatography (SiO₂, 5% EtOAc/Hexanes) to afford the title compound as a pale yellow liquid (0.786 g, 28%). ¹H and ¹³C NMR spectra are in complete accordance with those previously reported.⁵⁶ ¹H NMR (CDCl₃, 600 MHz) δ 9.41 (s, 1H), 6.70 (s, 1H), 1.89 (s, 3H), 0.23 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 196.1, 153.6, 152.4, 13.5, −0.73.

(E)-2-Methyl-1-(trimethylsilyl)buta-1,3-diene (2.18). This reaction is a modification of Jung et al.⁴ To a solution of methyltriphenylphosphonium bromide (3.70 g, 10.4 mmol) in THF (90 mL) at 0 °C was added n-butyllithium (4.14 mL, 2.50 M in THF). The pale orange solution was allowed to warm to room temperature. After 1 h, 2.26 (1.05 g, 7.40 mmol) was added in THF (2
mL) *via* cannula in one portion. The solution was stirred at room temperature for 10 min. The reaction mixture was diluted with pentane and filtered through a plug of Florisil®. The reaction mixture was concentrated by distillation of the solvents through a 2” Vigreux column. The crude residue was purified by Kugelrohr distillation (150–200 mm Hg, ABT: 115 °C), yielding the title compound as a clear liquid (0.738 g, 71%). ^1^H NMR (CDCl$_3$, 500 MHz) δ 6.39 (dd, $J = 17.5$, 10.5, 1H), 5.55 (s, 1H), 5.18 (d, $J = 17.5$, 1H), 5.03 (d, $J = 10.5$, 1H), 1.90 (s, 3H), 0.14 (s, 9H); ^1^C NMR (125 MHz, CDCl$_3$) δ 150.2, 143.5, 132.6, 113.0, 17.0, 0.10; IR (thin film) ν 3089, 2998, 2955, 2897, 1578, 1441, 1379, 1248, 854, 838 cm$^{-1}$; HRMS (Cl) m/z calcld for C$_8$H$_{16}$SiH (M + H)$^+$ 141.1100, found 141.1096.

Cycloadduct 2.27. A mixture of (±)-cryptone (2.19) (25 mg, 0.18 mmol), pyrrolidine (15 µL, 0.18 mmol), and (E)-2-methyl-1-(trimethylsilyl)buta-1,3-diene (2.18) (100 mg, 0.73 mmol) was heated to 190 °C in a sealed vial for 10 h. The crude reaction mixture was purified by flash column chromatography (SiO$_2$, 1:1:98 EtOAc/Et$_3$N/Hexanes) to afford the title compound as a white solid (2.9 mg, 6%). The structure has tentatively been assigned to 2.27. ^1^H NMR (CDCl$_3$, 500 MHz) δ 5.30 (br s, 1H), 2.5 – 2.2 (m, 6H), 2.15 – 2.08 (m, 1H), 2.00 – 1.90 (m, 2H), 1.90 – 1.82 (m, 1H), 1.73 (s, 3H), 1.65 – 1.60 (m, 2H), 0.85 (d, $J = 7$, 3H), 0.81 (d, $J = 7$, 3H), 0.13 (s, 9H).
(Z)-4-Iodo-3-methyl-3-buten-1-ol (2.37). The title compound was prepared according to the literature procedure. The spectral data for this compound are consistent with those reported in the literature. 1H NMR (CDCl$_3$, 500 MHz) δ 6.00 (d, J = 0.5 Hz, 1H), 3.78 (t, J = 6.8 Hz, 2H), 2.53 (t, J = 6.8 Hz, 2H), 1.94 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 144.6, 76.6, 60.5, 41.8, 24.0.

(Z)-4-Chloro-1-iodo-2-methyl-1-butene (2.39). To a solution of alcohol 2.37 (1.54 g, 7.27 mmol) in CH$_2$Cl$_2$ (73 mL) at room temperature was added triphenylphosphine (9.53 g, 36.3 mmol) in one portion, followed by CCl$_4$ (7.01 mL, 72.7 mmol) dropwise via syringe. The reaction mixture was allowed to stir for one hour. The solvent was concentrated in vacuo (150 – 200 mm Hg). The crude residue was purified using flash chromatography (SiO$_2$, 1% Et$_2$O/pentane), yielding the title compound as a pale yellow liquid (1.18 g, 70%). 1H NMR (CDCl$_3$, 500 MHz) δ 6.06 (s, 1H), 3.61 (t, J = 7.3 Hz, 2H), 2.70 (t, J = 7.3 Hz, 2H), 1.95 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 143.9, 77.5, 41.6, 41.5, 23.9; IR (thin film) ν 2967, 2911, 2847, 1433, 1263, 1167 cm$^{-1}$; HRMS (CI) m / z calcd for C$_5$H$_8$ClI (M)$^+$ 229.9359, found 229.9357.

Ketone 2.41. To a solution of vinyl iodide 2.39 (0.346 g, 1.50 mmol) in Et$_2$O (6 mL, previously sparged with argon gas for 20 min) at −78 °C was added tert-butyllithium (2.1 mL, 1.45 M in
pentane, 3.01 mmol) dropwise via syringe. After 20 min, freshly prepared MgBr$_2$•OEt$_2$ (2.2 mL, ~1 M suspension in Et$_2$O, 2.15 mmol) was added dropwise via syringe. After 20 min, CuBr•DMS (0.155 g, 0.752 mmol) was added in one portion. TMEDA (0.11 mL, 0.752 mmol) was added dropwise via syringe immediately afterwards. After 30 min at −78 °C, TMSCl (0.11 mL, 0.859 mmol) was added dropwise via syringe followed by a solution of (±)-cryptone (2.19) (98.9 mg, 0.716 mmol) in Et$_2$O (0.5 mL). The transfer was completed with an additional portion of Et$_2$O (0.5 mL). After allowing the reaction mixture to stir for 2 h at −78 °C, the reaction was quenched with 9:1 saturated NH$_4$Cl solution/NH$_4$OH (15 mL). After warming to room temperature, the reaction mixture was extracted with Et$_2$O (3 × 10 mL). The combined organic extracts were washed with 1 M HCl (15 mL), saturated NaHCO$_3$ solution (15 mL), and brine (15 mL). The organic phase was dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 5% EtOAc/hexanes) to afford the title compound (138.2 mg, 80%) as a white solid (mp 55–57 °C). 1H NMR (CDCl$_3$, 600 MHz) δ 5.10 (d, $J = 9.6$ Hz, 1H), 3.54 (t, $J = 7.2$ Hz, 2H), 2.61 – 2.50 (m, 2H), 2.50 – 2.43 (m, 2H), 2.42 – 2.31 (m, 2H), 2.14 (ap t, $J = 13.2$ Hz, 1H), 2.02 – 1.88 (m, 2H), 1.73 (s, 3H), 1.52 – 1.40 (m, 2H), 0.96 (d, $J = 7.0$ Hz, 3H), 0.73 (d, $J = 7.0$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 211.4, 131.8, 131.6, 47.9, 47.1, 42.4, 41.2, 40.6, 35.2, 27.9, 24.5, 22.9, 21.9, 16.1; IR (thin film) ν 2957, 2870, 1714, 1455, 1368, 1259, 1202, 1066 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{14}$H$_{23}$ClONa (M + Na)$^+$ 265.1335, found 265.1329. 1H-NOESY-2D (500 MHz, CDCl$_3$) spectra were obtained for ketone 2.41 and selected NOE interactions are shown.
cis- and trans-Decalones 2.16. To a solution of alkyl chloride 2.41 (0.292 g, 1.20 mmol) in tert-butyl alcohol (6.0 mL) at 30 °C was added potassium tert-butoxide (1.10 mL, 1.6 M in THF, 1.81 mmol) dropwise via syringe. After stirring for 6 h at 30 °C, the reaction was quenched with saturated NH₄Cl solution (6 mL). The aqueous layer was extracted with pentane (3 x 15 mL), and the combined organic extracts were washed with water (3 x 10 mL) and with brine (10 mL). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 5% Et₂O/pentane) to afford a 1.1:1 mixture of trans- and cis-decalones (176.4 mg, 71%) as a colorless oil, which was characterized as a mixture. The spectral data for these compounds are consistent with those reported in the literature.¹¹⁷¹H NMR (CDCl₃, 500 MHz) δ 5.55 (s, 1H), 5.32 (s, 1H), 2.52 (br s, 1H), 2.49 – 2.11 (m, 7H), 2.11 – 1.95 (m, 8H), 1.95 – 1.85 (m, 1H), 1.85 – 1.78 (m, 1H), 1.68 (s, 3H), 1.64 (s, 3H), 1.62 – 1.38 (m, 6H), 1.00 (d, J = 5.0 Hz, 3H), 0.99 (d, J = 5.0 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H), 0.77 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 214.8, 213.1, 136.0, 135.1, 124.4, 121.6, 51.2, 46.9, 46.1, 45.2, 44.4, 41.2, 39.0, 38.4, 29.8, 28.6, 26.9, 26.5, 25.5, 24.0, 23.9, 23.8, 23.1, 22.0, 21.70, 21.65, 17.9, 15.1.

(±)-Torreyol (2.42) and (±)-cedrelanol (2.43). Methylmagnesium bromide (1.9 mL, 2.25 M in Et₂O, 4.27 mmol) was added dropwise to a solution of a mixture of cis- and trans-decalones 2.16
(0.176 g, 0.855 mmol) in THF (8.6 mL) cooled to 0 °C. The reaction mixture was allowed to warm to room temperature for 30 min, and the reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) at 0 °C. The aqueous layer was extracted with Et₂O (3 x 15 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10% EtOAc/hexanes), yielding (±)-cedrelanol (2.42) (0.106 g, 55%) as a colorless oil and (±)-torreyol (2.43) (0.084 g, 44%) as a white solid (mp 109–110 °C, lit.¹ mp 108.5–109 °C). The spectral data for these compounds are consistent with those reported in the literature.¹,³,⁵⁸

(±)-Cedrelanol (2.42): ¹H NMR (CDCl₃, 600 MHz) δ 5.55 (br s, 1H), 2.22 – 2.15 (m, 1H), 2.04 – 1.89 (m, 4H), 1.74 (dt, J = 13.1, 2.9 Hz, 1H), 1.67 (s, 3H), 1.50 – 1.45 (m, 1H), 1.45 – 1.29 (m, 3H), 1.22 (s, 3H), 1.09 (t, J = 10.3 Hz, 1H), 1.01 (tt, J = 11.4, 3.2 Hz, 1H), 0.92 (d, J = 6.9 Hz, 3H), 0.79 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 134.5, 122.8, 70.8, 48.1, 46.8, 40.4, 37.9, 31.0, 28.6, 26.3, 23.9, 22.7, 21.5, 19.9, 15.3.

(±)-Torreyol (2.43): ¹H NMR (CDCl₃, 600 MHz) δ 5.52, (d, J = 4.3 Hz, 1 H), 2.06 – 1.92 (m, 4H), 1.92 – 1.86 (m, 1H), 1.66 (s, 3H), 1.63 – 1.47 (m, 6H), 1.35 – 1.24 (m, 2H), 1.30 (s, 3H), 1.15 – 1.05 (m, 1H) 0.89 (d, J = 6.9 Hz, 3H), 0.77 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 134.5, 124.7, 72.7, 45.6, 44.2, 36.9, 35.4, 31.3, 28.1, 26.5, 23.8, 21.8, 21.7, 18.6, 15.4.

(±)-10-Isocyano-4-cadinene (2.17). The title compound was prepared according to the literature procedure.³ A mixture of (±)-cedrelanol (2.42) (28.3 mg, 0.127 mmol) and pyridine (50 µL, 0.508 mmol) in CH₂Cl₂ (1.3 mL) at 0 °C was treated with trifluoroacetic anhydride (40 µL, 0.255
mmol). After 15 minutes, the reaction was quenched with 1 M HCl (2 mL). The aqueous layer was extracted with \(\text{CH}_2\text{Cl}_2 \) (3 x 3 mL). The combined organic extracts were washed with water (5 mL), washed with saturated NaHCO_3 solution (5 mL), dried over MgSO_4, filtered and concentrated \textit{in vacuo}. A portion of the crude trifluoroacetate (15.9 mg, 0.0499 mmol) was dissolved in TMSCN (50 µL), and a solution of scandium(III) trifluoromethanesulfonate (~0.7 mg, 0.0015 mmol) in TMSCN (50 µL) was added. After 4 h at room temperature, the reaction was quenched with TMEDA (20 µL) and the volatiles were removed under reduced pressure. The crude residue was dissolved in hexanes (5 mL), washed with saturated aqueous NaHCO_3 solution (5 mL), dried over MgSO_4, filtered, and concentrated \textit{in vacuo}. The crude residue was purified using flash chromatography (SiO_2, 30% CH_2Cl_2/hexanes) to afford the title compound (3.9 mg, 34%) as a thin film along with a mixture of diastereomers (1.1 mg, 9%). The spectral data for this compound are consistent with those reported in the literature. ³¹H NMR (CDCl₃, 600 MHz) δ 5.46, (s, 1 H), 2.22 – 2.13 (m, 1H), 2.12 – 1.94 (m, 4H), 1.82 (td, \(J = 13.3, 4.0 \) Hz, 1H), 1.73 (t, \(J = 10.8 \) Hz, 1H), 1.68 (s, 3H), 1.59 (dq, \(J = 13.3, 3.3 \) Hz, 1H), 1.50 (t, \(J = 11.0 \) Hz, 1H), 1.34 (dd, \(J = 12.3, 5.8 \) Hz, 1H), 1.30 (s, 3H), 1.12 (qd, \(J = 13.0, 3.5 \) Hz, 1H), 1.06 (tt, \(J = 12.0, 3.0 \) Hz, 1H), 0.91 (d, \(J = 7.0 \) Hz, 3H), 0.76 (d, \(J = 7.0 \) Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 152.1 (br t, \(J = 4.3 \) Hz), 135.5, 121.4, 60.9 (br t, \(J = 5.1 \) Hz), 48.1, 46.3, 40.7, 38.0, 30.8, 26.0, 23.9, 23.8, 21.5, 20.3, 20.1, 15.2.

\[\text{DTCA} \]

\[\text{2.61} \]

Neryl Trichloroacetate (2.61). To a solution of nerol (11.4 mL, 64.8 mmol) in THF (130 mL) was added pyridine (10.5 mL, 77.8 mmol). The reaction mixture was cooled to 0 °C, and
trichloroacetic anhydride (14.2 mL, 77.8 mmol) was added dropwise via syringe. After 5 min, the reaction mixture was allowed to warm to room temperature. After 30 min, the reaction mixture was diluted with hexanes (200 mL), washed with water (4 x 200 mL), saturated NaHCO₃ solution (1 x 200 mL), and brine (1 x 200 mL). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 3% EtOAc/hexanes) to afford neryl trichloroacetate (17.6 g, 91%) as a colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ 5.43 (t, J = 7.5 Hz, 1H), 5.10 (t, J = 7.0 Hz, 1H), 4.83 (d, J = 7.5 Hz, 2H), 2.21 - 2.14 (m, 2H), 2.14 - 2.09 (m, 2H), 1.80 (s, 3H), 1.69 (s, 3H), 1.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.1, 145.8, 132.7, 123.4, 117.1, 90.2, 66.0, 32.4, 26.7, 25.8, 23.8, 17.8; IR (thin film) ν 2969, 2930, 2858, 1764, 1446, 1378, 1231, 960, 827, 682 cm⁻¹; HRMS (ESI) m/z calcld for C₁₂H₁₇Cl₃O₂Na (M + Na)⁺ 321.0192, found 321.0178.

6,7-Epoxyneryl trichloroacetate (2.62). To a solution of neryl trichloroacetate (17.6 g, 58.8 mmol) in CH₂Cl₂ (590 mL) was added NaHCO₃ (10.9 g, 129.5 mmol) in one portion. The reaction mixture was cooled to 0 °C, and m-chloroperoxybenzoic acid (14.5 g, 64.7 mmol) was added portionwise. After 2 h, the reaction was quenched with saturated Na₂S₂O₅ solution (300 mL) to destroy excess m-chloroperoxybenzoic acid. After stirring the reaction mixture for 30 min at room temperature, the aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic extracts were washed with water (1 x 300 mL), saturated NaHCO₃ solution (1 x 300 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 5% EtOAc/hexanes) to afford 6,7-epoxyneryl trichloroacetate
(17.0 g, 92%) as a colorless oil. 1H NMR (CDCl$_3$, 500 MHz) δ 5.48 (t, $J = 7.5$ Hz, 1H), 4.86 (d, $J = 7.5$ Hz, 2H), 2.72 (t, $J = 6.3$ Hz, 1H), 2.38 – 2.26 (m, 2H), 1.83 (s, 3H), 1.70 – 1.62 (m, 2H), 1.32 (s, 3H), 1.28 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 161.9, 144.9, 117.6, 90.0, 65.6, 63.6, 58.5, 29.0, 27.5, 24.9, 23.6, 18.8; IR (thin film) ν 2965, 2928, 2877, 1764, 1448, 1379, 1233, 960, 828, 682 cm$^{-1}$; HRMS (ESI) m / z calcd for $\text{C}_{12}\text{H}_{17}\text{ClO}_3\text{Na}$ (M + Na)$^+$ 337.0141, found 337.0126.

Chlorohydrins 2.63 and 2.64. To a solution of 6,7-epoxyneryl trichloroacetate (2.62) (1.15 g, 3.65 mmol) in toluene (37 mL) was added Cl$_2$PPh$_3$ (1.83 g, 5.48 mmol) in one portion. After 15 min, the reaction mixture was concentrated in vacuo, and the resulting crude residue was purified using flash chromatography (SiO$_2$, 15% EtOAc/hexanes), yielding chlorohydrin 2.63 (0.517 g, 40%) as a colorless oil and chlorohydrin 2.64 (0.510 g, 40%) as a colorless oil.

Chlorohydrin 2.63: 1H NMR (CDCl$_3$, 500 MHz) δ 5.49 (t, $J = 7.5$ Hz, 1H), 4.90 (d, $J = 8.0$ Hz, 2H), 3.45 (dd, $J = 10.8$, 1.8 Hz, 1H), 2.48 – 2.39 (m, 1H), 2.35 – 2.28 (m, 1H), 2.18 (br s, 1H), 1.81 (s, 3H), 1.78 – 1.72 (m, 1H), 1.59 (s, 3H), 1.53 (s, 3H), 1.52 – 1.46 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 162.1, 145.2, 118.1, 90.1, 78.0, 75.9, 67.0, 29.4, 29.2, 28.9, 27.3, 23.5; IR (thin film) ν 3564 (br), 2975, 2936, 2875, 1763, 1447, 1381, 1233, 958 cm$^{-1}$; HRMS (ESI) m / z calcd for $\text{C}_{12}\text{H}_{18}\text{Cl}_4\text{O}_3\text{Na}$ (M + Na)$^+$ 372.9908, found 372.9896.

Chlorohydrin 2.64: 1H NMR (CDCl$_3$, 500 MHz) δ 5.51 (t, $J = 7.3$ Hz, 1H), 4.89 (d, $J = 7.0$ Hz, 2H), 3.76 (dd, $J = 11.5$, 1.5 Hz, 1H), 2.46 – 2.33 (m, 2H), 2.08 (br s, 1H), 2.06 – 1.97 (m, 1H),
1.80 (s, 3H), 1.78 – 1.68 (m, 1H), 1.30 (s, 3H), 1.29 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 162.0, 144.3, 118.6, 90.1, 73.1, 72.8, 65.8, 31.2, 29.9, 26.4, 25.6, 23.5; IR (thin film) ν 3439 (br), 2975, 2937, 2875, 1763, 1445, 1379, 1231, 962 cm$^{-1}$; HRMS (ESI) m / z calcd for C$_{12}$H$_{18}$Cl$_4$O$_3$Na (M + Na)$^+$ 372.9908, found 372.9906.

Allylic alcohol 2.65. Ammonia (1.40 mL, 2M in MeOH, 2.74 mmol) was added to a solution of chlorohydrin 2.64 (0.482 g, 1.37 mmol) in Et$_2$O (4.6 mL). After 1 h, water (10 mL) was added to the reaction mixture. The aqueous layer was extracted with Et$_2$O (3 x 10 mL). The combined organic extracts were washed with 0.1 N citric acid (1 x 10 mL), saturated NaHCO$_3$ solution (1 x 10 mL), and brine (1 x 10 mL). The organic phase was dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 40% EtOAc/hexanes) to afford allylic alcohol 2.65 (0.244 g, 86%) as a white solid (mp 33–35 °C). 1H NMR (CDCl$_3$, 500 MHz) δ 5.51 (t, $J = 7.3$ Hz, 1H), 4.17 (br s, 2H), 3.75 (dd, $J = 11.5$, 2 Hz, 1H), 2.40 – 2.25 (m, 2H), 1.16 (br s, 1H), 2.04 – 1.98 (m, 1H), 1.74 (s, 3H), 1.74 – 1.64 (m, 1H), 1.40 (br s, 1H), 1.30 (s, 3H), 1.29 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 138.2, 126.1, 73.3, 72.9, 59.1, 31.3, 29.5, 26.4, 25.6, 23.3; IR (thin film) ν 3352 (br), 2972, 2934, 2873, 1446, 1380, 1148, 999 cm$^{-1}$; HRMS (ESI) m / z calcd for C$_{10}$H$_{15}$ClO$_2$Na (M + Na)$^+$ 229.0971, found 229.0981.
Enal 2.12. To a solution of allylic alcohol 2.65 (0.212 g, 1.03 mmol) in CH₂Cl₂ (21 mL) was added MnO₂ (2.12 g, 10 mass equivalents) in one portion. The reaction mixture was stirred for 2.5 h, filtered through a plug of SiO₂, rinsed with Et₂O (50 mL), and concentrated in vacuo. The crude residue was purified by flash chromatography (SiO₂, 40% EtOAc/hexanes) to afford enal 2.12 (0.173 g, 82%) as a colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ 9.99 (d, J = 7.5 Hz, 1H), 5.92 (d, J = 8.0 Hz, 1H), 3.75 (dd, J = 11.5, 2 Hz, 1H), 2.91 – 2.80 (m, 1H), 2.80 – 2.73 (m, 1H), 2.20 – 2.11 (m, 1H), 2.12 (br s, 1H), 1.98 (s, 3H), 1.88 – 1.78 (m, 1H), 1.31 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 190.8, 162.2, 129.5, 72.8, 72.4, 31.8, 30.4, 26.3, 26.0, 24.9; IR (thin film) ν 3429 (br), 2978, 2938, 2866, 2762, 1668, 1438, 1377, 1159 cm⁻¹; HRMS (ESI) m/z calcd for C₁₀H₁₇ClO₂Na (M + Na)⁺ 227.0815, found 227.0825.

General Procedure A: Intramolecular Oxa-Michael Reaction

To a 1-dram vial containing the appropriate prolinol catalyst (0.2–0.4 equiv) and additive (0–1 equiv) was added enal 2.12 (1 equiv) in the specified solvent (0.4 M). The reaction mixture was stirred at the specified temperature for the specified time. The reaction mixture was diluted with EtOAc and saturated aqueous NaHCO₃ solution was added. The aqueous layer was extracted with EtOAc (3×). The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was analyzed using ¹H NMR spectroscopy.
Aldehyde 2.66. The title compounds were prepared according to General Procedure A using the various conditions listed in Table 2.1. The following is a representative procedure (Entry 8, Table 2.1). Aldehyde 2.66 was prepared using enal 2.12 (13.9 mg, 0.0679 mmol), prolinol catalyst 2.59 (5.4 mg, 0.0204 mmol), and PhMe (0.17 mL). The crude material was analyzed using 1H NMR spectroscopy. Aldehyde diastereomers trans-2.66 and cis-2.66 were separated for analytical purposes using flash chromatography (SiO$_2$, 100% CH$_2$Cl$_2$).

trans-2.66: 1H NMR (CDCl$_3$, 500 MHz) δ 9.83 (t, J = 3.0 Hz, 1H), 3.74 (dd, J = 11.8, 4.3 Hz, 1H), 2.46 (dd, J = 14.8, 2.8 Hz, 1H), 2.36 (dd, J = 14.8, 2.8 Hz, 1H), 2.18 – 2.01 (m, 2H), 1.78 – 1.72 (m, 2H), 1.38 (s, 3H), 1.36 (s, 3H), 1.29 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 203.0, 76.1, 73.2, 64.5, 56.9, 36.4, 30.3, 27.0, 26.8, 23.0; IR (thin film) ν 2978, 2954, 2875, 2743, 1721, 1456, 1378, 1126, 1018, 982 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{10}$H$_{17}$ClO$_2$NaCH$_3$OH (M + Na + CH$_3$OH)$^+$ 259.1077, found 259.1066.

cis-2.66: 1H NMR (CDCl$_3$, 500 MHz) δ 9.89 (t, J = 2.8 Hz, 1H), 3.89 (dd, J = 8.0, 3.5 Hz, 1H), 2.65 (dd, J = 15.5, 3.0 Hz, 1H), 2.30 (dd, J = 15.3, 2.8 Hz, 1H), 2.25 – 2.18 (m, 1H), 2.07 – 1.98 (m, 2H), 1.60 – 1.52 (m, 1H), 1.35 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 203.2, 75.3, 72.5, 64.0, 54.2, 33.2, 29.44, 29.40, 26.4, 26.2; IR (thin film) ν 2978, 2951, 2858, 2744, 1720, 1450, 1379, 1123, 1107, 1010, 987 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{10}$H$_{17}$ClO$_2$NaCH$_3$OH (M + Na + CH$_3$OH)$^+$ 259.1077, found 259.1067.
(±)-Methyl Ketone 2.67. A 2-dram vial was charged with enal 2.12 (20.3 mg, 0.0992 mmol), prolinol catalyst 2.59 (5.3 mg, 0.0198 mmol), and benzoic acid (2.4 mg, 0.0198 mmol). The vial was sealed with a septum, the headspace was purged with argon, and the reaction mixture was cooled to 0 °C. Methyl vinyl ketone (50 µL, 0.595 mmol) was added via syringe. The solution was allowed to warm to room temperature overnight. After 12 h, the reaction mixture was concentrated in vacuo, and the crude residue was purified using flash chromatography (SiO₂, 20% EtOAc/hexanes) to afford methyl ketone 2.67 (17.0 mg, 67%) as the major component of a mixture of Robinson annulation products. ¹H NMR (CDCl₃, 500 MHz) δ 6.88 (d, J = 5.5 Hz, 1H), 5.92 (d, J = 5.5 Hz, 1H), 3.78 (dd, J = 11.3, 1.3 Hz, 1H), 2.65 – 2.40 (m, 3H), 2.35 – 2.28 (m, 1H), 2.31 (s, 3H), 2.20 – 2.10 (m, 2H), 2.10 – 2.02 (m, 1H), 1.81 – 1.71 (m, 1H), 1.31 (s, 3H), 1.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.4, 148.3, 135.0, 134.5, 120.0, 73.1, 72.9, 35.2, 30.7, 27.4, 26.6, 25.6, 25.1, 20.4; IR (thin film) ν 3434 (br), 3050, 2975, 2933, 2879, 1652, 1573, 1389, 1273 cm⁻¹; HRMS (ESI) m / z calcd for C₁₄H₂₁ClO₂Na (M + Na)⁺ 279.1128, found 229.1137.

(R,E)-5-(3,3-Dimethyloxiran-2-yl)-3-methylpent-2-en-1-ol (2.70). The title compound was prepared according to the literature procedure using a Sharpless dihydroxylation of geranyl

86
acetate. The spectral data for this compound are consistent with those reported in the literature. [α]_D^{23} = +10.2 (c = 1.0, MeOH), lit. [α]_D^{23} = −8.7 (c = 1.0, MeOH) for the (S)-form; ^1H NMR (CDCl₃, 500 MHz) δ 5.45 (t, J = 7.0 Hz, 1 H), 4.15 (d, J = 6.5 Hz, 2H), 2.71 (t, J = 6.3 Hz, 1H), 2.25 – 2.10 (m, 2H), 1.69 (s, 3H), 1.69 – 1.63 (m, 2H), 1.30 (s, 3H), 1.26 (s, 3H); ^13C NMR (125 MHz, CDCl₃) δ 138.8, 124.1, 64.2, 59.4, 58.5, 36.4, 27.3, 25.0, 18.9, 16.4. The enantiomeric excess of (R,E)-5-(3,3-dimethylloxiran-2-yl)-3-methylpent-2-en-1-ol was determined as 88% after formation of the p-nitrobenzoyl ester.

p-Nitrobenzoyl ester 2.141 (not shown). A mixture of p-nitrobenzoic acid (4.8 mg, 0.028 mmol), dicyclohexylcarbodiimide (4.7 mg, 0.028 mmol), and DMAP (0.5 mg, 0.0020 mmol) in CH₂Cl₂ (0.28 mL) was stirred for 15 min at room temperature. 6,7-Epoxygeraniol (4.8 mg, 0.028 mmol) was added as a solution in CH₂Cl₂ (0.2 mL). The reaction was stirred for 15 h, diluted with CH₂Cl₂, filtered through Celite, and concentrated in vacuo. Flash chromatography (SiO₂, 10% EtOAc/hexanes) afforded the title compound as a clear oil (8.4 mg, 93%) in 88% ee, which was determined using chiral HPLC (Chiralpak AS-H column, 5% iPrOH in hexanes, flow rate of 1 mL/min). The spectral data for this compound are consistent with those reported in the literature. [α]_D^{23} = +4.9 (c = 0.46, CHCl₃), lit. [α]_D^{24} = +46 (c = 0.4, CHCl₃) for the (R)-form (91% ee); ^1H NMR (CDCl₃, 500 MHz) δ 8.28 (d, J = 9.0 Hz, 2 H), 8.21 (d, J = 9.0 Hz, 2H), 5.52 (t, J = 7.7 Hz, 1H), 4.90 (d, J = 7.5 Hz, 2H), 2.72 (t, J = 6.3 Hz, 1H), 2.31 – 2.16 (m, 2H), 1.81 (s, 3H), 1.73 – 1.66 (m, 2H), 1.30 (s, 3H), 1.27 (s, 3H); ^13C NMR (125 MHz, CDCl₃) δ 164.8, 150.6, 142.6, 136.0, 130.9, 123.7, 118.4, 64.0, 62.8, 58.5, 36.4, 27.2, 25.0, 18.9, 16.8.
(R,E)-5-(3,3-Dimethyloxiran-2-yl)-3-methylpent-2-en-1-yl 4-acetate (2.71). To a solution of (R,E)-5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-ol (4.74 g, 27.8 mmol) and DMAP (0.0680 g, 0.557 mmol) in CH$_2$Cl$_2$ (56 mL) was added triethylamine (5.82 mL, 41.8 mmol). The reaction mixture was cooled to 0 °C, and acetic anhydride (3.16 mL, 33.4 mmol) was added dropwise via syringe. After 30 min, the reaction mixture was allowed to warm to room temperature. Water (100 mL) and CH$_2$Cl$_2$ (40 mL) were added to the reaction mixture. The phases were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 x 60 mL). The combined organic extracts were washed with 1 N HCl (100 mL), saturated NaHCO$_3$ solution (100 mL), and brine (100 mL). The organic layer was dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 10% EtOAc/hexanes) to afford the title compound (5.57 g, 81%) as a colorless oil. The spectral data for this compound are consistent with those reported in the literature.62 [α]$^D_{21}$ = +2.4 (c = 1.0, EtOH), lit.63 [α]$^D_{20}$ = +2.3 (c = 0.96, EtOH); 1H NMR (CDCl$_3$, 500 MHz) δ 5.37 (t, J = 7.3 Hz, 1H), 4.58 (d, J = 7.0 Hz, 2H), 2.69 (t, J = 6.3 Hz, 1H), 2.25 – 2.10 (m, 2H), 2.04 (s, 3H), 1.72 (s, 3H), 1.69 – 1.62 (m, 2H), 1.30 (s, 3H), 1.25 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 171.2, 141.4, 119.0, 64.0, 61.4, 58.5, 36.3, 27.2, 25.0, 21.2, 18.9, 16.6.
Chlorohydrins 2.72 and 2.73. To a solution of lithium chloride (11.0 g, 260 mmol) in DMF (230 mL) was added a solution of epoxide 2.71 (5.51 g, 26.0 mmol) in DMF (30 mL) via syringe. A solution of PPTS (8.48 g, 33.7 mmol) in DMF (40 mL) was added to the reaction mixture. After 1 h, water (250 mL) was added to the reaction mixture. The reaction mixture was extracted with EtOAc (3 x 200 mL), and the combined organic extracts were washed with saturated NaHCO$_3$ solution (300 mL) and brine (300 mL). The organic phase was dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 15% EtOAc/hexanes) to afford chlorohydrin 2.72 (2.92 g, 45%) and chlorohydrin 2.73 (3.33 g, 52%) as colorless oils.

Chlorohydrin 2.72: $[\alpha]_D^{23} = +24.0$ (c = 1.00, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.38 (td, $J =$ 7.0, 1.0 Hz, 1H), 4.58 (d, $J =$ 7.0 Hz, 2H), 3.47 (d, $J =$ 10.0 Hz, 1H), 2.35 (ddd, $J =$ 14.5, 10.0, 5.0 Hz, 1H), 2.16 – 2.09 (m, 1H), 2.05 (s, 3H), 1.78 – 1.70 (m, 1H), 1.71 (s, 3H), 1.59 (s, 3H), 1.55 (s, 3H), 1.53 – 1.48 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 171.3, 141.8, 119.0, 78.5, 76.3, 61.4, 36.4, 29.5, 29.4, 27.2, 21.2, 16.6; IR (thin film) ν 3471 (br), 2978, 2934, 1738, 1457, 1368, 1235, 1024 cm$^{-1}$; HRMS (Cl) m / z calcd for C$_{12}$H$_{21}$ClO$_3$NH$_4$ (M + NH$_4$)$^+$ 266.1523, found 266.1516.

Chlorohydrin 2.73: $[\alpha]_D^{23} = -40.2$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.39 (t, $J =$ 7.0 Hz, 1H), 4.58 (d, $J =$ 7.0 Hz, 2H), 3.77 (dd, $J =$ 11.5, 1.5 Hz, 1H), 2.38 (ddd, $J =$ 13.8, 9.0, 4.5 Hz, 1H), 2.19 – 2.10 (m, 2H), 2.05 (s, 3H), 2.03 – 1.97 (m, 1H), 1.75 – 1.66 (m, 1H), 1.70 (s, 3H), 1.30 (s, 3H), 1.29 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 171.3, 140.7, 119.6, 73.5, 72.9,
61.4, 37.1, 31.1, 26.5, 25.4, 21.2, 16.6; IR (thin film) ν 3459 (br), 2979, 2937, 1738, 1445, 1368, 1235, 1025, 958 cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{12}\)H\(_{21}\)ClO\(_3\)Na (M + Na)\(^+\) 271.1077, found 271.1066.

 cis- and trans-Tetrahydropyrans 2.74. The following procedure was adapted from Guérinot et al.\(^{24}\) To a solution of chlorohydrin 2.73 (1.01 g, 4.05 mmol) in CH\(_2\)Cl\(_2\) (41 mL) was added FeCl\(_3\)•6H\(_2\)O (0.0547 g, 0.202 mmol) in one portion. After 2.5 h, the reaction mixture was purified directly using flash chromatography (SiO\(_2\), 100% CH\(_2\)Cl\(_2\)) to afford a 1:1.7 mixture of cis- and trans-tetrahydropyrans 2.74 (0.533 g, 70%) as a colorless oil, which was characterized as a mixture. \([\alpha]_D^{22} = -7.7\) (c = 1.0, CHCl\(_3\)); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta\) 5.97 (dd, \(J = 18.0, 11.0\) Hz, 1H), 5.91 (dd, \(J = 18.0, 11.0\) Hz, 1H), 5.05 (d, \(J = 18.0\) Hz, 1H), 5.00 (d, \(J = 11.0\) Hz, 1H), 4.97 (d, \(J = 18.0\) Hz, 1H), 4.96 (d, \(J = 11.0\) Hz, 1H), 3.89 (dd, \(J = 7.0, 3.5\) Hz, 1H), 3.76 (dd, \(J = 12.3, 4.3\) Hz, 1H) 2.24 – 2.12 (m, 2H), 2.10 – 1.87 (m, 4H), 1.78 (ddd, \(J = 14.0, 7.3, 4.0\) Hz, 1H) 1.60 (ap td, \(J = 13.5, 4\) Hz, 1H), 1.33 (s, 3H), 1.32 (s, 3H), 1.29 (s, 3H), 1.28 (s, 3H), 1.27 (s, 3H), 1.15 (s, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 146.9, 145.7, 111.0, 110.8, 76.6, 75.1, 74.1, 73.8, 65.2, 64.7, 34.1, 32.1, 30.2, 30.1, 29.5, 28.6, 27.9, 27.5, 26.6, 21.4; IR (thin film) ν 3083, 2978, 2952, 2877, 1451, 1382, 1367, 1146, 1066, 979, 916 cm\(^{-1}\); HRMS (Cl) \(m/z\) calcd for C\(_{10}\)H\(_{17}\)ClONH\(_4\) (M + NH\(_4\))\(^+\) 206.1312, found 206.1314.
cis- and trans-Aldehydes 2.66. A solution of BH$_3$•DMS (0.19 mL, 2.03 mmol) in THF (3.4 mL) was cooled to 0 °C. Cyclohexene (0.41 mL, 4.05 mmol) was added dropwise via syringe over 2 min. After 20 min, the reaction mixture was allowed to warm to room temperature. After 2 h, the reaction mixture was cooled to 0 °C and a 1.7:1 mixture of cis- and trans-2.74 (0.255 g, 1.35 mmol) was added as a solution in THF (3.4 mL). The transfer was completed with additional portions of THF (2 x 0.5 mL). The reaction mixture was allowed to stir at 0 °C for one hour before allowing to warm to room temperature. After 2 h, the reaction was quenched with water (7 mL) and NaBO$_2$•4H$_2$O (1.04 g, 6.75 mmol) was added in one portion. The reaction mixture was allowed to stir vigorously for 3 h. The reaction mixture was diluted with water (10 mL) and extracted with Et$_2$O (3 x 20 mL). The combined organic extracts were washed with brine (1 x 30 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 20% EtOAc/hexanes) to afford a mixture of cis- and trans-THPs contaminated with cyclohexanol. 1H NMR and 13C NMR spectra were complicated by the mixture of tetrahydropyran diastereomers and cyclohexanol contaminant. Sodium bicarbonate (0.776 g, 9.24 mmol) was added to a solution of DMP (1.57 g, 3.70 mmol) in CH$_2$Cl$_2$ (18.5 mL) in one portion. A solution of cis- and trans-THPs contaminated with cyclohexanol (0.382 g, 1.85 mmol) in CH$_2$Cl$_2$ (2 mL) was added dropwise over 2 min. The transfer was completed with additional portions of CH$_2$Cl$_2$ (2 x 1 mL). After 30 min, the reaction was quenched with a 1:1 mixture of saturated NaHCO$_3$ solution and saturated Na$_2$S$_2$O$_3$ solution (20 ml), and allowed to stir until bubbling ceased (20 min). The phases were separated, and the
aqueous phase was extracted with CH$_2$Cl$_2$ (3 \times 15$ mL). The combined organic extracts were washed with 1 M NaOH (30 mL) and water (30 mL), dried over MgSO$_4$, filtered, and concentrated \textit{in vacuo}. The crude residue was purified using flash chromatography (SiO$_2$, 100% CH$_2$Cl$_2$) to afford a 1:4:1 mixture of cis- and trans-aldehydes 2.66 (0.157 g, 57% over two steps) as a colorless oil. The diastereomers were separated for analytical purposes using flash chromatography (SiO$_2$, 100% CH$_2$Cl$_2$).

\textit{trans-2.66}: $[\alpha]_D^{22} = -13.6$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 9.82 (t, J = 3.0 Hz, 1H), 3.74 (dd, J = 11.8, 4.3 Hz, 1H), 2.46 (dd, J = 14.8, 2.8 Hz, 1H), 2.36 (dd, J = 14.8, 2.8 Hz, 1H), 2.18 – 2.01 (m, 2H), 1.78 – 1.72 (m, 2H), 1.38 (s, 3H), 1.36 (s, 3H), 1.29 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 203.0, 76.1, 73.2, 64.5, 56.9, 36.4, 30.3, 27.0, 26.8, 23.0; IR (thin film) ν 2978, 2954, 2859, 2743, 1721, 1456, 1378, 1126, 1018, 982 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{10}$H$_{17}$ClO$_2$NaCH$_3$OH (M + Na + CH$_3$OH)$^+$ 259.1077, found 259.1068.

\textit{cis-2.66}: $[\alpha]_D^{22} = +16.3$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 9.89 (t, J = 2.8 Hz, 1H), 3.89 (dd, J = 8.0, 3.5 Hz, 1H), 2.65 (dd, J = 15.5, 3.0 Hz, 1H), 2.30 (dd, J = 15.3, 2.8 Hz, 1H), 2.25 – 2.18 (m, 1H), 2.07 – 1.98 (m, 2H), 1.60 – 1.52 (m, 1H), 1.35 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 203.2, 75.3, 72.5, 64.0, 54.2, 33.1, 29.43, 29.40, 26.4, 26.2; IR (thin film) ν 2979, 2952, 2864, 2744, 1720, 1450, 1380, 1123, 1107, 1010, 987 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{10}$H$_{17}$ClO$_2$NaCH$_3$OH (M + Na + CH$_3$OH)$^+$ 259.1077, found 259.1076.

\begin{center}
\includegraphics[width=0.1\textwidth]{methyl_ketone_2.67}
\end{center}

Methyl Ketone 2.67. A 2-dram vial was charged with a mixture of \textit{cis-} and \textit{trans-}aldehydes 2.66 (0.101 g, 0.492 mmol), prolinol catalyst 2.5959 (0.0202 g, 0.0985 mmol), and 4-EtO$_2$C-catechol
(0.0179 g, 0.0985 mmol). The vial was sealed with a septum, the headspace was purged with argon, and the reaction mixture was cooled to 0 °C. Methyl vinyl ketone (80 µL, 0.985 mmol) was added via syringe. The reaction mixture was allowed to stir at 0 °C until the solution became homogenous (30 min) before being placed in a 7 °C refrigerator for 9 days. The reaction mixture was purified directly using flash chromatography (SiO₂, 15:42.5:42.5 EtOAc/CH₂Cl₂/hexanes) to afford methyl ketone 2.67 (0.0650 mg, 51%) as the major component of a mixture of two Robinson annulation products. [α]D^23 = −13.8 (c = 1.0, CHCl₃) \(^1 \)H NMR (CDCl₃, 500 MHz) \(\delta \)

6.88 (d, \(J = 5.5 \) Hz, 1H), 5.92 (d, \(J = 5.5 \) Hz, 1H), 3.78 (dd, \(J = 11.3, 1.3 \) Hz, 1H), 2.65 – 2.40 (m, 3H), 2.35 – 2.28 (m, 1H), 2.31 (s, 3H), 2.20 – 2.10 (m, 2H), 2.10 – 2.02 (m, 1H), 1.81 – 1.71 (m, 1H), 1.31 (s, 3H), 1.30 (s, 3H); \(^{13} \)C NMR (125 MHz, CDCl₃) \(\delta \)

198.4, 148.3, 135.0, 134.5, 119.9, 73.2, 72.9, 35.2, 30.7, 27.4, 26.6, 25.6, 25.1, 20.4; IR (thin film) ν 3433 (br), 3049, 2975, 2932, 2879, 1653, 1573, 1388, 1272 cm⁻¹; HRMS (Cl) \(m/z \) calcd for C₁₄H₂₁ClO₂H (M + H)^+ 257.1308, found 257.1305.

\((S,E)-5-(3,3\text{-Dimethyloxiran-2-yl})\text{-3-methylpent-2-en-1-ol (2.70).} \) The following procedure was adopted from Wang et al.^40 To a mixture of geraniol (1.1 mL, 6.48 mmol) and tetrabutylammonium hydrogen sulfate (0.088 g, 0.259 mmol) in DME (65 mL) and aqueous K₂CO₃/AcOH (43 mL) (prepared by adding 0.5 mL of glacial AcOH to 100 mL of 0.1 M aqueous K₂CO₃) was added Shi catalyst 2.80^64 (0.335 g, 1.30 mmol). The reaction mixture was cooled to 0 °C. A solution of Oxone® (1.99 g, 3.24 mmol) in aqueous Na₂(ETDA) (4 x 10⁻⁴ M) (12 mL) and a solution of K₂CO₃ (1.88 g, 13.61 mmol) in water (12 mL) were added at the same
rate using a syringe pump over 1.5 h. After the addition was complete, the reaction was quenched with CH$_2$Cl$_2$ (100 mL), and the aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 75 mL). The combined organic extracts were washed with brine (100 mL), dried over MgSO$_4$, filtered, and concentrated \textit{in vacuo}. The crude residue was purified using flash chromatography (SiO$_2$, 30\% EtOAc/hexanes) to afford the title compound as a colorless oil (0.555 g, 50\%). The spectral data for this compound are consistent with those reported in the literature.30 [\(\alpha\)]$_D^{24} = -9.6$ (c = 1.38, CHCl$_3$), lit.40 [\(\alpha\)]$_D^{23} = +9.7$ (c = 1.1, CHCl$_3$) for the \((R)\)-form (77\% ee); 1H NMR (CDCl$_3$, 600 MHz) \(\delta\) 5.46 (t, \(J = 6.3\) Hz, 1 H), 4.17 (t, \(J = 6.0\) Hz, 2H), 2.71 (t, \(J = 6.0\) Hz, 1H), 2.25 – 2.11 (m, 2H), 1.70 (s, 3H), 1.69 – 1.64 (m, 2H), 1.31 (s, 3H), 1.27 (s, 3H), 1.19 (t, \(J = 5.4\) Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) \(\delta\) 138.8, 124.1, 64.2, 59.4, 58.5, 36.4, 27.3, 25.0, 18.9, 16.4. The enantiomeric excess of (\(S,E\))-5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-ol was determined as 78\% after formation of the \(p\)-nitrobenzoyl ester.

\textit{p-Nitrobenzoyl ester 2.141 (not shown).} A mixture of \(p\)-nitrobenzoic acid (5.1 mg, 0.031 mmol), dicyclohexylcarbodiimide (6.6 mg, 0.32 mmol), and DMAP (0.4 mg, 0.0031 mmol) in CH$_2$Cl$_2$ (0.3 mL) was stirred for 15 min at room temperature. 6,7-Epoxygeraniol (5.2 mg, 0.031 mmol), prepared via Shi epoxidation, was added as a solution in CH$_2$Cl$_2$ (0.2 mL). The reaction was stirred for 15 h, diluted with CH$_2$Cl$_2$, filtered through Celite, and concentrated \textit{in vacuo}. Flash chromatography (SiO$_2$, 10\% EtOAc/hexanes) afforded the title compound as a clear oil (9.0 mg, 93\%) in 78\% ee, which was determined using chiral HPLC (Chiralpak AS-H column, 5\% iPrOH in hexanes, flow rate of 1 mL/min). The spectral data for this compound are
consistent with those reported in the literature.60,61 \([\alpha]_{D}^{24} = -4.0 \, (c = 0.78, \text{CHCl}_3), \text{lit.}61 [\alpha]_{D}^{24} = +46 \, (c = 0.4, \text{CHCl}_3) \) for the (R)-form (91% ee); \(^1H\) NMR (CDCl\(_3\), 600 MHz) \(\delta\) 8.28 (d, \(J = 9.0\) Hz, 2H), 8.21 (d, \(J = 9.2\) Hz, 1H), 5.52 (t, \(J = 7.2\) Hz, 1H), 4.90 (d, \(J = 7.2\) Hz, 2H), 2.72 (t, 6.3 Hz, 1H), 2.31 – 2.16 (m, 2H), 1.97 (s, 3H), 1.73 – 1.66 (m, 2H), 1.30 (s, 3H), 1.27 (s, 3H); \(^{13}C\) NMR (125 MHz, CDCl\(_3\)) \(\delta\) 164.8, 150.6, 142.6, 136.0, 130.9, 123.7, 118.4, 64.0, 62.8, 58.5, 36.4, 27.2, 25.0, 18.9, 16.8.

\((R,E)\)-6,7-Dihydroxy-3,7-dimethyloct-2-enyl acetate (2.112) and \((S,E)\)-5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-ol (2.70) were prepared according to the literature procedure using a Sharpless dihydroxylation of geranyl acetate.30 The spectral data for these compounds are consistent with those reported in the literature.30

\((R,E)\)-6,7-Dihydroxy-3,7-dimethyloct-2-enyl acetate (2.112). \([\alpha]_{D}^{25} = +29.0 \, (c = 1.0, \text{CHCl}_3), \text{lit.}30 [\alpha]_{D}^{23} = +26.8 \, (c = 1.0, \text{CHCl}_3); \(^1H\) NMR (CDCl\(_3\), 500 MHz) \(\delta\) 5.38 (t, \(J = 7.0\) Hz, 1H), 4.58 (d, \(J = 7.0\) Hz, 2H), 3.33 (ddd, \(J = 10.5, 4.0, 1.5\) Hz, 1H), 2.37 – 2.27 (m, 2H), 2.15 – 2.06 (m, 1H), 2.04 (s, 3H), 1.71 (s, 3H), 1.64 – 1.56 (m, 1H), 1.49 – 1.39 (m, 1H), 1.20 (s, 3H), 1.15 (s, 3H); \(^{13}C\) NMR (125 MHz, CDCl\(_3\)) \(\delta\) 171.4, 142.2, 118.9, 78.2, 73.2, 61.5, 36.7, 29.6, 26.6, 23.4, 21.2, 16.6.
(S,E)-5-(3,3-Dimethyloxiran-2-yl)-3-methylpent-2-en-1-ol (2.70). $[\alpha]_D^{25} = -8.2$ (c = 1.0, MeOH), lit. $[\alpha]_D^{23} = -8.7$ (c = 1.0, MeOH); 1H NMR (CDCl$_3$, 500 MHz) δ 5.45 (t, $J = 7.0$ Hz, 1 H), 4.16 (d, $J = 6.0$ Hz, 2H), 2.71 (t, $J = 6.3$ Hz, 1H), 2.25 – 2.11 (m, 2H), 1.70 (s, 3H), 1.69 – 1.64 (m, 2H), 1.30 (s, 3H), 1.26 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 138.9, 124.1, 64.2, 59.4, 58.5, 36.4, 27.3, 25.0, 18.9, 16.4. The enantiomeric excess of (S,E)-5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-ol was determined as 93% after formation of the p-nitrobenzoyl ester.

p-Nitrobenzoyl ester 2.141 (not shown). A mixture of p-nitrobenzoic acid (11.7 mg, 0.070 mmol), dicyclohexylcarbodiimide (14.5 mg, 0.070 mmol), and DMAP (0.9 mg, 0.007 mmol) in CH$_2$Cl$_2$ (0.7 mL) was stirred for 15 min at room temperature. 6,7-Epoxygeraniol (11.4 mg, 0.070 mmol), prepared via Sharpless asymmetric dihydroxylation, was added as a solution in CH$_2$Cl$_2$ (0.2 mL). The reaction was stirred for 15 h, diluted with CH$_2$Cl$_2$, filtered through Celite, and concentrated in vacuo. Flash chromatography (SiO$_2$, 10% EtOAc/hexanes) afforded the title compound as a clear oil (21.1 mg, 94%) in 93% ee, which was determined using chiral HPLC (Chiralpak AS-H column, 5% iPrOH in hexanes, flow rate of 1 mL/min). The spectral data for this compound are consistent with those reported in the literature.60,61 $[\alpha]_D^{25} = -3.9$ (c = 1.48, CHCl$_3$), lit.61 $[\alpha]_D^{24} = +46$ (c = 0.4, CHCl$_3$) for the (R)-form (91% ee); 1H NMR (CDCl$_3$, 500
MHz) δ 8.28 (d, $J = 8.5$ Hz, 2 H), 8.21 (d, $J = 8.5$ Hz, 2 H), 5.52 (t, $J = 7.0$ Hz, 1 H), 4.90 (d, $J = 7.0$ Hz, 2 H), 2.72 (t, $J = 6.0$ Hz, 1 H), 2.31 – 2.16 (m, 2 H), 1.81 (s, 3 H), 1.73 – 1.66 (m, 2 H), 1.30 (s, 3 H), 1.27 (s, 3 H); 13C NMR (125 MHz, CDCl$_3$) δ 164.8, 150.6, 142.6, 136.0, 130.9, 123.7, 118.4, 64.0, 62.8, 58.5, 36.4, 27.2, 25.0, 18.9, 16.8.

Chlorohydrins 2.81 and 2.82. To a solution of Li$_2$CuCl$_4$ (266 mL, 0.5 M in THF, 133.0 mmol) was added TBSCl (4.01 g, 26.6 mmol) in THF (10 mL). The mixture was cooled to 0 °C and the epoxide (4.53 g, 26.6 mmol) was added in THF (10 mL) dropwise via syringe. After addition of the epoxide, the reaction mixture was allowed to warm to room temperature and stirred for 30 min, after which saturated aqueous NaHCO$_3$ (200 mL) was added slowly. The reaction mixture was allowed to stir until bubbling ceased. The reaction mixture was diluted with water (100 mL), and the aqueous layer was extracted with Et$_2$O (3 × 200 mL). The combined organic layers were washed with water (300 mL), washed with brine (300 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified by flash chromatography (SiO$_2$, 40% EtOAc/hexanes), yielding chlorohydrin 2.82 (3.88 g, 71%) as a colorless oil and chlorohydrin 2.81 (0.897 g, 16%) as a colorless oil.

Chlorohydrin 2.81: $[\alpha]_D^{25} = +43.3$ (c = 1.59, CHCl$_3$); 1H NMR (CDCl$_3$, 600 MHz) δ 5.48 (t, $J = 6.9$ Hz, 1 H), 4.17 (br s, 2 H), 3.80 (dd, $J = 11.4$, 1.2 Hz, 1 H), 2.38 (ddd, $J = 13.8$, 8.9, 4.5 Hz, 1 H), 2.18 – 2.11 (m, 1 H), 2.09 (s, 1 H), 2.03 – 1.96 (m, 1 H), 1.76 – 1.67 (m, 1 H), 1.69 (s, 3 H), 1.31 (s, 3 H), 1.30 (s, 3 H), 1.15 (br s, 1 H); 13C NMR (125 MHz, CDCl$_3$) δ 138.2, 124.7, 73.6, 72.9, 59.5, 37.2, 31.2, 26.5, 25.4, 16.4; IR (thin film) ν 3347 (br), 2977, 2932, 2879, 1669, 1443,
1381, 1157, 998 cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{10}$H$_{19}$ClO$_2$Na (M + Na)$^+$ 229.0971, found 229.0966.

Chlorohydrin 2.82: [α]$_D^{25}$ = −24.5 (c = 1.00, CHCl$_3$); 1H NMR (CDCl$_3$, 600 MHz) δ 5.47 (t, J = 6.9 Hz, 1H), 4.17 (br s, 2H), 3.49 (ddd, J = 10.3, 5.6, 1.6 Hz, 1H), 2.35 (ddd, J = 14.6, 10.0, 5.0 Hz, 1H), 2.15 – 2.10 (m, 1H), 2.09 (d, J = 5.8 Hz, 1H), 1.78 – 1.72 (m, 1H), 1.70 (s, 3H), 1.60 (s, 3H), 1.55 (s, 3H), 1.53 – 1.46 (m, 1H), 1.16 (br s, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 139.3, 124.0, 78.5, 76.3, 59.5, 36.4, 29.6, 29.4, 27.3, 27.2, 16.4; IR (thin film) ν 3351 (br), 2976, 2931, 2874, 1670, 1456, 1385, 1117, 1081, 999 cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{10}$H$_{19}$ClO$_2$Na (M + Na)$^+$ 229.0974, found 229.0974.

Aldehyde 2.83. To a solution of chlorohydrin 2.82 (0.301 g, 1.46 mmol) in CH$_2$Cl$_2$ (29.2 mL) was added MnO$_2$ (3.01 g, 10 mass equivalents). The reaction mixture was stirred for 2.5 h, filtered through a plug of SiO$_2$, rinsed with Et$_2$O (120 mL), and concentrated in vacuo. The crude residue was purified by flash chromatography (SiO$_2$, 15% Et$_2$O/pentane) to afford a 6:1 mixture of trans- and cis-tetrahydropyrans (0.147 g, 49%) as a colorless oil. The isolated yield of the mixture of trans- and cis-tetrahydropyrans ranges from 48–58%.

trans-2.83: [α]$_D^{24}$ = +11.6 (c = 1.55, CHCl$_3$); 1H NMR (CDCl$_3$, 600 MHz) δ 9.82 (t, J = 2.7 Hz, 1H), 3.98 (t, J = 7.2 Hz, 1H), 2.62 (dd, J = 15.0, 2.4 Hz, 1H), 2.56 (dd, J = 15.0, 3.0 Hz, 1H), 2.08 – 1.98 (m, 2H), 1.95 – 1.83 (m, 2H), 1.55 (s, 3H), 1.53 (s, 3H), 1.37 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 202.3, 86.4, 82.1, 70.9, 54.1, 37.8, 29.7, 28.2, 27.8, 27.5; IR (thin film) ν 2976, 2933, 2873, 2737, 1722, 1459, 1378, 1120, 1067, 1031 cm$^{-1}$; HRMS (Cl) m/z calcld for
Keto-aldehydes 2.85 and 2.87. A 2-dram vial was charged with a mixture of cis- and trans-aldehydes 2.83 (0.671 g, 3.28 mmol), prolinol catalyst 2.59 (0.175 g, 0.656 mmol), and 4-EtO₂C-catechol (0.120 g, 0.656 mmol). The vial was sealed with a septum, the headspace was purged with argon, and the reaction mixture was cooled to 0 °C. Methyl vinyl ketone (0.53 mL, 6.56 mmol) was added via syringe. The reaction mixture was allowed to stir at 0 °C until the solution became homogenous (30 min) before being placed in a 7 °C refrigerator for 9 days. The reaction mixture was purified directly using flash chromatography (SiO₂, 12.5% EtOAc/hexanes) to afford keto-aldehyde 2.85 (0.279 g, 31%) as a colorless oil and keto-aldehyde 2.87 (0.431 g,
48%) containing ca. 20% other diastereomers. The isolated yield of keto-aldehyde 2.85 ranges from 23–25% when the material is derived from epoxide 2.70 that is prepared via Shi epoxidation (78% ee). The isolated yield of keto-aldehyde 2.85 ranges from 25–31% when the material is derived from epoxide 2.70 that is prepared via Sharpless asymmetric dihydroxylation (93% ee).

Keto-aldehyde 2.85: $[\alpha]_D^{24} = -87.8$ (c = 1.25, CHCl$_3$); 1H NMR (CDCl$_3$, 600 MHz) δ 9.88 (d, $J = 1.2$ Hz, 1H), 3.98 (t, $J = 6.9$ Hz, 1H), 2.57 (ddd, $J = 18.2, 8.4, 5.4$ Hz, 1H), 2.51 (dt, $J = 11.1, 2.2$ Hz, 1H), 2.38 (dt, $J = 18.2, 7.6$ Hz, 1H), 2.12 (s, 3H), 2.10 – 2.00 (m, 3H), 1.93 – 1.85 (m, 1H), 1.82 – 1.75 (m, 1H), 1.68 – 1.60 (m, 1H), 1.57 (s, 3H), 1.52 (s, 3H), 1.17 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 208.2, 205.7, 85.7, 85.4, 71.5, 60.3, 41.7, 37.0, 30.1, 29.8, 28.8, 27.2, 23.2, 19.4; IR (thin film) ν 2975, 2933, 2870, 2732, 1717, 1455, 1369, 1165, 1119, 1091, 1072, 1030 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{14}$H$_{23}$ClO$_3$Na (M + Na)$^+$ 297.1234, found 297.1235. 1H-NOESY-2D (500 MHz, CDCl$_3$) spectra were obtained for keto-aldehyde 2.85 and selected NOE interactions are shown.

Keto-aldehyde 2.87: $[\alpha]_D^{24} = -37.8$ (c = 1.02, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 9.71 (d, $J = 3.0$ Hz, 1H), 3.84 (ap t, $J = 7.3$ Hz, 1H), 2.59 – 2.36 (m, 3H), 2.12 (s, 3H), 2.06 – 1.73 (m, 6H), 1.54 (s, 3H), 1.51 (s, 3H), 1.26 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 208.2, 204.6, 86.7, 84.4, 70.6, 60.3, 41.6, 35.8, 30.1, 29.7, 28.4, 27.6, 25.6, 18.9; IR (thin film) ν 2976, 2934, 2872, 2731, 1717, 1457, 1369, 1162, 1121, 1068, 1028 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{14}$H$_{23}$ClO$_3$Na (M + Na)$^+$ 297.1234, found 297.1230. 1H-NOESY-2D (500 MHz, CDCl$_3$) spectra were obtained for keto-aldehyde 2.87 and selected NOE interactions are shown.
Enone 2.11. A solution of keto-aldehyde 2.85 (0.279 g, 1.02 mmol) and catalyst 2.8644 (0.0818 g, 0.305 mmol) in hexanes (10.2 mL, previously sparged with argon gas for 20 min) was stirred at room temperature for 21 h. The reaction mixture was concentrated in vacuo, and the resulting crude residue was purified using flash chromatography (SiO\textsubscript{2}, 10 \rightarrow 15% EtOAc/hexanes) to afford the title compound (0.195 g, 75\%) as a colorless oil. [α]\textsubscript{D}24 = −55.1 (c = 0.58, CHCl\textsubscript{3}); 1H NMR (CDCl\textsubscript{3}, 500 MHz) δ 7.17 (d, J = 10.5 Hz, 1H), 6.07 (dd, J = 10.3, 2.2 Hz, 1H), 3.99 (t, J = 7.0 Hz, 1H), 2.64 (d, J = 11.5 Hz, 1H), 2.52 (dt, J = 16.5, 3.5 Hz, 1H), 2.37 (td, J = 15.5, 5.0 Hz, 1H), 2.12 – 1.95 (m, 3H), 1.93 – 1.86 (m, 1H), 1.80 – 1.68 (m, 2H), 1.56 (s, 3H), 1.52 (s, 3H), 1.14 (s, 3H); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 199.9, 153.0, 130.2, 85.2, 85.0, 71.6, 46.9, 37.6, 35.7, 29.9, 28.6, 27.8, 25.5, 22.4; IR (thin film) \nu 2973, 2934, 2872, 1681, 1454, 1382, 1089 cm-1; HRMS (Cl) m / z calcd for C\textsubscript{14}H\textsubscript{21}ClO\textsubscript{2}NH\textsubscript{4} (M + NH\textsubscript{4})+ 274.1574, found 274.1581.

Ketone 2.95. To a solution of vinyl iodide 2.39 (0.233 g, 1.01 mmol) in Et\textsubscript{2}O (1.7 mL, previously sparged with argon gas for 20 min) at −78 °C was added tert-butyllithium (1.35 mL, 1.5 M in pentane, 2.02 mmol) dropwise via syringe. After 20 min, lithium 2-thienylcyanocuprate solution (4.04 mL, 0.25 M in THF, 1.01 mmol) was added dropwise via syringe. The reaction
mixture was allowed to stir for 1 h at –78 °C. A solution of enone 2.11 (0.172 g, 0.670 mmol) in Et₂O (1 mL) was added dropwise via syringe. The transfer was completed with an additional portion of Et₂O (0.5 mL). Immediately following this addition, BF₃•OEt₂ (0.11 mL, 0.871 mmol) was added dropwise via syringe. After allowing the reaction mixture to stir for 3 h at –78 °C, the reaction was quenched with 9:1 saturated NH₄Cl solution/NH₄OH (15 mL). After warming to room temperature, the solution turned a deep blue color. The aqueous layer was extracted with Et₂O (15 mL). The combined organic extracts were washed with 9:1 saturated NH₄Cl solution/NH₄OH (2 x 10 mL), washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10% EtOAc/hexanes) to afford the title compound (200 mg, 83%) as a white solid (mp 62–64 °C).

[α]D²⁴ = –6.7 (c = 0.56, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 5.37 (d, J = 9.6 Hz, 1H), 3.91 (dd, J = 8.4, 5.4 Hz, 1H), 3.60 – 3.50 (m, 2H), 2.80 (qd, J = 9.6, 4.8 Hz, 1H), 2.57 (dt, J = 14.7, 7.8, 1H), 2.50 – 2.27 (m, 4H), 2.17 (dd, J = 14.7, 10.5 Hz, 1H), 2.09 – 1.98 (m, 2H), 1.97 – 1.89 (m, 1H), 1.84 (ddd, J = 11.4, 8.7, 3.6 Hz, 1H), 1.75 (quin, J = 10.0 Hz, 1H), 1.71 – 1.64 (m, 1H), 1.68 (s, 3H), 1.64 – 1.55 (m, 1H), 1.54 (s, 3H), 1.51 (s, 3H), 1.08 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.5, 133.8, 127.4, 86.3, 84.5, 72.1, 50.7, 47.6, 42.5, 40.3, 38.4, 36.8, 35.2, 30.0, 28.3, 27.3, 26.8, 23.0, 21.1; IR (thin film) ν 2968, 2932, 2873, 1716, 1456, 1375, 1076, 1028 cm⁻¹; HRMS (Cl) m / z calcd for C₁₉H₂₉ClO₂ (M – Cl)⁺ 324.1856, found 324.1861. ¹H-NOESY-2D (500 MHz, CDCl₃) spectra were obtained for ketone 2.95 and selected NOE interactions are shown.
cis- and trans-Decalones 2.7. To a solution of alkyl chloride 2.95 (0.205 g, 0.566 mmol) in tert-butyl alcohol (2.8 mL) at 30 °C was added potassium tert-butoxide (0.68 mL, 1 M in THF, 0.680 mmol) dropwise via syringe. After stirring for 8 h at 30 °C, the reaction was quenched with saturated NH₄Cl solution (15 mL). The aqueous layer was extracted with pentane (3 x 15 mL), and the combined organic extracts were washed with water (3 x 10 mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 5% EtOAc/hexanes) to afford a 1.3:1 mixture of cis- and trans-decalones (107.5 mg, 58%) as a colorless oil, which was characterized as a mixture.

\[\alpha_d^{24} = -74.4 \text{ (c = 0.64, CHCl}_3) \]; \(^1\)H NMR (CDCl₃, 500 MHz) \(\delta 6.21 \text{ (s, 1H), 5.35 \text{ (s, 1H), 4.04 (dd, J = 9.0, 4.0 Hz, 1H), 3.95 (dd, J = 8.0, 6.0 Hz, 1H), 2.81 (br s, 1H), 2.72 – 2.67 (m, 1H), 2.49 – 2.33 (m, 3 H), 2.28 – 2.14 (m, 4H), 2.13 – 1.66 (m, 20H), 1.64 (s, 3H), 1.58 (s, 3H), 1.55 (s, 3H), 1.54 (s, 3H), 1.53 (s, 3H), 1.52 (s, 3H), 1.57 – 1.38 (m, 1H), 1.20 (s, 3H), 1.09 (s, 3H);} \)

\(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta 215.0, 212.9, 133.6, 133.5, 127.5, 125.1, 87.1, 86.8, 84.7, 84.6, 72.1, 72.0, 51.2, 50.6, 49.7, 45.6, 44.4, 40.9, 38.6, 38.5, 36.3, 36.2, 30.1, 29.8, 29.5, 28.4, 27.6, 27.2, 27.1, 26.1, 24.0, 23.9, 23.8, 22.5, 22.2, 21.9, 18.9; IR (thin film) v 2966, 2928, 2875, 1713, 1454, 1376, 1139, 1083, 1030 cm\(^{-1}\); HRMS (ESI) m / z calcd for C\(_{19}\)H\(_{29}\)Cl\(_2\)O\(_2\)Na (M + Na\(^{+}\)) 347.1754, found 347.1749.
Decalins 2.102 and 2.103. Methylmagnesium bromide (0.24 mL, 2.8 M in Et₂O, 0.660 mmol) was added dropwise to a solution of a mixture of cis- and trans-decalones (42.9 mg, 0.132 mmol) in THF (1.3 mL) cooled to 0 °C. The reaction mixture was allowed to warm to room temperature for 30 min, and the reaction was quenched with saturated aqueous NH₄Cl solution (4 mL) at 0 °C. The aqueous layer was extracted with Et₂O (3 x 4 mL). The combined organic extracts were washed with brine (6 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10% EtOAc/hexanes), yielding trans-decalin 2.103 (18.2 mg, 40%) as a colorless oil and cis-decalin 2.102 (19.9 mg, 44%) as a white solid (mp 112–114 °C).

Trans-Decalin 2.103: [α]D²⁴ = +25.9 (c = 0.56, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 6.24 (br s, 1H), 4.04 (dd, J = 9.0, 4.0 Hz, 1H), 2.21 – 2.15 (m, 1H, 2.05 – 1.88 (m, 6H), 1.62 (s, 3H), 1.54 – 1.29 (m, 1H), 1.25 (s, 3H), 1.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 130.6, 127.7, 87.0, 84.9, 72.4, 72.2, 48.9, 46.1, 37.9, 36.8, 35.3, 31.0, 30.3, 28.0, 26.9, 26.7, 26.5, 23.7, 19.8, 18.7; IR (thin film) ν 3361 (br), 2965, 2935, 2892, 2873, 1459, 1376, 1119, 1031 cm⁻¹; HRMS (ESI) m/z calcld for C₂₀H₃₃ClO₂Na (M + Na)⁺ 363.2067, found 363.2060. X-ray quality crystals (colorless) of cis-decalin 2.102 were grown by slow evaporation from pentane (see Appendix B).

cis-Decalin 2.102: [α]D²⁴ = +68.3 (c = 0.75, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 5.69, (d, J = 4.5 Hz, 1 H), 4.00 (dd, J = 8.8, 4.4 Hz, 1H), 2.25 – 2.15 (m, 1H), 2.06 – 1.88 (m, 6H), 1.68 – 1.50 (m, 8H), 1.62 (s, 3H), 1.51 (s, 3H), 1.43 (s, 3H), 1.31 (s, 3H), 1.25 – 1.13 (m, 1H), 1.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 130.6, 127.7, 87.0, 84.9, 72.4, 72.2, 48.9, 46.1, 37.9, 36.8, 35.3, 31.0, 30.3, 28.0, 26.9, 26.7, 26.5, 23.7, 19.8, 18.7; IR (thin film) ν 3361 (br), 2965, 2935, 2892, 2873, 1459, 1376, 1119, 1031 cm⁻¹; HRMS (ESI) m/z calcld for C₂₀H₃₃ClO₂Na (M + Na)⁺ 363.2067, found 363.2060. X-ray quality crystals (colorless) of cis-decalin 2.102 were grown by slow evaporation from pentane (see Appendix B).
(s, 3H), 1.50 (s, 3H), 1.22 (s, 3H), 1.11 (s, 3H), 1.75 – 1.08 (m, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 132.1, 126.3, 87.9, 84.6, 72.3, 70.7, 52.2, 47.6, 40.5, 38.5, 38.4, 30.8, 30.2, 28.7, 27.1, 26.0, 25.5, 23.9, 22.9, 18.7; IR (thin film) ν 3454 (br), 2965, 2933, 2871, 1458, 1376, 1120, 1081, 1032, 909 cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{20}$H$_{33}$ClO$_2$Na (M + Na)$^+$ 363.2067, found 363.2058.

Epoxide 2.101. To a solution of decalin 2.103 (30.0 mg, 0.0880 mmol) in acetone (4.4 mL) was added saturated aqueous NaHCO$_3$ (2.9 mL). The resulting mixture was cooled to 0 °C and a solution of Oxone® (59.5 mg, 0.0968 mmol) in H$_2$O (0.60 mL) was added dropwise over 5 minutes. The reaction mixture was stirred vigorously for 30 min at 0 °C, diluted with H$_2$O (10 mL) and extracted with EtOAc (3 x 15 mL). The combined organic extracts were diluted with hexanes until cloudy, dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 30% EtOAc/hexanes) to afford epoxide 2.101 (26.9 mg, 86%) as a glassy oil. [α]$_D^{24}$ = −7.0 (c = 0.3, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 4.11 (s, 1H), 3.98 (dd, J = 9.0, 4.0 Hz, 1H), 2.10 – 1.98 (m, 2H), 1.94 – 1.88 (m, 2H), 1.72 – 1.59 (m, 5H), 1.58 – 1.40 (m, 4H), 1.48 (s, 6H), 1.27 (s, 3H), 1.22 – 1.13 (m, 1H), 1.20 (s, 3H), 1.17 (s, 3 H), 1.07 (br s, 1H), 0.95 (t, J = 11.5 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 87.9, 84.5, 72.2, 70.5, 61.7, 58.6, 50.8, 47.3, 40.3, 39.0, 38.3, 30.8, 29.9, 28.7, 28.0, 26.1, 26.0, 23.6, 19.4, 18.8; IR (thin film) ν 3471 (br), 2968, 2933, 2867, 1457, 1379, 1125, 1080, 1029, 912, 871 cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{20}$H$_{33}$ClO$_2$Na (M + Na)$^+$ 379.2016, found 379.2009.
Triﬂuoroacetate 2.104. A mixture of epoxide 2.101 (26.2 mg, 0.0734 mmol) and pyridine (25 µL, 0.294 mmol) in CH₂Cl₂ (0.73 mL) at 0 °C was treated with triﬂuoroacetic anhydride (0.1 mL, 1.44 M in CH₂Cl₂, 0.147 mmol). After 30 minutes, the reaction was quenched with 1 M HCl (2 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 3 mL). The combined organic extracts were washed with water (5 mL), washed with saturated NaHCO₃ solution (5 mL), dried over MgSO₄, ﬁltered and concentrated in vacuo. The crude residue was puriﬁed using ﬂash chromatography (SiO₂, 90% CH₂Cl₂/hexanes) to afford the title compound (30.9 mg, 93%) as a colorless oil. [α]D²⁴ = −35.7 (c = 2.8, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 4.09 (s, 1H), 3.98 (dd, J = 9.0, 4.0 Hz, 1H), 2.73 (d, J = 15 Hz, 1H), 2.12 – 1.88 (m, 4H), 1.57 (s, 3H), 1.49 (s, 6H), 1.28 (s, 3H), 1.17 (s, 3H), 1.72 – 1.10 (m, 9H), 1.01 (t, J = 11.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.2 (q, J = 41.3 Hz), 114.6 (q, J = 285.4 Hz), 88.3, 87.6, 84.6, 72.3, 61.3, 58.3, 49.7, 48.5, 38.8, 38.1, 34.7, 30.8, 29.8, 28.3, 26.0, 25.3, 23.8, 23.5, 19.4, 18.5; IR (thin ﬁlm) ν 2966, 2927, 2870, 1778, 1454, 1377, 1219, 1157 cm⁻¹; HRMS (ESI) m / z calcd for C₂₂H₃₂ClF₃O₄Na (M + Na)⁺ 475.1839, found 475.1848.
Diisocyanide 2.105. The following procedure was adopted from Pronin *et al.* Trifluoroacetate 2.104 (4.7 mg, 0.0085 mmol) was dissolved in a solution of scandium(III) trifluoromethanesulfonate (2.1 mg, 0.0043 mmol, briefly dried under vacuum at ~ 250-300 °C) in TMSCN (0.1 mL). After 24 h at room temperature, the reaction was quenched with TMEDA (10 µL) and the volatiles were removed under reduced pressure. The crude residue was dissolved in hexanes (4 mL), washed with saturated aqueous NaHCO₃ solution (4 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 80% CH₂Cl₂/hexanes) to afford the title compound (1.0 mg, 25%) as a thin film. [α]D²³ = +2.6 (c = 0.14, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 4.34 (s, 1H), 4.08 (dd, J = 9.0, 4.0 Hz, 1H), 1.59 (s, 3H), 1.53 (s, 3H), 1.41 (s, 3H), 1.31 (br s, 3H), 2.05 – 1.11 (m, 15H), 1.01 (s, 3H), 0.14 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 157.8 (br t), 153.3 (br t), 87.4, 84.9, 73.4, 71.3, 64.0 (br t, J = 5.6 Hz), 59.9 (br t, J = 5.6 Hz), 46.4, 42.1, 40.0, 38.6, 35.7, 32.8, 30.2, 27.5, 26.1, 25.8, 24.3, 21.7, 20.6, 17.6, 2.4; IR (thin film) ν 2953, 2933, 2131, 1457, 1384, 1252, 1038, 842 cm⁻¹; HRMS (ESI) m / z calcd for C₂₅H₄₁ClN₂O₂SiNa (M + Na)⁺ 487.2523, found 487.2513.
Kalihinol B (2.2). To a solution of diisocyanide 2.105 (2.6 mg, 0.0056 mmol) in THF (0.1 mL) cooled to 0 °C was added TBAF (0.11 mL, 0.05 M in THF, 0.0056 mmol). After 5 minutes, the reaction was quenched with pH 7 phosphate buffer (1 mL). The aqueous layer was extracted with ether (3 x 2 mL). The combined organic extracts were washed with brine (4 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 30% EtOAc/hexanes) to afford kalihinol B (1.9 mg, 86%) as a thin film. The NMR spectra (CDCl₃) for synthetic compound 2.2 match spectral data for reported natural 2.2.⁶⁵,⁶⁶ Synthetic 2.2: [α]D²⁴ = +7.6 (c = 0.22, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 4.42, (br s, 1H), 4.06 (dd, J = 9.0, 4.0 Hz, 1H), 1.59 (s, 3H), 1.53 (s, 3H), 1.42 (s, 3H), 1.34 (br s, 3H), 1.04 (s, 3H), 2.08 – 1.12 (m, 16H); ¹³C NMR (125 MHz, CDCl₃) δ 158.2 (br t), 153.5 (br t), 87.4, 85.0, 71.3, 70.6, 63.4 (br t, J = 5.6 Hz), 59.9 (br t, J = 5.0 Hz), 46.5, 42.3, 40.0, 38.6, 36.1, 32.7, 30.1, 28.9, 26.2, 25.8, 24.3, 21.7, 20.9, 17.9; IR (thin film) ν 3415 br (OH), 2972, 2934, 2879, 2134 (NC), 1461, 1385 (gem-dimethyl), 1101 (C–O–C), 1027 cm⁻¹; HRMS (ESI) m/z calcd for C₂₂H₃₃ClN₂O₂Na (M + Na)⁺ 415.2128, found 415.2122.

Reported natural 2.2: [α]D = +10 (c = 1, CHCl₃); ¹H NMR (CDCl₃) δ 4.40, (br s, 1H), 4.03 (dd, J = 9, 4 Hz, 1H), 1.58 (s, 3H), 1.52 (s, 3H), 1.4 (s, 3H), 1.32 (br s, 3H), 1.02 (s, 3H), 2.10 – 0.80 (complex); ¹³C NMR (CDCl₃) δ 87.2, 84.9, 71.1, 70.4, 63.3 (br t, J = 5 Hz), 59.8 (br t, J = 5 Hz), 46.4, 42.2, 39.9, 38.4, 35.9, 32.6, 29.9, 28.7, 25.7, 25.7, 24.1, 21.6, 20.8, 17.8; IR (CHCl₃) ν
3600 (free OH), 3400 br (assoc OH), 2150 (NC), 1380 (gem-dimethyl), 1100 (C–O–C) cm⁻¹;
HRMS (El) m/z calced for C₂₁H₃₀ClN₂O₂ (M – Me)⁺ 377.1996, found 377.2009.

Table 2.5 Comparison of \(^{13}\)C NMR data (CDCl₃) for synthetic and natural kalihinol B (2.2)

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Synthetic 2.2 (ppm)</th>
<th>Natural 2.2 (ppm)</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.3</td>
<td>42.2</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>21.7</td>
<td>21.6</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>32.7</td>
<td>32.6</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>70.6</td>
<td>70.4</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>63.4 (br t, (J = 5.6) Hz)</td>
<td>63.3 (br t, (J = 5) Hz)</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>36.1</td>
<td>35.9</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>46.5</td>
<td>46.4</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>24.3</td>
<td>24.1</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>40.0</td>
<td>39.9</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>59.9 (br t, (J = 5.0) Hz)</td>
<td>59.8 (br t, (J = 5) Hz)</td>
<td>0.1</td>
</tr>
<tr>
<td>11</td>
<td>87.4</td>
<td>87.2</td>
<td>0.2</td>
</tr>
<tr>
<td>12</td>
<td>38.6</td>
<td>38.4</td>
<td>0.2</td>
</tr>
<tr>
<td>13</td>
<td>25.8</td>
<td>25.7</td>
<td>0.1</td>
</tr>
<tr>
<td>14</td>
<td>85.0</td>
<td>84.9</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>71.3</td>
<td>71.1</td>
<td>0.2</td>
</tr>
<tr>
<td>16</td>
<td>30.1</td>
<td>29.9</td>
<td>0.2</td>
</tr>
<tr>
<td>17</td>
<td>26.2</td>
<td>26.1</td>
<td>0.1</td>
</tr>
<tr>
<td>18</td>
<td>17.9</td>
<td>17.8</td>
<td>0.1</td>
</tr>
<tr>
<td>19</td>
<td>28.9</td>
<td>28.7</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>20.9</td>
<td>20.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Isonitrile 1</td>
<td>158.2 (br t)</td>
<td>Not Observed<sup>a</sup></td>
<td>---</td>
</tr>
<tr>
<td>Isonitrile 2</td>
<td>153.5 (br t)</td>
<td>Not Observed<sup>a</sup></td>
<td>---</td>
</tr>
</tbody>
</table>

^aIsocyano carbon resonances were not observed due to small sample size, insufficient pulsing, and the broadness of the signals.
(S,E)-6,7-Dihydroxy-3,7-dimethyloct-2-enyl acetate (2.112). (S,E)-6,7-Dihydroxy-3,7-dimethyloct-2-enyl acetate (2.112) was prepared according to the literature procedure using a Sharpless dihydroxylation of geranyl acetate.\(^{30}\) The spectral data for this compound are consistent with those reported in the literature.\(^{30}\) \([\alpha]_D^{24} = -22.5 \, (c = 1.0, \text{CHCl}_3), \text{lit.} \quad [\alpha]_D^{23} = +26.8 \, (c = 1.0, \text{CHCl}_3)\) for the (R)-form; \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta 5.39 \, (t, J = 7.0 \, \text{Hz}, 1\text{H}), 4.58 \, (d, J = 7.5 \, \text{Hz}, 2\text{H}), 3.34 \, (ddd, J = 10.5, 4.5, 1.5 \, \text{Hz}, 1\text{H}), 2.37 – 2.28 \, (m, 1\text{H}), 2.25 \, (d, J = 4.5 \, \text{Hz}, 1\text{H}), 2.15 – 2.06 \, (m, 1\text{H}), 2.05 \, (s, 3\text{H}), 1.98 \, (s, 1\text{H}), 1.72 \, (s, 3\text{H}), 1.64 – 1.56 \, (m, 1\text{H}), 1.49 – 1.39 \, (m, 1\text{H}), 1.21 \, (s, 3\text{H}), 1.16 \, (s, 3\text{H}); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 171.3, 142.2, 118.9, 78.2, 73.2, 61.5, 36.7, 29.6, 26.6, 23.4, 21.2, 16.6.\) The enantiomeric excess of 2.112 was determined as 90\% by \(^1\)H NMR analysis of its corresponding mono-(R)-MTPA ester. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 5.30 \, \text{ppm} \, (t, 1\text{H})\) for the \(S\) enantiomer; \(\delta 5.23 \, \text{ppm} \, (t, 1\text{H})\) for the \(R\) enantiomer, corresponding to the methyl group on the methoxy group of the ester.

cis- and trans-Linalyl oxides (2.117). The following procedure was adapted from Guérinot et al.\(^{34}\) To a solution of diol 2.112 (4.23 g, 18.37 mmol) in CH\(_2\)Cl\(_2\) (184 mL) was added FeCl\(_3\)•6H\(_2\)O (1.24 g, 4.59 mmol) in one portion. After stirring at 40 °C for 5 h, the reaction mixture was cooled to room temperature and concentrated \emph{in vacuo}. The crude residue was
purified using flash chromatography (SiO$_2$, 25 → 30% Et2O/pentane) to afford a 1:1.7 mixture of cis- and trans-linalyl oxides (3.06 g, 97%) as a colorless oil. The cis- and trans-THFs were separated for analytical purposes, and the spectral data for these compounds are consistent with those reported in the literature.$^{67-70}$

**trans-2.117: $\lbrack \alpha \rbrack_D^{23} = +5.7$ (c = 0.95, CHCl$_3$), lit.6 $\lbrack \alpha \rbrack_D^{25} = +4.73$ (c = 2.07, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.88 (dd, $J = 17.5, 10.5$ Hz, 1H), 5.19 (dd, $J = 17.0, 1.5$ Hz, 1H), 5.00 (dd, $J = 10.5, 1.5$ Hz, 1H), 3.79 (t, $J = 7.3$ Hz, 1H), 2.16 (s, 1H), 1.94 – 1.80 (m, 3H), 1.76 – 1.69 (m, 1H), 1.31 (s, 3H), 1.23 (s, 3H), 1.13 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 143.8, 111.5, 85.7, 83.2, 71.3, 37.6, 27.4, 27.0, 26.4, 24.3.

cis-2.117: $\lbrack \alpha \rbrack_D^{23} = -3.8$ (c = 0.72, CHCl$_3$), lit.6 $\lbrack \alpha \rbrack_D^{25} = -2.94$ (c = 2.14, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.97 (dd, $J = 17.3, 10.8$ Hz, 1H), 5.20 (dd, $J = 17.3, 1.3$ Hz, 1H), 5.01 (dd, $J = 10.5, 1.0$ Hz, 1H), 3.86 (t, $J = 7.3$ Hz, 1H), 2.07 (s, 1H), 1.96 – 1.74 (m, 4H), 1.32 (s, 3H), 1.23 (s, 3H), 1.13 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 144.5, 111.7, 85.7, 82.9, 71.3, 38.1, 27.6, 26.6, 26.2, 24.5.

cis- and trans-Silyl ethers 2.118. Imidazole (1.21 g, 17.8 mmol) was added in one portion to a solution of cis- and trans-linalyl oxides (2.117) (1.01 g, 5.92 mmol) in CH$_2$Cl$_2$ (12 mL). Chlorotrimethylsilane (1.13 mL, 8.88 mmol) was added dropwise via syringe. After 30 min, saturated NaHCO$_3$ solution (15 mL) was added to the reaction mixture. The reaction mixture was diluted with CH$_2$Cl$_2$ (10 mL) and water (10 mL). The biphasic mixture was separated, and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 x 15 mL). The combined organic phases were
washed with water (30 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 2.5% Et$_2$O/pentane) to afford a 1:1.7 mixture of cis-2.118 and trans-2.118 (1.30 g, 91%) as a colorless oil. The diastereomers were separated for analytical purposes.

trans-2.118: $[\alpha]_D^{23} = +7.1$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.86 (dd, $J = 17.3$, 10.8 Hz, 1H), 5.16 (dd, $J = 17.3$, 1.8 Hz, 1H), 4.97 (dd, $J = 10.8$, 1.8 Hz, 1H), 3.74 (t, $J = 6.5$ Hz, 1H), 1.94 – 1.75 (m, 3H), 1.71 – 1.62 (m, 1H), 1.30 (s, 3H), 1.21 (s, 3H), 1.20 (s, 3H), 0.11 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 144.3, 111.2, 86.4, 83.4, 75.2, 37.4, 27.9, 26.7, 26.4, 25.5, 2.7; IR (thin film) ν 2972, 2873, 1465, 1365, 1249, 1171, 1044, 839 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{13}$H$_{26}$O$_2$SiNa (M + Na)$^+$ 265.1600, found 265.1604.

cis-2.118: $[\alpha]_D^{23} = -0.27$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.97 (dd, $J = 17.5$, 11.0 Hz, 1H), 5.20 (dd, $J = 17.3$, 1.8 Hz, 1H), 4.95 (dd, $J = 11.0$, 1.5 Hz, 1H), 3.78 (t, $J = 7.0$ Hz, 1H), 1.94 – 1.86 (m, 2H), 1.85 – 1.78 (m, 1H), 1.74 – 1.65 (m, 1H), 1.28 (s, 3H), 1.21 (s, 3H), 1.20 (s, 3H), 0.11 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 144.8, 111.3, 86.3, 83.1, 75.2, 38.0, 27.9, 26.6, 25.73, 25.70, 2.7; IR (thin film) ν 2972, 2872, 1459, 1365, 1250, 1172, 1045, 840 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{13}$H$_{26}$O$_2$SiNa (M + Na)$^+$ 265.1600, found 265.1597.

cis- and trans-Aldehydes 2.119. A solution of BH$_3$•DMS (0.60 mL, 6.31 mmol) in THF (10.5 mL) was cooled to 0 °C. Cyclohexene (1.28 mL, 12.62 mmol) was added dropwise via syringe over 2 min. After 20 min, the reaction mixture was allowed to warm to room temperature. After 2 h, the reaction mixture was cooled to 0 °C and a 1:1.7 mixture of cis- and trans-2.118 (1.02 g,
4.21 mmol) was added as a solution in THF (10.5 mL). The transfer was completed with additional portions of THF (2 x 2 mL). The reaction mixture was allowed to stir at 0 °C for one hour before allowing to warm to room temperature. After 3 h, the reaction was quenched with water (30 mL) and NaBO$_3$•4H$_2$O (3.24 g, 21.04 mmol) was added in one portion. The reaction mixture was allowed to stir vigorously for 16 h. The reaction mixture was diluted with water (30 mL) and extracted with Et$_2$O (3 x 60 mL). The combined organic extracts were washed with brine (50 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 20% EtOAc/hexanes) to afford a mixture of cis- and trans-THFs contaminated with cyclohexanol. 1H NMR and 13C NMR spectra were complicated by the mixture of tetrahydrofuran diastereomers and cyclohexanol contaminant. Sodium bicarbonate (2.12 g, 25.18 mmol) was added to a solution of DMP (4.27 g, 10.07 mmol) in CH$_2$Cl$_2$ (40 mL) in one portion. A solution of cis- and trans-THFs contaminated with cyclohexanol (1.312 g, 5.036 mmol) in CH$_2$Cl$_2$ (5 mL) was added dropwise over 2 min. The transfer was completed with additional portions of CH$_2$Cl$_2$ (2 x 2.5 mL). After 2 h, the reaction was quenched with a 1:1 mixture of saturated NaHCO$_3$ solution and saturated Na$_2$S$_2$O$_3$ solution (50 ml), and allowed to stir until bubbling ceased (20 min). The phases were separated, and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 x 50 mL). The combined organic extracts were washed with 1 M NaOH (1 x 50 mL) and water (1 x 50 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 8.5% Et$_2$O/pentane) to afford a 1:1.7 mixture of cis- and trans-aldehydes 2.119 (0.714 g, 66% over two steps) as a colorless oil. The diastereomers were separated for analytical purposes using flash chromatography (SiO$_2$, 100% CH$_2$Cl$_2$).
trans-2.119: $[\alpha]_D^{22} = +11.2$ (c = 0.90, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 9.82 (t, $J = 3.0$ Hz, 1H), 3.73 (t, $J = 7.3$ Hz, 1H), 2.58 (dd, $J = 14.8$, 2.8 Hz, 1H), 2.52 (dd, $J = 14.5$, 3.0 Hz, 1H), 2.00 – 1.72 (m, 4H), 1.31 (s, 3H), 1.21 (s, 3H), 1.17 (s, 3H), 0.11 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 203.0, 87.0, 81.4, 74.8, 54.4, 38.0, 27.7, 27.5, 26.4, 25.9, 2.7; IR (thin film) ν 2972, 2898, 2873, 2736, 1724, 1458, 1380, 1250, 1175, 1068, 1044, 840 cm$^{-1}$; HRMS (ESI) m / z calcd for C$_{13}$H$_{26}$O$_3$SiNa (M + Na)$^+$ 281.1549, found 281.1554.

cis-2.119: $[\alpha]_D^{22} = -49.4$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 9.86 (dd, $J = 3.5$, 2.5 Hz, 1H), 3.77 (t, $J = 7.3$ Hz, 1H), 2.65 (dd, $J = 15.0$, 2.5 Hz, 1H), 2.46 (dd, $J = 15.0$, 3.5 Hz, 1H), 2.02 – 1.88 (m, 2H), 1.87 – 1.80 (m, 1H), 1.79 – 1.72 (m, 1H), 1.29 (s, 3H), 1.24 (s, 3H), 1.16 (s, 3H), 0.10 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 203.9, 86.8, 81.4, 74.9, 54.4, 38.0, 27.3, 27.0, 26.6, 26.2, 2.6; IR (thin film) ν 2970, 2873, 2736, 1723, 1456, 1380, 1250, 1177, 1040, 840 cm$^{-1}$; HRMS (ESI) m / z calcd for C$_{13}$H$_{26}$O$_3$SiNa (M + Na)$^+$ 281.1549, found 281.1539.

Keto-aldehydes 2.120 and 2.121. A 2-dram vial was charged with a mixture of cis- and trans-aldehydes 2.119 (0.714 g, 2.76 mmol), prolinol catalyst 2.5959 (0.148 g, 0.553 mmol), and 4-EtO$_2$C-catechol (0.101 g, 0.553 mmol). The vial was sealed with a septum, the headspace was purged with argon, and the reaction mixture was cooled to 0 °C. Methyl vinyl ketone (0.45 mL, 5.53 mmol) was added via syringe. The reaction mixture was allowed to stir at 0 °C until the solution became homogenous (30 min) before being placed in a 7 °C refrigerator for 9 days. The
reaction mixture was purified directly using flash chromatography (SiO$_2$, 12.5% EtOAc/hexanes) to afford keto-aldehyde 2.121 (0.177 g, 19%) as a colorless oil and keto-aldehyde 2.120 (0.318 g, 35%) containing ca. 25% other diastereomers.

Keto-aldehyde 2.120: $[\alpha]_D^{22} = -48.6$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 9.70 (d, $J = 3.0$ Hz, 1H), 3.59 (dd, $J = 8.5$, 6.5 Hz, 1H), 2.51 (ddd, $J = 18.0$, 8.5, 5.8 Hz, 1H), 2.45 – 2.34 (m, 2H), 2.11 (s, 3H), 1.97 – 1.77 (m, 6H), 1.74 – 1.59 (m, 1H), 1.20 (s, 5H), 1.14 (s, 3H), 0.09 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 208.3, 205.1, 87.3, 83.8, 74.4, 60.6, 41.7, 35.9, 30.1, 27.5, 26.2, 26.0, 25.7, 19.0, 2.7; IR (thin film) ν 2972, 2896, 2873, 2730, 1718, 1455, 1363, 1249, 1175, 1041, 839 cm$^{-1}$; HRMS (CI) m/z calcd for C$_{17}$H$_{32}$O$_4$SiH (M + H)$^+$ 329.2148, found 329.2133.

Keto-aldehyde 2.121: $[\alpha]_D^{22} = -92.7$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 9.90 (br s, 1H), 3.77 (t, $J = 7.3$ Hz, 1H), 2.56 (ddd, $J = 18.0$, 8.0, 5.5 Hz, 1H), 2.50 (dt, $J = 11.0$, 1.8 Hz, 1H), 2.33 (dt, $J = 18.0$, 7.5 Hz, 1H), 2.09 (s, 3H), 2.06 – 1.77 (m, 4H), 1.70 – 1.63 (m, 1H), 1.61 – 1.52 (m, 1H), 1.23 (s, 3H), 1.14 (s, 3H), 1.12 (s, 3H), 0.07 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 208.3, 207.1, 87.0, 85.0, 74.9, 59.5, 41.9, 37.2, 30.1, 27.2, 26.8, 25.8, 23.4, 19.5, 2.6; IR (thin film) ν 2970, 2873, 2730, 1718, 1449, 1364, 1250, 1176, 1038, 840 cm$^{-1}$; HRMS (CI) m/z calcd for C$_{17}$H$_{32}$O$_4$SiH (M + H)$^+$ 329.2148, found 329.2138.

Enone 2.122. A solution of keto-aldehyde 2.121 (0.177 g, 0.539 mmol) and catalyst 2.8644 (43.4 mg, 0.162 mmol) in hexanes (5.4 mL, previously sparged with argon gas for 20 min) was stirred
at room temperature for 21 h. The reaction mixture was concentrated in vacuo, and the resulting crude residue was purified using flash chromatography (SiO$_2$, 7.5% EtOAc/hexanes) to afford the title compound (0.119 g, 71%) as a colorless oil. $[\alpha]_D^{25} = -54.0$ (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 7.22 (dt, $J = 10.5$, 1.5 Hz, 1H), 6.06 (dd, $J = 10.3$, 2.8 Hz, 1H), 3.77 (t, $J = 7.0$ Hz, 1H), 2.67 – 2.60 (m, 1H), 2.50 (dt, $J = 16.3$, 3.8 Hz, 1H), 2.33 (td, $J = 15.5$, 5.0 Hz, 1H), 2.05 – 1.98 (m, 1H), 1.97 – 1.81 (m, 3H), 1.75 – 1.58 (m, 2H), 1.23 (s, 3H), 1.15 (s, 3H), 1.11 (s, 3H), 0.08 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 200.1, 154.2, 129.9, 86.4, 84.3, 74.9, 46.4, 37.8, 35.9, 27.3, 26.6, 26.3, 25.6, 22.7, 2.6; IR (thin film) v 2969, 2872, 1683, 1452, 1380, 1249, 1178, 1042, 839 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{17}$H$_{30}$O$_3$SiNa (M + Na)$^+$ 333.1862, found 333.1850.

Ketone 2.123. To a solution of vinyl iodide 2.39 (0.154 g, 0.669 mmol) in Et$_2$O (1.1 mL, previously sparged with argon gas for 20 min) at $-78 \, ^\circ$C was added tert-butyllithium (0.84 mL, 1.59 M in pentane, 1.34 mmol) dropwise via syringe. After 20 min, lithium 2-thienylcyanocuprate solution (2.70 mL, 0.25 M in THF, 0.669 mmol) was added dropwise via syringe. The reaction mixture was allowed to stir for 1 h at $-78 \, ^\circ$C. A solution of enone 2.122 (0.139 g, 0.446 mmol) in Et$_2$O (0.5 mL) was added dropwise via syringe. The transfer was completed with additional portions of Et$_2$O (2 x 0.25 mL). Immediately following this addition, BF$_3$•OEt$_2$ (75 µL, 0.580 mmol) was added dropwise via syringe. After allowing the reaction mixture to stir for 3 h at $-78 \, ^\circ$C, the reaction was quenched with 9:1 saturated NH$_4$Cl
solution/NH₄OH (12 mL). After warming to room temperature, the solution turned a deep blue color. The aqueous layer was extracted with Et₂O (3 × 15 mL). The combined organic extracts were washed with 9:1 saturated NH₄Cl solution/NH₄OH (2 × 15 mL), washed with brine (15 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 7.5% EtOAc/hexanes) to afford the title compound (0.150 g, 81%) as a white solid (mp 56–58 °C). [α]D²³ = −4.3 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 5.37 (d, J = 9.5 Hz, 1H), 3.69 (t, J = 6.8 Hz, 1H), 3.61 – 3.48 (m, 2H), 2.76 (ddd, J = 18.5, 9.8, 4.5 Hz, 1H), 2.58 (quin, J = 5.9 Hz, 1H), 2.47 – 2.35 (m, 3H), 2.29 (td, J = 15.0, 5.5 Hz, 1H), 2.15 (dd, J = 14.5, 10.0 Hz, 1H), 2.11 – 2.05 (m, 1H), 1.86 (dt, J = 9.5, 6.5 Hz, 1H), 1.79 (ddd, J = 11.8, 8.5, 3.8 Hz, 1H), 1.72 – 1.62 (m, 1H), 1.68 (s, 3H), 1.62 – 1.51 (m, 3H), 1.19 (s, 3H), 1.17 (s, 3H), 1.07 (s, 3H), 0.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 211.9, 133.9, 127.4, 85.6, 85.1, 75.3, 50.7, 47.7, 42.5, 40.4, 38.4, 36.7, 35.2, 28.1, 27.2, 25.5, 23.0, 21.8, 2.8; IR (thin film) ν 2964, 2873, 1718, 1454, 1378, 1249, 1174, 1043, 839 cm⁻¹; HRMS (ESI) m / z calcd for C₂₂H₃₉ClO₃SiNa (M + Na)⁺ 437.2255, found 437.2252. ¹H-NOESY-2D (500 MHz, CDCl₃) spectra were obtained for ketone 2.123 and selected NOE interactions are shown.
cis- and trans-Decalones 2.124. To a solution of alkyl chloride 2.123 (0.150 g, 0.362 mmol) in tert-butyl alcohol (1.81 mL) at 30 °C was added potassium tert-butoxide (0.27 mL, 1.6 M in THF, 0.434 mmol) dropwise via syringe. After stirring for 6 h at 30 °C, the reaction was quenched with saturated NH₄Cl solution (12 mL). The aqueous layer was extracted with pentane (4 x 10 mL), and the combined organic extracts were washed with water (3 x 10 mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using flash chromatography (SiO₂, 5% EtOAc/hexanes) to afford a 1.3:1 mixture of *cis-* and *trans*-decalones (99.7 mg, 73%) as a colorless oil, which was characterized as a mixture. [α]D²² = −79.2 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 6.27 (s, 1H), 5.38 (s, 1H), 3.80 (t, J = 6.3 Hz, 1H), 3.73 (dd, J = 7.9, 5.5 Hz, 1H), 2.80 – 2.72 (m, 1H), 2.68 – 2.61 (m, 1H), 2.44 – 2.34 (m, 3 H), 2.26 – 2.15 (m, 4H), 2.13 – 1.38 (m, 21H), 1.64 (s, 3H), 1.58 (s, 3H), 1.20 (s, 3H), 1.18 (s, 9H), 1.17 (s, 3H), 1.07 (s, 3H), 0.11 (s, 9H), 0.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 215.2, 213.1, 133.1, 133.0, 127.7, 125.5, 86.4, 86.1, 85.4, 85.2, 75.6, 75.4, 51.4, 50.8, 50.0, 45.6, 44.4, 41.0, 38.8, 38.6, 36.5, 36.4, 29.9, 29.6, 28.0, 27.9, 27.2, 26.0, 25.7, 25.1, 24.8, 24.2, 23.84, 23.77, 22.7, 22.2, 22.0, 19.4, 2.77, 2.74; IR (thin film) ν 2963, 2875, 1714, 1454, 1378, 1249, 1172, 1041, 839 cm⁻¹; HRMS (ESI) m/z calcd for C₂₂H₃₆O₃SiNa (M + Na)⁺ 401.2488, found 401.2474.
Decalins 2.125 and 2.126. Methylmagnesium bromide (0.44 mL, 3.0 M in Et₂O, 1.32 mmol) was added dropwise to a solution of a mixture of cis- and trans-decalones 2.124 (99.7 mg, 0.263 mmol) in THF (2.63 mL) cooled to 0 °C. The reaction mixture was allowed to warm to room temperature for 30 min, and the reaction was quenched with saturated aqueous NH₄Cl solution (6 mL) at 0 °C. The aqueous layer was extracted with Et₂O (3 x 6 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10% EtOAc/hexanes), yielding trans-decalin 2.126 (36.5 mg, 35%) as a colorless oil and cis-decalin 2.125 (47.1 mg, 45%) as a white solid (mp 82–84 °C).

cis-Decalin 2.125: [α]D²² = +62.4 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 5.74, (d, J = 5.0 Hz, 1 H), 3.71 (t, J = 6.3 Hz, 1H), 2.24 – 2.15 (m, 1H), 2.00 – 1.80 (m, 5H), 1.66 – 1.44 (m, 9H), 1.61 (s, 3H), 1.31 (s, 3H), 1.28 – 1.10 (m, 1H), 1.13 (s, 3 H), 1.11 (s, 3H), 1.08 (s, 3H), 0.07 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 130.2, 128.1, 86.2, 85.4, 75.7, 72.5, 49.1, 46.2, 38.2, 36.9, 35.3, 31.0, 28.2, 28.0, 26.8, 25.10, 25.07, 23.6, 19.9, 18.7, 2.7; IR (thin film) ν 3370 (br), 2963, 2940, 2894, 2872, 1458, 1376, 1249, 1043, 839 cm⁻¹; HRMS (ESI) m / z calcd for C₂₃H₄₂O₃SiNa (M + Na)⁺ 417.2801, found 417.2801.

trans-Decalin 2.126: [α]D²² = −22.3 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 6.31 (s, 1H), 3.79 (dd, J = 7.0, 5.5 Hz, 1H), 2.17 (ap t, J = 10.3 Hz, 1H), 2.06 – 1.89 (m, 3H), 1.87 – 1.78 (m, 2H), 1.73 – 1.67 (m, 1H), 1.66 – 1.11 (m, 9H), 1.62 (s, 3H), 1.21 (s, 3H), 1.19 (s, 3H), 1.14

119
(s, 3H), 1.09 (s, 3H), 0.09 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 131.7, 126.6, 87.1, 85.1, 75.7, 70.7, 52.3, 47.8, 40.7, 38.7, 38.5, 30.9, 28.6, 28.1, 25.6, 24.8, 24.7, 23.8, 22.9, 19.1, 2.8; IR (thin film) ν 3464 (br), 2962, 2871, 1453, 1377, 1249, 1171, 1083, 1043, 839 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{23}$H$_{42}$O$_3$SiNa (M + Na)$^+$ 417.2801, found 417.2801.

Diol 2.111. To a solution of trans-decalin 2.126 (36.5 mg, 0.0925 mmol) in THF (0.93 mL) cooled to 0 °C was added TBAF (0.19 mL, 1.0 M in THF, 0.185 mmol). After 1 h, added additional TBAF (0.19 mL, 1.0 M in THF, 0.185). After 20 min, the reaction was quenched with water (5 mL). The reaction mixture was extracted with ether (4 x 5 mL). The combined organic extracts were dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 15% EtOAc/hexanes) to afford diol 2.111 (28.2 mg, 95%) as a white solid (mp 98–100 °C). [α]$^D_{23}$ = −21.1 (c = 0.77, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 6.25, (s, 1H), 3.85 (dd, J = 7.8, 6.8 Hz, 1H), 2.27 – 2.18 (m, 1H), 2.17 – 1.88 (m, 4H), 1.85 – 1.60 (m, 6H), 1.64 (s, 3H), 1.52 – 1.40 (m, 3H), 1.35 (ddd, J = 24.5, 12.3, 5.8 Hz, 1H), 1.28 – 1.12 (m, 2H), 1.24 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H), 1.10 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 132.8, 125.9, 87.1, 84.4, 71.4, 70.7, 52.3, 47.9, 40.7, 38.7, 38.5, 30.7, 28.7, 27.7, 25.8, 24.5, 24.3, 24.0, 22.8, 19.2; IR (thin film) ν 3436 (br), 2965, 2936, 2870, 1453, 1375, 1147, 1078, 892, 756 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{20}$H$_{34}$O$_3$Na (M + Na)$^+$ 345.2406, found 345.2415.
Bis(trifluoroacetate) 2.127. A mixture of diol 2.111 (10.2 mg, 0.0316 mmol) and pyridine (30 µL, 0.371 mmol) in CH₂Cl₂ (0.32 mL) at 0 °C was treated with trifluoroacetic anhydride (20 µL, 0.144 mmol). After 20 min, added additional pyridine (20 µL, 0.247 mmol) and trifluoroacetic anhydride (20 µL, 0.144 mmol). After 20 min, the reaction was quenched with 1 M HCl (2 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 2 mL). The combined organic extracts were washed with water (5 mL), washed with saturated NaHCO₃ solution (5 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude residue was used directly in the subsequent reaction. [α]D²³ = −30.0 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 6.20 (s, 1H), 4.07 (dd, J = 9.3, 3.8 Hz, 1H), 2.75 (dt, J = 14.8, 3.3 Hz, 1H), 2.33 (ap t, J = 10.3 Hz, 1H), 2.08 – 1.92 (m, 4H), 1.86 – 1.78 (m, 1H), 1.73 – 1.49 (m, 7H), 1.62 (s, 3H), 1.57 (s, 3H), 1.53 (s, 3H), 1.44 (td, J = 14.3, 3.8 Hz, 1H), 1.33 (td, J = 12.5, 2.8 Hz, 1H), 1.19 (t, J = 11.8 Hz, 1H), 1.16 – 1.06 (m, 1H), 1.08 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.3 (q, J = 36.3 Hz), 156.2 (q, J = 40.8 Hz), 132.5, 125.3, 114.6 (q, J = 285.6 Hz), 114.5 (q, J = 285.3 Hz), 89.9, 89.0, 87.6, 82.9, 51.2, 48.8, 38.2, 37.8, 34.9, 30.5, 25.1, 25.0, 23.72, 23.70, 22.6, 21.2, 21.3, 18.7; IR (thin film) ν 2962, 2931, 2877, 1779, 1456, 1375, 1220, 1156 cm⁻¹; HRMS (ESI) m / z calcd for C₂₄H₃₂F₆O₅Na (M + Na)⁺ 537.2051, found 537.2051.
Isocyanide 2.128. The following procedure was adopted from Pronin *et al.*\(^3\) Trifluoroacetate \(2.127\) (10.2 mg, 0.0316 mmol) was dissolved in TMSCN (60 µL) and cooled to 0 ºC. A solution of scandium(III) trifluoromethanesulfonate (1.6 mg, 0.00316 mmol) in TMSCN (0.11 mL) was added to the reaction mixture dropwise *via* syringe. After 30 min, the reaction mixture was allowed to warm to room temperature. After 4 h, the reaction was quenched with TMEDA (20 µL) and the volatiles were removed under reduced pressure. The crude residue was dissolved in hexanes (6 mL), washed with saturated aqueous NaHCO\(_3\) solution (6 mL), dried over MgSO\(_4\), filtered, and concentrated *in vacuo*. The crude residue was purified using flash chromatography (SiO\(_2\), 3 → 5% EtOAc/hexanes) to afford the title compound (2.0 mg, 19%) as a thin film. \([\alpha]_D^{22}\) = +32.1 (c = 0.20, CHCl\(_3\)); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta\) 6.02 (s, 1H), 2.28 – 2.02 (m, 1H), 2.20 – 2.12 (m, 4H), 2.02 – 1.77 (m, 7H), 1.72 – 1.48 (m, 2H), 1.65 (s, 3H), 1.39 – 1.27 (m, 1H), 1.31 (br s, 3H), 1.78 – 1.00 (m, 1H), 1.15 (d, \(J = 6.5\) Hz, 3H), 1.08 (s, 3H), 1.05 (d, \(J = 7.0\) Hz, 3H); 4.08 (dd, \(J = 9.0, 4.0\) Hz, 1H), 1.59 (s, 3H), 1.55 (s, 3H), 1.41 (s, 3H), 1.31 (br s, 3H), 2.05 – 1.11 (m, 15H), 1.01 (s, 3H), 0.14 (s, 9H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 152.6 (br t), 133.8, 123.8, 120.8, 88.9, 85.0, 60.6 (br t, \(J = 5.1\) Hz), 51.9, 47.5, 40.6, 38.9, 38.7, 37.9, 35.5, 30.4, 25.3, 24.0, 21.8, 20.3, 18.2, 17.9; IR (thin film) \(\nu\) 2965, 2933, 2875, 2128, 1453, 1384, 1063 cm\(^{-1}\); HRMS (ESI) \(m / z\) calcd for C\(_{22}\)H\(_{32}\)N\(_2\)ONa (M + Na\(^+\)) 363.2412, found 363.2417.
2.8 Notes and References

(28) Although the selectivity of ring opening of the epoxide was low, we planned to use chlorohydrin 2.63 for our initial studies toward the THF kalihinanes. Unfortunately, this transformation proved to be highly irreproducible, particularly for THF precursor 2.63. While we later revisited the epoxide chlorinolysis, we used this method for our preliminary investigations.

CHAPTER 3: SYNTHESIS AND ANTIMALARIAL ACTIVITY OF KALIHINANE ANALOGUES

3.1 Introduction

Our interest in the kalihinanes stemmed from their extensive biologically properties in addition to their complex structure. When we designed our synthetic approach toward the kalihinanes, we intended for the strategy to be applicable to the synthesis of analogues as well as the naturally-occurring kalihinanes. Because we were interested in evaluating the antimalarial activity of the synthetic material, determining SAR, and performing additional studies to determine the antiplasmodial mechanism of action of this class of ICTs, we initiated collaborations with two experts in the field—Professor Karine Le Roch at the University of California, Riverside and Professor Choukri Ben Mamoun at Yale University—whose laboratories have vested interests in developing new therapeutics for malaria.

Figure 3.1. The most potent antimalarial ICTs share a similar cyclohexane/tertiary isonitrile motif. (FCR-3 and W2 are drug-resistant strains of *P. falciparum*; SI = selectivity index with respect to mammalian cells).

From the limited set of antimalarial activities reported to date, it is clear that potent antiplasmodial activity of the kalihinanes is correlated with the presence of two isonitriles, but
the specific location of the isonitriles is not critical (compare 3.1 and 3.2). Furthermore, we recognized that the kalihinanes share a common structural motif with other potent ICTs, namely the cyclohexane/tertiary isonitrile (3.7) (Figure 3.1). Our goal was to evaluate the antimalarial activity of synthetic kalihinanes and analogues to determine the general importance of this cyclohexane/tertiary isonitrile motif (3.7). The following chapter describes the synthesis of kalihinane analogues, the synthesis of kalihinane-based small molecule probes, and the determination of the antimalarial activity of kalihinol B and sixteen synthetic ICTs.

3.2 Synthesis of Kalihinane Analogues

From our efforts toward the kalihinanes (see Chapter 2), we were able to access one natural product, kalihinol B (3.8), as well as kalihinane analogues 3.9, 3.10, and 3.11 (Figure 3.2a). Analogues 3.9 and 3.10 were isolated as side products in the synthesis of kalihinol B (Figure 3.2b). Isocyanosilylation of epoxide 3.12 and elimination of the tertiary trifluoroacetate rather than invertive displacement with TMSCN led to isocyanide 3.14. Deprotection of the silyl ether provided a 3:1 mixture of alkenes 3.9 and 3.10.

Figure 3.2. (a) Structure of kalihinol B (3.8) and analogues. (b) Synthesis of kalihinol B analogues 3.9 and 3.10.
While Wood and co-workers had previously determined the antimalarial activities of several simplified kalihinane analogues as racemates (see Section 1.3), we included three of their targets in our assay to determine the antimalarial activities of the enantioenriched compounds.\(^2,^3\) Therefore, the synthesis of the C7 isopropyl kalihinane analogues began with the preparation of (+)-cedrelanol (3.20) and (+)-torreyol (3.21) (Scheme 3.1). Enantioenriched cryptone (3.19) was prepared using a two-step Robinson annulation reported by Baran and co-workers.\(^4\) After an asymmetric enamine-catalyzed Michael addition of isovaleraldehyde (3.15) to methyl vinyl ketone (3.16), aldol condensation using lithium isopropoxide provided (–)-cryptone (3.19). While Baran and co-workers reported accomplishing the aldol condensation with lithium hydroxide in isopropanol, we found that the direct addition of lithium isopropoxide provided more reproducible results. Additionally, we observed a lower reaction conversion for the intermolecular Michael reaction (57% after 3.5 days) than reported in the literature.\(^4,^5\) From 3.19, conjugate addition, intramolecular alkylation, and nucleophilic methylation using our strategy detailed in Section 2.2.2 yielded (+)-cedrelanol (3.20) and (+)-torreyol (3.21).

Scheme 3.1. Synthesis of (+)-cedrelanol (3.20) and (+)-torreyol (3.21).

From cedrelanol (3.20) and torreyol (3.21), we have prepared several C7 isopropyl analogues. As described in Section 2.2, we have used the protocol developed by Shenvi and co-workers for the synthesis of (±)-10-isocyano-4-cadinene (3.22) from cedrelanol (3.20) (Scheme 3.2a).\(^6\) Additionally, we have elaborated (±)-torreyol (3.21) to cis-decalin isocyanide...
3.23 (Scheme 3.2b). Evaluation of the antimalarial activities of isocyanides 3.22 and 3.23 will enable the direct comparison of the cis- and trans-decalin core.

Scheme 3.2. Synthesis of (a) (+)-10-isocyano-4-cadinene (3.22) and (b) cis-decalin analogue 3.23.

Epoxidation of (+)-cedrelanol (3.20) using DMDO generated *in situ* provided a 1.6:1 mixture of diastereomeric epoxides 3.24 and 3.25, favoring the desired α-epoxide (3.24) (Scheme 3.3). We were surprised to observe poor selectivity as DMDO epoxidation of the trans-decalin bearing a C7 THF proved to be highly diastereoselective for the α-epoxide (see Section 2.4). Epoxidation of 3.20 with mCPBA or Davis’s oxaziridine reversed the diastereoselectivity, and the β-epoxide (3.25) was observed as the major product. Subjection of a trifluoroacetate derived from α-epoxide 3.24 to the standard conditions for isonitrile installation provided three products. While we only observed products resulting from attack of TMSCN at C5 of the epoxide, yielding the C4/C5 diaxial product, we isolated a 1.9:1 mixture of C10 isonitrile epimers 3.26 and 3.27 in 12% yield. Unlike for the synthesis of kalihinol B (3.8) (Figure 3.2b), the isonitrile installation at C10 for this substrate suffered from poor diastereoselectivity. The elimination products 3.28 were isolated in 32% yield, while the remaining mass balance was attributed to unidentified decomposition pathways. Nonetheless, cleavage of the TMS ether for all three substrates provided analogue 3.32, containing a C10 equatorial isonitrile, analogue 3.33, containing a C10 axial isonitrile, and analogue 3.34, lacking the C10 isonitrile. Elaboration of β-epoxide 3.25 using the Shenvi protocol was slightly more efficient. Again, we observed only products resulting from isocyanalysis of the epoxide at C4,
affording the C4/C5 diaxial product. Although the sequence gave C10 isonitrile epimers 3.29 and 3.30 in nearly a 1:1 ratio, the isolated yields were higher than those observed during the elaboration of the α-epoxide (3.24). In addition to the products resulting from invertive displacement at C10, we isolated elimination products 3.31 in 38% yield. Treatment of 3.29, 3.30, and 3.31 with TBAF gave analogues 3.35, 3.36, and 3.37, respectively.

Scheme 3.3. Synthesis of C7 isopropyl analogues.

To evaluate our hypothesis on the importance of the cyclohexane/tertiary isonitrile motif (3.7), we prepared two unnatural terpene isonitriles (3.40 and 3.41) derived from (+)-sclareolide (3.38) (Scheme 3.4). Treatment of (+)-sclareolide (3.38) with methyl Grignard reagent gave diol
3.39. Using procedures adopted from Shenvi and co-workers for the synthesis of isocyanide derivatives of dihydroscclareol, we accessed diisocyanide 3.40 and isocyanide 3.41.\(^6\)

Scheme 3.4. Synthesis of isocyanides 3.40 and 3.41 from (+)-sclareolide (3.38).

3.3 Synthesis of Kalihinane-Based Small-Molecule Probes

In addition to determining SAR from analogue synthesis, we wanted to pursue studies to determine the mechanism of action of the kalihinanies. Therefore, we designed a kalihinane-based chemical probe to use for protein profiling in *P. falciparum* in collaboration with Professor Le Roch. We targeted *trans*-decalin 3.49 with the intention of unmasking the pendant silyl ether after isonitrile synthesis; the primary alcohol would serve as a functional handle to attach biotin or a rhodamine-based fluorophore via esterification (Scheme 3.5). Enone 3.44 was prepared in two steps from aldehyde 3.42 using a two-step Robinson annulation protocol, analogous to that used in the synthesis of (±)-cryptone.\(^4\) Diastereoselective conjugate addition into 3.44 was accomplished by treatment with a cuprate derived from vinyl iodide 3.45 at \(-78^\circ\text{C}\) and subsequent warming to \(-40^\circ\text{C}\). Addition of a Lewis acid (*e.g.* BF\(_3\)•OEt\(_2\) or TMSCl) lowered the diastereoselectivity of cuprate addition. Intramolecular alkylation and treatment with methyl Grignard reagent yielded *cis*-decalin 3.48 and *trans*-decalin 3.49 in a nearly 1:1 ratio.
Scheme 3.5. Synthesis of the trans-decalin framework of the kalihinane-based chemical probe.

DMDO epoxidation of 3.49 gave a 2.8:1 mixture of epoxide diastereomers favoring desired α-epoxide 3.51 (Scheme 3.6). After trifluoroacetylation of 3.51 and exposure to scandium(III) triflate in TMSCN, we observed two diisocyanide products, 3.52 and 3.53. In accordance with the Fürst–Plattner principle, diisocyanide 3.52 resulted from nucleophilic epoxide opening at C5 to give the C4/C5 diaxial product and invertive displacement of the C10 trifluoroacetate to afford the equatorial isonitrile. However, nucleophilic epoxide opening at C4, likely a result of chelation of the Lewis acid to the epoxide and the pendant silyl ether, afforded the C4/C5 diequatorial product 3.53. Additionally, the C4/C5 diequatorial product (3.53) was isolated as a mixture of epimers at C10, of which the C10 axial isonitrile was predominant (ca. 4.4:1 dr). This result was surprising, as the C10 equatorial isonitrile, resulting from invertive displacement, is normally the major diastereomer under the reaction conditions. From our studies, we have learned that the displacement of tertiary trifluoroacetates with TMSCN is sensitive to the substitution pattern of the decalin core, and we often observe low diastereoselectivity. Diisocyanide 3.53 contains the C4/C5 substitution pattern characteristic of
the isokalihinane decalin framework. Deprotection of the silyl ethers with TBAF provided kalihinane-based chemical probe precursor 3.54 and unnatural isokalihinane analogue 3.55.

Scheme 3.6. Synthesis of the kalihinane-based chemical probe precursor.

To evaluate conditions for attaching biotin (3.57), we prepared isocyanide 3.56 (Scheme 3.7a). Using the standard two-step sequence, the tertiary alcohol of 3.48 was converted into an isocyanide, and subsequent removal of the TBS ether gave 3.56. We evaluated several conditions for coupling alcohol 3.56 to biotin (3.57). We initially examined esterification with biotin acid chloride, but we had difficulty working with the acid chloride of 3.57 owing to poor solubility. Esterification was accomplished using an EDC-coupling of 3.56 with biotin (3.57), providing biotinylated products 3.58 and 3.59, a result of using racemic starting material. After determining the optimal method for biotinylation of the model system (3.56), we used the same conditions for esterification of diisocyanide 3.54, affording a 1:1 mixture of biotin-conjugated probes 3.60 and 3.61 in 36% after 7 days (Scheme 3.7b).
Scheme 3.7. Biotinylation of (a) a terpene isonitriple and (b) the kalihinane-based probe.

After accomplishing the biotinylation of the molecular probe precursor, we focused on the esterification of 3.54 with a fluorescent dye to access a kalihinane-based fluorescent probe. We selected Janelia Fluor™ 549 dye owing to its superior brightness compared to tetramethylrhodamine in vitro and in live-cell experiments. We have successfully attached 5-carboxy-JF549 (3.62) to terpene isonitrile 3.56 and to molecular probe precursor 3.54 using an EDC-coupling (Scheme 3.8). Because of a limited amount of material, we have not optimized the esterification of isocyanoterpenes 3.56 and 3.54. Nonetheless, we have successfully prepared the kalihinane-based fluorescent probe 3.64. In collaboration with Professor Le Roch’s laboratory, we will use the biotin-conjugated probes (3.60 and 3.61) for pull-down assays and the fluorescent probe (3.64) for imaging experiments in P. falciparum.
Scheme 3.8. Synthesis of (a) a terpene isonitrile fluorescent probe and (b) a kalihinane-based fluorescent probe.

3.4 Evaluation of Antimalarial Activity

In collaboration with the Le Roch laboratory at UC Riverside, all synthetic isoanoterpenes were subjected to the SYBR Green parasite proliferation assay to test for antiplasmodial activity against wild-type *P. falciparum* (3D7 strain) and the chloroquine-resistant parasite (Dd2 strain). The results are summarized in Table 3.1.
Table 3.1. Results of antiplasmodial assays of synthetic terpene isonitriles against *P. falciparum*.

<table>
<thead>
<tr>
<th>Compound</th>
<th>3.8</th>
<th>3.9+3.10 (3:1)</th>
<th>3.11</th>
<th>(±)-3.22</th>
<th>(±)-3.23</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D7 strain*</td>
<td>8.4</td>
<td>139</td>
<td>175</td>
<td>705</td>
<td>180</td>
</tr>
<tr>
<td>Dd2 strain*</td>
<td>4.6</td>
<td>144</td>
<td>123</td>
<td>247</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>3.32</th>
<th>3.33</th>
<th>3.34 (7:1)</th>
<th>3.35</th>
<th>(±)-3.35</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D7 strain*</td>
<td>12</td>
<td>2.9</td>
<td>138</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>Dd2 strain*</td>
<td>16</td>
<td>31</td>
<td>200</td>
<td>17</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>3.36</th>
<th>3.37 (5.6:1)</th>
<th>3.40</th>
<th>3.41</th>
<th>(±)-3.54</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D7 strain*</td>
<td>1150</td>
<td>312</td>
<td>1.9</td>
<td>244</td>
<td>302</td>
</tr>
<tr>
<td>Dd2 strain*</td>
<td>958</td>
<td>529</td>
<td>1.6</td>
<td>416</td>
<td>205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>(±)-3.55</th>
<th>(±)-3.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D7 strain*</td>
<td>27</td>
<td>391</td>
</tr>
<tr>
<td>Dd2 strain*</td>
<td>24</td>
<td>516</td>
</tr>
</tbody>
</table>

* IC$_{50}$ (nM) against *P. falciparum* strains.
To our knowledge, kalihinol B (3.8) is the first kalihinane that has been evaluated for \textit{in vitro} antiplasmodial activity since the 1998 report by Miyaoka and co-workers.1 We were pleased to find that synthetic kalihinol B (3.8) exhibited potent antimalarial activity against both wild-type and drug-resistant strains of \textit{P. falciparum} (IC\textsubscript{50} = 8.4 nM for 3D7 and 4.6 nM for Dd2). While kalihinol B (3.8) was nearly as potent as its THP-counterpart, kalihinol A (3.1, IC\textsubscript{50} = 1.2 nM for FCR-3), they have not yet been assayed against the same strains, precluding a direct comparison. Interestingly, kalihinol B (3.8) displayed more potent activity against the drug-resistant strain of \textit{P. falciparum} than the drug-sensitive strain, a characteristic of several classes of ICTs.9

In general, all compounds we examined exhibited \textit{in vitro} antimalarial activity (IC\textsubscript{50} < 1.2 \textmu M). The most potent compounds (\textit{i.e.} 3.8, 3.32, 3.33, 3.35, 3.40, and 3.55) contain two isonitriles, confirming the general observation that two isonitriles are required for potent activity. However, the mere presence of two isonitriles was not a general predictor of potency; diisocyanide 3.36 exhibited low \textit{micromolar} activity, suggesting that the location of the isonitriles on the decalin core is more important than we originally thought. Comparison of kalihinane analogue 3.32 (IC\textsubscript{50} = 12 nM for 3D7 and 16 nM for Dd2) and unnatural analogue 3.35 (IC\textsubscript{50} = 15 nM for 3D7 and 17 nM for Dd2) indicated that a C10 equatorial isonitrile in combination with either a C5 or C4 axial isonitrile amounts to similar potency. Furthermore, we observed a two-fold increase in antimalarial activity for enantioenriched 3.35 (IC\textsubscript{50} = 15 nM for 3D7 and 17 nM for Dd2) versus racemic 3.35 (IC\textsubscript{50} = 27 nM for 3D7 and 46 nM for Dd2), suggesting the unnatural enantiomer displayed no \textit{in vitro} antimalarial activity. However, the synthesis and antimalarial assay of the unnatural enantiomer should be completed for confirmation.
Surprisingly, we observed a significant decrease in potency by replacing the C7 isopropyl appendage (i.e. 3.32, IC$_{50}$ = 12 nM for 3D7 and 16 nM for Dd2) with a C7 hydroxyl-terminated alkyl chain (i.e. 3.54, IC$_{50}$ = 302 nM for 3D7 and 205 nM for Dd2). Kalihinane-based probe precursor (3.54) shares the same substitution pattern of the decalin core as the kalihinanes, yet exhibited antimalarial activity similar to synthetic terpenes containing only one isonitrile (compare to 3.34 and 3.37). We suspect that the pendant alcohol may be engaging in a dipole-dipole interaction with the C5 axial isonitrile. However, because the mechanism of action for isocyanoterpenes remains largely unknown, we cannot rationalize how this might contribute to the observed reduction in potency at this time. To test our hypothesis, we plan to determine the antimalarial activity of biotin-conjugated diisocyanides 3.60 and 3.61. We predict that esterification of the alcohol will restore the low nanomolar activity typically observed for diisocyanides with the kalihinane substitution pattern (e.g. 3.8 and 3.32).

We were pleased to find that diisocyanide sclareolide derivative 3.40 exhibited potent antimalarial activity. Not only was 3.40 the most potent compound we have prepared (IC$_{50}$ = 1.9 nM for 3D7 and 1.6 nM for Dd2), but it was also nearly as potent as kalihinol A (3.1, IC$_{50}$ = 1.2 nM for FCR-3), the most potent of all ICTs tested to date. Furthermore, it was more effective against the drug-resistant strain of *P. falciparum*. Monoisocyanide sclareolide derivative 3.41 (IC$_{50}$ = 244 nM for 3D7 and 416 nM for Dd2) was significantly less potent than 3.40, indicating that while the cyclohexane/tertiary isonitrile motif may be an indicator of antimalarial activity, a second isonitrile is required to achieve greater potency. Diisocyanide sclareolide derivative 3.40 contains an axial tertiary isonitrile on the decalin framework, whereas several other isocyanoterpenes contain an equatorial tertiary isonitrile. Presently, we have not determined if
the stereochemistry of the tertiary isonitrile is important, and further studies are required to understand the general role of the cyclohexane/tertiary isonitrile motif.

The antimalarial activities of the monoisocyanide kalihinane analogues ranged from 45 to 705 nM (i.e. 3.9/3.10, 3.11, 3.22, 3.23, 3.34, 3.37, and 3.56). These results suggest the location of the isonitrile on the decalin core is significant. While an axial isonitrile at C5 (i.e. 3.9/3.10 and 3.34) displayed similar potency to an equatorial isonitrile at C10 (i.e. 3.11), moving the axial isonitrile to C4 resulted in a 2.3-fold and a 2.6-fold decrease in potency for drug-sensitive and drug-resistant strains, respectively (compare 3.34 and 3.37). Furthermore, we have determined that cis-decalin isocyanide 3.23 (IC₅₀ = 180 nM for 3D7 and 45 nM for Dd2) was significantly more potent than 10-isocyano-4-cadinene (3.22, IC₅₀ = 705 nM for 3D7 and 247 nM for Dd2) against both drug-sensitive and drug-resistant strains of *P. falciparum*. Both of these kalihinene analogues exhibited greater activity against the drug-resistant strain relative to the drug-sensitive strain. Several of the kalihinane analogues, however, were less potent against the chloroquine-resistant Dd2 strain (e.g. 3.31, 3.32, 3.33, 3.34, 3.35, and 3.37). While these results are consistent with the findings from the Wood group, we do not understand what factors contribute to the differences in efficacy.²,³

3.5 Conclusions

Using our unified strategy, we have prepared sixteen kalihinane analogues in addition to kalihinol B (3.8) and determined their antimalarial activities. Furthermore, our strategy has provided access to kalihinane-based small molecule probes containing biotin and a rhodamine derivative. In collaboration with Professor Le Roch’s laboratory, we will use the probes for protein profiling in *P. falciparum*. While we have made preliminary observations concerning SAR, we have not yet achieved a complete understanding of the structural elements required for
low nanomolar antiplasmodial activity. To gain a full understanding of SAR among the kalihinanes, we will need to prepare several more naturally-occurring kalihinanes.

3.6 Experimental Procedures

General Experimental Methods

All reactions were performed under an inert atmosphere of argon using oven-dried or flame-dried glassware and Teflon® coated stir bars. Solvents were dried by passage through columns of activated alumina, and tert-butyl alcohol was distilled from calcium hydride prior to use. Trimethylsilyl cyanide and methyl vinyl ketone were purified by distillation prior to use. Commercial reagents were used as received unless noted otherwise, and all other reagents were prepared using known literature procedures. Reactions were monitored by thin-layer chromatography (TLC) performed on 250 µm silica gel 60 plates with 254 nm fluorescent indicator from EMD Chemicals using UV light as a visualizing agent and KMnO₄/H₂SO₄, p-anisaldehyde or ceric ammonium molybdate and heat as developing agents. Flash chromatography was performed on EMD Chemicals (40-63 µm) silica gel. NMR spectra were recorded on a Bruker 500 MHz or a Bruker 600 MHz spectrometer. Chemical shifts are reported in parts per million using residual non-deuterated solvent as an internal standard (CDCl₃: 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR). Data are reported as follows: chemical shift, multiplicity (ap = apparent, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broad), coupling constant(s) in Hz, integration. NMR spectra were obtained at 298 K unless otherwise noted. FT-IR spectra were recorded on a Varian 640-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-1010 polarimeter operating on the sodium D-line (589 nm) using a 50 mm path-length cell and are reported as: [α]₀° (concentration in g/100 mL, solvent). Analytical chiral HPLC was
performed with an Agilent 1100 Series HPLC using a Chiralpak AS-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries Ltd. with visualization at 254 nm. High resolution mass spectra (HRMS) were recorded on a Waters LCT Premier spectrometer using ESI-TOF (electrospray ionization-time of flight) or CI-TOF (chemical ionization-time of flight). Melting points (mp) are uncorrected and were measured on a Mel-Temp II melting point apparatus.

Experimental Procedures and Characterization Data

Alkenes 3.9 and 3.10. To a solution of isocyanide 3.14 (20.0 mg, 0.0456 mmol) in THF (0.5 mL) was added TBAF (0.10 mL, 1.0 M in THF, 0.100 mmol). After 1 h, the reaction was quenched with water (1 mL). The aqueous phase was extracted with ether (3 x 2 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 2.5:55:45 EtOAc/CH₂Cl₂/hexanes) to afford a 3:1 mixture of alkenes 3.9 and 3.10 (8.3 mg, 50%) as a thin film. The mixture of alkene isomers complicated the ¹H and ¹³C NMR spectra. [α]D²² = +14.7 (c = 0.83, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 5.35 (d, J = 4.0 Hz, 1H), 4.73 (s, 1H), 4.63 (s, 1H), 4.40 (s, 1H), 4.24 (s, 1H), 4.09 (dd, J = 9.0, 4.5 Hz, 1H), 4.07 (dd, J = 9.0, 4.0 Hz, 1H), 2.33 (dt, J = 12.8, 3.3 Hz, 1H), 2.20 (t, J = 11.2 Hz, 1H), 2.12 – 1.50 (complex), 1.65 (s, 6H), 1.62 (s, 3H), 1.57 (s, 3H), 1.53 (s, 3H), 1.43 (s, 3H), 1.42 (s, 3H), 1.34 – 1.13 (complex), 1.06 (m, 3H), 1.02 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1 (br t), 151.1, 134.9, 120.7, 105.8, 87.8, 87.5, 84.9, 84.8, 71.7, 71.5, 71.1, 70.8, 63.7 (t, J = 5.8 Hz), 63.4 (t, J = 5.6 Hz), 47.6, 43.4, 42.0, 38.9, 38.8, 38.2, 37.8,
36.9, 36.0, 34.2, 32.8, 31.2, 30.7, 31.2, 29.8, 28.79, 28.76, 28.7, 26.0, 25.9, 25.7, 25.6, 24.1, 20.9, 17.9, 17.1; IR (thin film) ν 3418 (br), 2971, 2933, 2892, 2852, 2156, 2139, 1457, 1382, 1122, 1025, 758 cm\(^{-1}\); HRMS (ESI) \(m / z\) calcd for C\(_{21}\)H\(_{32}\)ClNO\(_2\)Na (M + Na\(^{+}\)) 388.2019, found 388.2006.

(R)-2-Isopropyl-5-oxohexanal (3.18). The title compound was prepared according to the literature procedure. The spectral data for this compound are consistent with those reported in the literature. \([α]_D^{24} = –33.7 (c = 1.0, \text{CHCl}_3)\), lit. \([α]_D^{24} = +40 (c = 1.72, \text{CDCl}_3)\) for the (S)-form; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(δ 9.60 (d, J = 3.0 \text{ Hz, 1H}), 2.50 (ddd, J = 17.5, 8.8, 5.8 \text{ Hz, 1H}), 2.36 (ddd, J = 17.8, 8.0, 6.8 \text{ Hz, 1H}), 2.12 (s, 3H), 2.09 – 1.98 (m, 2H), 1.88 – 1.71 (m, 2H), 0.99 (d, J = 6.5 Hz, 3H), 0.96 (d, J = 6.5 Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(δ 208.2, 205.5, 57.7, 41.4, 30.2, 28.5, 20.4, 19.6, 19.5\).

(–)-Cryptone (3.19). To a solution of (R)-2-isopropyl-5-oxohexanal (3.18) (0.731 mg, 4.68 mmol) in 2-propanol (15.6 mL) was added a solution of lithium isoproploxide (0.35 mL, 0.66 M in THF, 0.234 mmol). After 1 h, the reaction was quenched with saturated NH\(_4\)Cl solution (16 mL). The aqueous phase was extracted with ether (3 x 40 mL). The combined organic extracts were washed with water (2 x 20 mL), brine (1 x 20 mL), dried over MgSO\(_4\), filtered, and concentrated \textit{in vacuo}. The crude residue was purified using flash chromatography (SiO\(_2\), 10%
Et₂O/pentane) to afford (−)-cryptone (0.435 g, 66%) as a colorless oil. The spectral data for this compound are consistent with those reported in the literature.12 [α]₂⁴ = −80.8 (c = 1.04, CHCl₃), lit.13 [α]₂¹ = −90 (c = 1.38, CHCl₃); \(^1\)H NMR (500 MHz, CDCl₃) δ 6.89 (dt, \(J = 10.0, 2.0\) Hz, 1H), 6.01 (dd, \(J = 10.0, 2.5\) Hz, 1H), 2.51 (dt, \(J = 17.0, 4.0\) Hz, 1H), 2.38 – 2.32 (m, 1H), 2.32 – 2.25 (m, 1H), 2.04 – 1.96 (m, 1H), 1.86 – 1.71 (m, 1H), 0.97 (t, \(J = 7.0\) Hz, 6H); \(^1\)C NMR (125 MHz, CDCl₃) δ 200.2, 154.5, 129.8, 42.6, 37.5, 31.6, 25.4, 19.8, 19.6. The enantiomeric excess of (−)-cryptone was determined to be 88% using chiral HPLC (Chiralpak AD-H column, 2% iPrOH in hexanes, flow rate of 0.5 mL/min).

(+)-Cedrelanol (3.20) and (+)-torreyol (3.21). The title compounds were prepared from (−)-cryptone (3.19) according to the three-step sequence described in Section 2.7. The spectral data for these compounds are consistent with those reported in the literature.6,14,15

(+)-Cedrelanol (3.20): [α]₂⁴ = +2.2 (c = 1.0, CHCl₃), lit.15 [α]₀ = +3.4 (c = 1.2, CHCl₃); \(^1\)H NMR (CDCl₃, 600 MHz) δ 5.55 (br s, 1H), 2.22 – 2.15 (m, 1H), 2.04 – 1.89 (m, 4H), 1.74 (dt, \(J = 13.1, 2.9\) Hz, 1H), 1.67 (s, 3H), 1.50 – 1.45 (m, 1H), 1.45 – 1.29 (m, 3H), 1.22 (s, 3H), 1.09 (t, \(J = 10.3\) Hz, 1H), 1.01 (tt, \(J = 11.4, 3.2\) Hz, 1H), 0.92 (d, \(J = 6.9\) Hz, 3H), 0.79 (d, \(J = 6.9\) Hz, 3H); \(^1\)C NMR (125 MHz, CDCl₃) δ 134.5, 122.8, 70.8, 48.1, 46.8, 40.4, 37.9, 31.0, 28.6, 26.3, 23.9, 22.7, 21.5, 19.9, 15.3.

(+)-Torreyol (3.21): mp 109–110 °C, lit.14 mp 108.5–109 °C; [α]₂⁴ = +95.4 (c = 1.0, CHCl₃), lit.15 [α]₀ = −100.4 (c = 1.2, CHCl₃) for (−)-torreyol; \(^1\)H NMR (CDCl₃, 600 MHz) δ 5.52, (d, \(J = 4.3\) Hz, 1 H), 2.06 – 1.92 (m, 4H), 1.92 – 1.86 (m, 1H), 1.66 (s, 3H), 1.63 – 1.47 (m, 6H), 1.35 –
1.24 (m, 2H), 1.30 (s, 3H), 1.15 – 1.05 (m, 1H) 0.89 (d, J = 6.9 Hz, 3H), 0.77 (d, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 134.5, 124.7, 72.7, 45.6, 44.2, 36.9, 35.4, 31.3, 28.1, 26.5, 23.8, 21.8, 21.7, 18.6, 15.4.

(±)-10-Isocyano-4-cadinene (3.22). The title compound was prepared according to the literature procedure. The spectral data for this compound are consistent with those reported in the literature. See Section 2.7 for details.

Isocyanide 3.23. The following procedure was adopted from Pronin et al. A mixture of (±)-torreyol (3.21) (30.8 mg, 0.139 mmol) and pyridine (50 µL, 0.556 mmol) in CH$_2$Cl$_2$ (1.4 mL) at 0 °C was treated with trifluoroacetic anhydride (40 µL, 0.278 mmol). After 15 minutes, the reaction was quenched with 1 M HCl (2 mL). The aqueous layer was extracted with CH$_2$Cl$_2$ (3 × 3 mL). The combined organic extracts were washed with water (5 mL), washed with saturated NaHCO$_3$ solution (5 mL), dried over MgSO$_4$, filtered and concentrated in vacuo. The crude trifluoroacetate was dissolved in TMSCN (0.14 mL), and a solution of scandium(III) trifluoromethanesulfonate (3.4 mg, 0.0695 mmol) in TMSCN (0.14 mL) was added. After 3 h at room temperature, the reaction was quenched with TMEDA (20 µL) and the volatiles were removed under reduced pressure. The crude residue was dissolved in hexanes (5 mL), washed with saturated aqueous NaHCO$_3$ solution (5 mL), dried over MgSO$_4$, filtered, and concentrated.
in vacuo. The crude residue was purified using flash chromatography (SiO₂, 30% CH₂Cl₂/hexanes) to afford the title compound (10.4 mg, 33%) as a thin film. ¹H NMR (CDCl₃, 500 MHz) δ 5.56 (d, J = 1.0 Hz, 1H), 2.39 – 2.32 (m, 1H), 2.07 – 1.93 (m, 3H), 1.83 (d, J = 13.0 Hz, 1H), 1.74 (d, J = 11.0 Hz, 1H), 1.65 (s, 3H), 1.61 – 1.54 (m, 1H), 1.54 – 1.37 (m, 4H), 1.42 (s, 3H), 1.31 – 1.21 (m, 1H), 0.90 (d, J = 7.0 Hz, 3H), 0.87 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.3 (t, J = 4.5 Hz), 133.6, 124.4, 62.2 (t, J = 4.4 Hz), 44.6, 43.6, 35.0, 33.6, 31.0, 27.9, 26.7, 23.6, 21.7, 20.0, 19.4, 15.4; IR (thin film) ν 2956, 2893, 2872, 2832, 2126, 1452, 1384, 1154, 884 cm⁻¹; HRMS (ESI) m / z calcd for C₁₆H₂₅NNa (M + Na)⁺ 254.1885, found 254.1880.

Epoxides 3.24 and 3.25. To a solution of (+)-cedrelanol (3.20) (0.188 g, 0.845 mmol) in acetone (42 mL) was added saturated aqueous NaHCO₃ (28 mL). The resulting mixture was cooled to 0 °C and a solution of Oxone® (0.571 g, 0.930 mmol) in H₂O (2 mL) was added dropwise over 5 minutes. The reaction mixture was stirred vigorously for 30 min at 0 °C, diluted with H₂O (50 mL) and extracted with EtOAc (3 x 50 mL). The combined organic extracts were diluted with hexanes until cloudy, dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10 → 30% EtOAc/hexanes) to afford β-epoxide 3.25 (77.1 mg, 38%) as a white solid (mp 90–93 °C) and α-epoxide 3.24 (120.4 mg, 60%) as a colorless oil.

Epoxide 3.24: [α]D²⁴ = +22.6 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 2.94 (s, 1H), 2.32 – 2.20 (m, 1H), 2.09 (dd, J = 14.3, 3.8 Hz, 1H), 1.73 – 1.46 (m, 5H), 1.46 – 1.32 (m, 2H), 1.30
(s, 3H), 1.27 – 1.11 (m, 2H), 1.17 (s, 3H), 0.96 (d, J = 7 Hz, 3H), 0.88 (d, J = 7 Hz, 3H), 0.90 – 0.85 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 70.5, 61.5, 58.2, 47.5, 44.7, 39.9, 38.7, 30.8, 28.0, 26.4, 23.8, 21.6, 20.1, 19.7, 15.7; IR (thin film) ν 3459 (br), 2957, 2937, 2871, 2849, 1463, 1453, 1368, 1135, 1003, 876 cm$^{-1}$; HRMS (ESI) m / z calcd for C$_{13}$H$_{26}$O$_2$Na (M + Na)$^+$ 261.1830, found 261.1838. 1H-NOESY-2D (500 MHz, CDCl$_3$) spectra were obtained for epoxide 3.24.

Epoxide 3.25: $[\alpha]_D^{24}$ = +10.7 (c = 1.0, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 3.08 (s, 1H), 2.29 – 2.19 (m, 1H), 1.91 – 1.80 (m, 2H), 1.80 – 1.72 (m, 1H), 1.72 – 1.66 (m, 1H), 1.64 – 1.57 (m, 1H), 1.54 – 1.49 (m, 1H), 1.44 – 1.33 (m, 3H), 1.31 (s, 3H), 1.19 – 1.08 (m, 2H), 1.16 (s, 3H), 0.95 (d, J = 6.9 Hz, 3H), 0.85 (d, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 70.9, 61.9, 58.7, 44.3, 42.4, 40.3, 38.4, 29.2, 29.1, 26.6, 25.0, 21.8, 21.4, 20.0, 15.6; IR (thin film) ν 3463 (br), 2956, 2934, 2872, 1464, 1375, 1209, 1142, 1022, 907, 845 cm$^{-1}$; HRMS (ESI) m / z calcd for C$_{15}$H$_{26}$O$_2$Na (M + Na)$^+$ 261.1830, found 261.1838. 1H-NOESY-2D (500 MHz, CDCl$_3$) spectra were obtained for epoxide 3.25 and selected NOE interactions are shown.

Trifluoroacetate 3.65 (not shown). A mixture of epoxide 3.24 (0.120 g, 0.505 mmol) and pyridine (0.16 mL, 2.02 mmol) in CH$_2$Cl$_2$ (5.1 mL) at 0 ºC was treated with trifluoroacetic anhydride (0.14 mL, 1.01 mmol). After 30 minutes, the reaction was quenched with 1 M HCl (5 mL). The aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 5 mL). The combined organic extracts were washed with water (10 mL), washed with saturated NaHCO$_3$ solution (10 mL), dried over MgSO$_4$, filtered and concentrated in vacuo. The crude residue was purified using flash
chromatography (SiO\(_2\), 50% CH\(_2\)Cl\(_2\)/hexanes) to afford the title compound (0.114 g, 67%) as a colorless oil. \([\alpha]_d^{24} = -7.0\) (c = 1.0, CHCl\(_3\)); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta 2.91\) (s, 1H), 2.75 (dt, \(J = 15.0, 3.0\) Hz, 1H), 2.29 – 2.22 (m, 1H), 2.12 (dd, \(J = 13.8, 4.8\) Hz, 1H), 1.76 (t, \(J = 11.7\) Hz, 1H), 1.67 – 1.54 (m, 3H), 1.57 (s, 3H), 1.40 – 1.24 (m, 3H), 1.31 (s, 3H), 1.14 (qd, \(J = 13.8, 3.3\) Hz, 1H), 0.96 (d, \(J = 6.6\) Hz, 3H), 0.92 (t, \(J = 11.7\) Hz, 1H), 0.85 (d, \(J = 6.6\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 156.2\) (q, \(J = 41.0\) Hz), 114.6 (q, \(J = 285.4\) Hz), 88.3, 61.4, 57.9, 48.6, 43.9, 38.4, 34.3, 30.7, 26.4, 23.8, 23.7, 21.5, 19.8, 19.6, 15.2; IR (thin film) \(\nu 2960, 2873, 1778, 1453, 1373, 1218, 1155\) cm\(^{-1}\); HRMS (ESI) \(m / z\) calcd for C\(_{17}\)H\(_{25}\)F\(_3\)O\(_3\)Na (M + Na)\(^+\) 357.1653, found 357.1647.

Isocyanides 3.26, 3.27, and 3.28. The following procedure was adopted from Pronin et al.\(^6\) A solution of trifluoroacetate 3.65 (62.3 mg, 0.186 mmol) in TMSCN (0.19 mL) was cooled to 0 \(^\circ\)C. A solution of scandium(III) trifluoromethanesulfonate (9.2 mg, 0.0186 mmol) in TMSCN (0.37 mL) was added, and the reaction mixture was allowed to warm to room temperature after 1 h. After 24 h at room temperature, the reaction was quenched with TMEDA (30 \(\mu\)L) and the volatiles were removed under reduced pressure. The crude residue was dissolved in hexanes (10 mL), washed with saturated aqueous NaHCO\(_3\) solution (5 mL), dried over MgSO\(_4\), filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO\(_2\), 2% EtOAc/hexanes) to afford a 6.3:1 mixture of elimination products 3.28 (18.9 mg, 32%) as a thin film and a 1.9:1 mixture of isocyanides 3.26 and 3.27 (8.0 mg, 12%) as a thin film. Isocyanides 3.26 and 3.27 were separated by column chromatography (SiO\(_2\), 80% CH\(_2\)Cl\(_2\)/hexanes). The
6.3:1 mixture of alkene isomers (3.28) was characterized as a mixture; only the resonances in the
1H and 13C NMR spectra for the major Δ^9-isomer are listed.

Diisocyanide 3.26: $[\alpha]_D^{22} = +14.9$ (c = 0.66, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 3.55 (s, 1H),
2.06 (dt, $J = 13.0$, 3.3 Hz, 1H), 1.94 $-$ 1.60 (m, 8H), 1.54 $-$ 1.40 (m, 2H), 1.45 (s, 3H), 1.30 (s, 3H), 1.11 (qd, $J = 13.3$, 3.5 Hz, 1H), 0.95 (d, $J = 7.0$ Hz, 3H), 0.72 (d, $J = 7.0$ Hz, 3H), 0.13 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 158.5 (br t, $J = 4.9$ Hz), 153.1 (br t, $J = 4.4$ Hz), 73.4, 61.6 (br t, $J = 5.2$ Hz), 60.3 (br t, $J = 5.3$ Hz), 42.6, 42.1, 40.4, 35.9, 32.6, 27.5, 25.5, 21.4, 21.2, 20.6, 19.2, 14.9, 2.3; IR (thin film) ν 2956, 2874, 2131, 1456, 1384, 1252, 1184, 1038, 842 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{20}$H$_{34}$N$_2$OSiNa (M + Na)$^+$ 369.2338, found 369.2343.

Diisocyanide 3.27: $[\alpha]_D^{24} = -7.7$ (c = 0.34, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 3.59 (s, 1H),
2.10 $-$ 2.01 (m, 1H), 1.97 (ap d, $J = 13.5$ Hz, 1H), 1.92 (quin of d, $J = 6.8$, 3.0 Hz, 1H) 1.75 $-$
1.65 (m, 5H), 1.54 $-$ 1.34 (m, 2H), 1.44 (s, 3H), 1.41 (br s, 3H), 1.34 $-$ 1.24 (m, 2H), 0.96 (d, $J =$
6.5 Hz, 3H), 0.79 (d, $J = 6.5$ Hz, 3H), 0.16 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 157.8 (br t, 155.3 (br t), 72.9, 61.6 (br t, $J = 5.3$ Hz), 61.5 (br t, $J = 4.9$ Hz), 42.3, 42.0, 39.1, 36.0, 32.3, 27.8, 27.6, 25.7, 21.3, 21.1, 19.1, 15.0, 2.4; IR (thin film) ν 2957, 2874, 2127, 1454, 1379, 1252, 1184, 1043, 869, 841 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{20}$H$_{34}$N$_2$OSiNa (M + Na)$^+$ 369.2338, found 369.2332.

Isocyanide 3.28: $[\alpha]_D^{23} = +25.3$ (c = 0.90, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.42 (s, 1H),
3.56 (s, 1H), 2.10 $-$ 1.50 (m, 9H) 1.64 (s, 3H), 1.45 (s, 3H), 1.28 $-$ 1.16 (m, 1H), 0.94 (d, $J = 6.9$
Hz, 3H), 0.74 (d, $J = 6.9$ Hz, 3H), 0.12 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 157.3 (br t, $J =$
4.8 Hz), 135.1, 121.8, 73.7, 61.7 (br t, $J = 5.2$ Hz), 38.9, 38.4, 37.6, 34.4, 27.7, 25.6, 25.3, 23.8, 21.2, 21.0, 14.6, 2.5; IR (thin film) ν 2959, 2894, 2872, 2133, 1455, 1379, 1251, 1052, 842 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{19}$H$_{33}$NOSiNa (M + Na)$^+$ 342.2229, found 342.2215.
Diisocyanide 3.32. To a solution of TMS ether 3.26 (6.6 mg, 0.0190 mmol) in THF (0.2 mL) was added TBAF (40 µL, 1.0 M in THF, 0.0381 mmol). After 1 h, the reaction was quenched with water (1 mL). The aqueous layer was extracted with ether (3 x 2 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 20% EtOAc/hexanes) to afford diisocyanide 3.32 (3.5 mg, 67%) as a thin film. The spectral data for this compound are consistent with those reported in the literature.\[^16\] \([\alpha]_D^{23} = +23.3\) (c = 0.35, CHCl₃); \(^1\)H NMR (CDCl₃, 500 MHz) \(\delta 3.63\) (s, 1H), 2.07 (dt, \(J = 13.0, 3.3\) Hz, 1H), 1.95 – 1.60 (m, 8H), 1.58 – 1.43 (m, 2H), 1.45 (s, 3H), 1.33 (br t, \(J = 2.0\) Hz, 3H), 1.13 (qd, \(J = 12.8, 3.3\) Hz, 1H), 0.96 (d, \(J = 7.0\) Hz, 3H), 0.75 (d, \(J = 7.0\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta 158.7\) (br t, \(J = 4.5\) Hz), 153.1 (br t, \(J = 4.6\) Hz), 70.5, 60.9 (br t, \(J = 5.4\) Hz), 60.3 (br t, \(J = 5.1\) Hz), 42.8, 42.4, 40.4, 36.2, 32.8, 28.9, 25.5, 21.4, 21.2, 20.9, 19.2, 15.2; IR (thin film) \(\nu 3414\) (br), 2955, 2873, 2133, 1452, 1386, 1267, 1180, 1126, 1002, 760 cm\(^{-1}\); HRMS (ESI) \(m / z\) calcd for C\(_{17}\)H\(_{26}\)N\(_2\)O\(_4\)Na (M + Na\(^+\)) 297.1943, found 297.1949.

Diisocyanide 3.33. To a solution of TMS ether 3.27 (3.4 mg, 0.0098 mmol) in THF (0.2 mL) was added TBAF (20 µL, 1.0 M in THF, 0.0196 mmol). After 1 h, the reaction was quenched with water (1 mL). The aqueous layer was extracted with ether (3 x 2 mL). The combined
organic extracts were dried over MgSO\(_4\), filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO\(_2\), 15% EtOAc/hexanes) to afford diisocyanide 3.33 (1.9 mg, 70%) as a thin film. \([\alpha]_D^{23} = -5.9\) (c = 0.19, CHCl\(_3\)); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta\) 3.68 (s, 1H), 2.04 – 1.88 (m, 3H), 1.87 – 1.60 (m, 5H), 1.57 – 1.28 (m, 5H), 1.44 (s, 3H), 1.43 (br s, 3H), 0.97 (d, \(J = 7.0\) Hz, 3H), 0.81 (d, \(J = 7.0\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 158.1 (br t, \(J = 5.5\) Hz), 155.4 (br t, \(J = 4.4\) Hz), 70.1, 61.3 (br t, \(J = 4.4\) Hz), 60.9 (br t, \(J = 5.2\) Hz), 42.5, 42.1, 39.2, 36.4, 32.4, 28.6, 27.9, 25.7, 21.4, 21.0, 19.1, 15.2; IR (thin film) \(\nu\) 3428 (br), 2957, 2874, 2133, 1455, 1377, 1276, 1181, 1001, 833 cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{17}\)H\(_{26}\)N\(_2\)O\(_2\)Na (M + Na)\(^+\) 297.1943, found 297.1934.

Isocyanide 3.34. To a solution of TMS ether 3.28 (9.0 mg, 0.0282 mmol) in THF (0.28 mL) was added TBAF (60 \(\mu\)L, 1.0 M in THF, 0.0563 mmol). After 1 h, the reaction was quenched with water (1 mL). The aqueous layer was extracted with ether (3 x 2 mL). The combined organic extracts were dried over MgSO\(_4\), filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO\(_2\), 2.5:47.5:50 EtOAc/CH\(_2\)Cl\(_2\)/hexanes) to afford a 7:1 mixture of isocyanides 3.34 (5.0 mg, 71%) as a thin film. The alkene isomers were characterized as a mixture; only the resonances in the \(^1\)H and \(^{13}\)C NMR spectra for the major \(\Delta^9\)-isomer are listed. \([\alpha]_D^{24} = +64.4\) (c = 0.50, CHCl\(_3\)); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta\) 5.43 (s, 1H), 3.63 (s, 1H), 2.15 – 1.78 (m, 8H), 1.71 – 1.51 (m, 2H), 1.65 (s, 3H), 1.45 (s, 3H), 1.24 (qd, \(J = 13.2, 4.0\) Hz, 1H), 0.95 (d, \(J = 6.9\) Hz, 3H), 0.77 (d, \(J = 6.9\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 157.6 (br t, \(J = 4.4\) Hz), 134.6, 122.0, 70.9, 60.8 (br t, \(J = 5.4\) Hz), 39.2, 38.6, 37.6, 34.0, 28.5, 25.6,
25.1, 23.8, 21.2, 20.9, 14.9; IR (thin film) ν 3422 (br), 2960, 2934, 2892, 2871, 2153, 2134, 1450, 1378, 1207, 1012 cm⁻¹; HRMS (ESI) m / z calcd for C₁₆H₂₅NONa (M + Na)⁺ 270.1834, found 270.1833.

Trifluoroacetate 3.66 (not shown). A mixture of epoxide 3.25 (77.1 mg, 0.323 mmol) and pyridine (0.10 mL, 0.647 mmol) in CH₂Cl₂ (3.2 mL) at 0 °C was treated with trifluoroacetic anhydride (90 µL, 0.647 mmol). After 30 minutes, the reaction was quenched with 1 M HCl (3 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic extracts were washed with water (10 mL), washed with saturated NaHCO₃ solution (10 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 40% CH₂Cl₂/hexanes) to afford the title compound (70.1 mg, 65%) as a white solid (mp 86–88 °C). [α]D²⁴ = −12.5 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 3.11 (s, 1H), 2.75 (dt, J = 15.0, 3.0 Hz, 1H), 2.25 (quin of d, J = 6.9, 3.3 Hz, 1H), 1.92 – 1.80 (m, 3H), 1.69 – 1.64 (m, 1H), 1.61 – 1.55 (m, 1H), 1.56 (s, 3H), 1.45 (tt, J = 11.7, 3.3 Hz, 1H), 1.38 (td, J = 14.4, 4.2 Hz, 1H), 1.33 (s, 3H), 1.30 – 1.20 (m, 2H), 1.13 (qd, J = 13.2, 3.6 Hz, 1H), 0.95 (d, J = 7.2 Hz, 3H), 0.83 (d, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0 (q, J = 40.8 Hz), 114.5 (q, J = 285.6 Hz), 89.5, 61.5, 58.6, 43.8, 43.4, 37.9, 34.4, 28.8, 26.5, 24.9, 24.1, 21.5, 21.3, 19.6, 15.1; IR (thin film) ν 2957, 2868, 1777, 1452, 1372, 1207, 1162 cm⁻¹; HRMS (Cl) m / z calcd for C₁₅H₂₅O (M – C₂O₂F₃)⁺ 221.1905, found 221.1907.
Isocyanides 3.29, 3.30, and 3.31. The following procedure was adopted from Pronin et al. A solution of trifluoroacetate 3.66 (18.5 mg, 0.0553 mmol) in TMSCN (50 µL) was cooled to 0 °C. A solution of scandium(III) trifluoromethanesulfonate (2.7 mg, 0.00553 mmol) in TMSCN (0.11 mL) was added, and the reaction mixture was allowed to warm to room temperature after 1 h. After 24 h at room temperature, the reaction was quenched with TMEDA (20 µL) and the volatiles were removed under reduced pressure. The crude residue was dissolved in hexanes (5 mL), washed with saturated aqueous NaHCO₃ solution (3 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 3% EtOAc/hexanes) to afford a 5.7:1 mixture of elimination products 3.31 (6.8 mg, 38%) as a thin film, diisocyanide 3.29 (4.3 mg, 22%) as thin film, and diisocyanide 3.30 (3.8 mg, 20%) as a thin film. The 5.7:1 mixture of alkene isomers (3.31) was characterized as a mixture; only the resonances in the ¹H and ¹³C NMR spectra for the major Δ⁹-isomer are listed.

Diisocyanide 3.29: [α]D²³ = −3.3. (c = 0.73, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 3.83 (s, 1H), 2.04 (dt, J = 13.0, 3.3 Hz, 1H), 1.95 – 1.79 (m, 3H), 1.79 – 1.64 (m, 4H), 1.63 – 1.48 (m, 2H), 1.40 (br s, 3H), 1.33 (br s, 3H), 1.30 (dt, J = 11.5, 3.8 Hz, 1H), 1.11 (qd, J = 13.5, 3.3 Hz, 1H), 0.94 (d, J = 6.9 Hz, 3H), 0.81 (d, J = 6.9 Hz, 3H), 0.16 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0 (br t, J = 4.6 Hz), 152.5 (br t, J = 4.6 Hz), 73.2, 61.5 (br t, J = 5.1 Hz), 60.5 (br t, J = 5.1 Hz), 41.4, 40.44, 40.37, 38.7, 31.4, 27.5, 25.7, 22.2, 21.3, 20.7, 18.9, 15.0, 1.1; IR (thin film) ν 2957, 2900, 2875, 2127, 1456, 1385, 1252, 1131, 1114, 883, 841 cm⁻¹; HRMS (ESI) m / z calcd for C₂₀H₃₄N₃OSiNa (M + Na)⁺ 369.2338, found 369.2338.
Diisocyanide 3.30: $[\alpha]_D^{24} = -13.4$ (c = 0.51, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 3.89 (s, 1H), 1.99 – 1.88 (m, 3H), 1.80 – 1.66 (m, 4H), 1.63 – 1.46 (m, 3H), 1.40 (br s, 6H), 1.37 – 1.20 (m, 2H), 0.95 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H), 0.15 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 157.6 (br t, J = 4.9 Hz), 155.6 (br t, J = 4.7 Hz), 73.3, 61.2 (br t, J = 4.6 Hz), 60.9 (br t, J = 5.3 Hz), 40.9, 40.7, 39.1, 38.9, 31.3, 28.1, 27.7, 25.9, 22.1, 21.2, 18.8, 15.1, 1.1; IR (thin film) ν 2957, 2930, 2898, 2875, 2132, 1451, 1370, 1252, 1134, 1058, 840 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{20}$H$_{34}$N$_2$OSiNa (M + Na)$^+$ 369.2338, found 369.2331.

Isocyanide 3.31: $[\alpha]_D^{23} = -20.5$ (c = 1.27, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.40 (s, 1H), 3.89 (s, 1H), 2.17 (t, J = 11.3 Hz, 1H), 1.98 – 1.03 (complex, 9H), 1.64 (s, 3H), 1.40 (s, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.85 (d, J = 6.9 Hz, 3H), 0.15 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 156.2 (br t, J = 4.9 Hz), 135.4, 121.6, 73.3, 61.7 (br t, J = 5.1 Hz), 41.5, 37.4, 36.1, 33.1, 27.6, 26.03, 25.99, 23.6, 21.1, 21.0, 14.7, 0.96; IR (thin film) ν 2959, 2907, 2127, 1452, 1368, 1252, 1127, 887, 841 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{19}$H$_{33}$NOSiNa (M + Na)$^+$ 342.2229, found 342.2240.

Diisocyanide 3.35. To a solution of TMS ether 3.29 (7.3 mg, 0.0211 mmol) in THF (0.21 mL) was added TBAF (40 µL, 1.0 M in THF, 0.0421 mmol). After 1 h, the reaction was quenched with water (1 mL). The aqueous layer was extracted with ether (3 x 2 mL). The combined organic extracts were dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 15% EtOAc/hexanes) to afford diisocyanide 3.35 (3.3 mg, 57%) as a thin film. $[\alpha]_D^{23} = +37.5$ (c = 0.33, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz)
δ 3.79 (d, J = 4.7 Hz, 1H), 2.06 (dt, J = 12.8, 3.3 Hz, 1H), 1.99 – 1.89 (m, 2H), 1.84 – 1.51 (m, 8H), 1.48 (br t, J = 1.8 Hz, 3H), 1.44 (ap tt, J = 12.0, 3.3 Hz, 1H), 1.35 (br s, 3H), 1.15 (qd, J = 13.5, 3.5 Hz, 1H), 0.94 (d, J = 6.9 Hz, 3H), 0.70 (d, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 156.8 (br t), 152.7 (br t), 71.0, 61.0 (br t, J = 5.3 Hz), 60.5 (br t, J = 5.3 Hz), 41.8, 41.5, 40.6, 38.1, 31.1, 26.6, 25.8, 22.0, 21.5, 20.6, 19.4, 15.3; IR (thin film) ν 3394 (br), 2955, 2873, 2128, 1455, 1386, 1127, 1032, 759 cm⁻¹; HRMS (ESI) m / z calcd for C17H26N2ONa (M + Na)⁺ 297.1943, found 297.1954.

Diisocyanide 3.36. To a solution of TMS ether 3.30 (5.1 mg, 0.0147 mmol) in THF (0.2 mL) was added TBAF (30 µL, 1.0 M in THF, 0.0294 mmol). After 1 h, the reaction was quenched with water (1 mL). The aqueous layer was extracted with ether (3 x 2 mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO2, 20% EtOAc/hexanes) to afford diisocyanide 3.36 (2.9 mg, 73%) as a thin film. [α]D 24 = –22.6 (c = 0.29, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 3.86 (s, 1H), 2.01 – 1.90 (m, 3H), 1.83 – 1.60 (m, 6H), 1.59 – 1.50 (m, 1H), 1.48 (br t, J = 1.8 Hz, 3H), 1.43 – 1.33 (m, 3H), 1.41 (br t, J = 1.8 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 157.5 (br t), 155.8 (br t), 71.1, 61.2 (br t, J = 4.4 Hz), 60.4 (br t, J = 5.4 Hz), 41.7, 41.2, 39.3, 38.4, 31.1, 28.0, 26.8, 26.0, 21.8, 21.5, 19.3, 15.4; IR (thin film) ν 3391 (br), 2956, 2939, 2873, 2151, 2128, 1454, 1386, 1179, 1130, 1032 cm⁻¹; HRMS (ESI) m / z calcd for C17H26N2ONa (M + Na)⁺ 297.1943, found 297.1931.

\[
\begin{align*}
\text{Diisocyanide 3.36} & \\
\text{To a solution of TMS ether 3.30 (5.1 mg, 0.0147 mmol) in THF (0.2 mL)} & \\
\text{was added TBAF (30 µL, 1.0 M in THF, 0.0294 mmol). After 1 h, the reaction} & \\
\text{was quenched with water (1 mL). The aqueous layer was extracted with ether (3 x 2 mL).} & \\
\text{The combined organic extracts were dried over MgSO4, filtered, and} & \\
\text{concentrated in vacuo. The crude residue} & \\
\text{was purified using flash chromatography (SiO2, 20% EtOAc/hexanes) to afford} & \\
\text{diisocyanide 3.36 (2.9 mg, 73%) as a thin film. [α]D 24 = –22.6 (c = 0.29, CHCl3);} & \\
\text{1H NMR (CDCl3, 500 MHz) δ 3.86 (s, 1H), 2.01 – 1.90 (m, 3H), 1.83 – 1.60 (m,} & \\
\text{6H), 1.59 – 1.50 (m, 1H), 1.48 (br t, J = 1.8 Hz, 3H), 1.43 – 1.33 (m, 3H),} & \\
\text{1.41 (br t, J = 1.8 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.88 (d, J =} & \\
\text{7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 157.5 (br t), 155.8 (br t,} & \\
\text{71.1, 61.2 (br t, J = 4.4 Hz), 60.4 (br t, J = 5.4 Hz), 41.7, 41.2,} & \\
\text{39.3, 38.4, 31.1, 28.0, 26.8, 26.0, 21.8, 21.5, 19.3, 15.4;} & \\
\text{IR (thin film) ν 3391 (br), 2956, 2939, 2873, 2151, 2128,} & \\
\text{1454, 1386, 1179, 1130, 1032 cm⁻¹; HRMS (ESI) m} & \\
\text{z calcd for C17H26N2ONa (M + Na)⁺ 297.1943, found 297.1931.} & \\
\end{align*}
\]
Isocyanide 3.37. To a solution of TMS ether 3.31 (12.7 mg, 0.0397 mmol) in THF (0.40 mL) was added TBAF (80 µL, 1.0 M in THF, 0.0795 mmol). After 1 h, the reaction was quenched with water (1 mL). The aqueous layer was extracted with ether (3 x 3 mL). The combined organic extracts were dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 1:49:50 EtOAc/CH$_2$Cl$_2$/hexanes) to afford a 5.6:1 mixture of isocyanides 3.37 (5.8 mg, 59%) as a thin film. The alkene isomers were characterized as a mixture; only the resonances in the 1H and 13C NMR spectra for the major Δ^9-isomer are listed. [α]$_D^{24} = -4.1$ (c = 0.58, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 5.42 (s, 1H), 3.86 (d, $J = 4.5$ Hz, 1H), 2.11 – 1.51 (m, 10H), 1.65 (s, 3H), 1.49 (t, $J = 1.8$ Hz, 3H), 1.36 (qd, $J = 13.0$, 4.0 Hz, 1H), 0.94 (d, $J = 7.0$ Hz, 3H), 0.84 (d, $J = 7.0$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 156.0 (br t, $J = 4.4$ Hz), 134.9, 122.0, 71.6, 61.1 (br t, $J = 5.2$ Hz), 41.0, 38.5, 36.5, 32.9, 26.7, 26.1, 25.7, 24.1, 21.3, 21.0, 15.3; IR (thin film) ν 3412 (br), 2957, 2932, 2870, 2151, 2128, 1451, 1387, 1367, 1038 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{16}$H$_{25}$NONa (M + Na)$^+$ 270.1834, found 270.1841.

Diol 3.39. Methylmagnesium bromide (0.47 mL, 3.0 M in Et$_2$O, 1.40 mmol) was added dropwise to a solution of (3aR)-(+) -sclareolide (3.38) (70.0 mg, 0.280 mmol) in THF (2.8 mL) cooled to 0 °C. The reaction mixture was allowed to warm to room temperature for 30 min, and the reaction
was quenched with saturated aqueous NH₄Cl solution (5 mL) at 0 °C. The aqueous layer was extracted with Et₂O (3 x 15 mL). The combined organic extracts were washed with brine (15 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 25% EtOAc/hexanes), yielding diol 3.39 (69.4 mg, 88%) as a white solid (mp 166–168 °C). [α]D²³ = +8.1 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 4.06 (s, 2H), 1.88 (dt, J = 12.5, 3.0 Hz, 1H), 1.74 – 1.32 (m, 7H), 1.30 – 1.07 (m, 3H), 1.27 (s, 3H), 1.22 (s, 3H), 1.19 (s, 3H), 0.98 – 0.82 (m, 3H), 0.87 (s, 3H), 0.78 (s, 3H), 0.75 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 73.4, 69.8, 56.3, 54.8, 44.4, 42.0, 40.1, 38.9, 38.5, 33.6, 33.3, 28.5, 25.1, 21.8, 20.4, 18.7, 15.6; IR (thin film) ν 3230 (br), 2964, 2934, 2868, 1467, 2128, 1451, 1386, 1155, 1124, 940, 756 cm⁻¹; HRMS (ESI) m / z calcd for C₁₈H₃₄O₂Na (M + Na)⁺ 305.2456, found 305.2451.

Diisocyanide 3.40. The following procedure was adopted from Pronin et al.⁶ A mixture of diol (3.39) (25.8 mg, 0.0913 mmol) and pyridine (40 µL, 0.383 mmol) in CH₂Cl₂ (0.91 mL) at 0 °C was treated with trifluoroacetic anhydride (0.1 mL, 1.92 M in CH₂Cl₂, 0.192 mmol). After 15 minutes, the reaction was quenched with 1 M HCl (2 mL). The aqueous layer was extracted with hexanes (2 x 3 mL). The combined organic extracts were washed with water (5 mL), washed with saturated NaHCO₃ solution (5 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude trifluoroacetate was dissolved in TMSCN (0.1 mL) and cooled to 0 °C. A solution of scandium(III) trifluoromethanesulfonate (1.3 mg, 0.00274 mmol) in TMSCN (0.1 mL) was added. After 30 min, the reaction mixture was placed in a 3°C refrigerator for 18 h. The reaction
was quenched with TMEDA (20 µL) and the volatiles were removed under reduced pressure. The crude residue was suspended in hexanes (5 mL), washed with saturated aqueous NaHCO₃ solution (5 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 2.5% EtOAc/hexanes) to afford the title compound (6.3 mg, 23%) as a thin film. [α]D²⁴ = +17.1 (c = 0.60, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 2.13 (dt, J = 14.0, 3.0 Hz, 1H), 1.87 – 1.31 (m, 7H), 1.53 (s, 3H), 1.50 (s, 3H), 1.48 (s, 3H), 1.29 – 1.11 (m, 3H), 1.09 – 1.75 (m, 3H), 1.04 (s, 3H), 0.90 (s, 3H), 0.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0 (br t), 156.4 (br t), 61.4 (br t, J = 4.4 Hz), 57.4 (br t, J = 4.8 Hz), 55.4, 52.5, 42.0, 41.6, 40.9, 39.4, 37.9, 33.6, 33.5, 33.1, 32.6, 32.1, 21.9, 18.7, 18.1, 15.4; IR (thin film) ν 2929, 2841, 1465, 1444, 1392, 1367, 1156, 1131 cm⁻¹; HRMS (ESI) m / z calcd for C₂₀H₃₂N₂Na (M + Na)⁺ 323.2463, found 323.2456.

Isocyanide 3.41. The following procedure was adopted from Pronin et al.⁶ A mixture of diol (3.39) (69.4 mg, 0.246 mmol) and pyridine (80 µL, 1.03 mmol) in CH₂Cl₂ (2.5 mL) at 0 °C was treated with trifluoroacetic anhydride (70 µL, 0.516 mmol). After 15 minutes, the reaction was quenched with 1 M HCl (3 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic extracts were washed with water (5 mL), washed with saturated NaHCO₃ solution (5 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude trifluoroacetate was dissolved in TMSCN (0.25 mL) and cooled to 0 °C. A solution of scandium(III) trifluoromethanesulfonate (2.4 mg, 0.00492 mmol) in TMSCN (0.16 mL) was added. After 2 h at 0 °C, the reaction was quenched with pyridine (50 µL) and the volatiles were
removed under reduced pressure. The crude residue was dissolved in MeOH (2 mL) and cooled to 0 °C. Potassium carbonate (68.0 mg, 0.492 mmol) was added in one portion. After 15 min, the reaction mixture was filtered and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10% EtOAc/hexanes) to afford the title compound (14.8 mg, 21%) as a solid (mp 156–158 °C). [α]D²¹ = +27.3 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 2.10 (ap d, J = 14.0 Hz, 1H), 1.77 – 1.54 (m, 6H), 1.54 – 1.33 (m, 3H), 1.40 (s, 3H), 1.28 (s, 3H), 1.25 (s, 3H), 1.22 – 1.04 (m, 3H), 1.03 (s, 3H), 0.95 – 0.86 (m, 2H), 0.88 (s, 3H), 0.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0 (br t, J = 4.9 Hz), 70.3, 61.7 (br t, J = 4.3 Hz), 55.6, 51.7, 42.3, 41.8, 40.6, 39.4, 38.9, 33.57, 33.55, 32.8, 32.3, 31.7, 21.9, 18.8, 18.2, 15.1; IR (thin film) ν 3486 (br), 2950, 2919, 2839, 2134, 1466, 1442, 1389, 1365, 1154, 1129 cm⁻¹; HRMS (ESI) m / z calcd for C₁₉H₃₃NONa (M + Na)⁺ 314.2460, found 314.2469.

Aldehyde 3.42. The title compound was prepared according to the literature procedure.¹⁷ The spectral data for this compound are consistent with those reported in the literature.¹⁷ ¹H NMR (500 MHz, CDCl₃) δ 9.78 (t, J = 1.8 Hz, 1H), 3.64 (t, J = 6.0 Hz, 2H), 2.49 (td, J = 7.0, 1.5 Hz, 2H), 1.85 (quin, J = 6.6 Hz, 2H), 0.88 (s, 9H), 0.03 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 202.8, 62.2, 40.9, 26.0, 25.6, 18.4, –5.3.
Keto-aldehyde 3.43. The following procedure was adapted from Hagiwara et al.10 Diethylamino(trimethyl)silane (90 µL, 0.473 mmol) was added to a solution of aldehyde 3.42 (0.478 g, 2.36 mmol) in MeCN (7.9 mL). The reaction mixture was cooled to 0 °C and methyl vinyl ketone (0.29 mL, 3.54 mmol) was added dropwise via syringe. The reaction mixture was heated at reflux for 24 h, cooled to room temperature, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO\textsubscript{2}, 10% EtOAc/hexanes) to afford the title compound (0.561 g, 87%) as a colorless oil. The spectral data for this compound are consistent with those reported in the literature.18 1H NMR (CDCl\textsubscript{3}, 500 MHz) δ 9.57 (d, J = 2.5 Hz, 1H), 3.68 – 3.59 (m, 2H), 2.56 – 2.32 (m, 3H), 2.13 (s, 3H), 1.96 – 1.84 (m, 2H), 1.77 – 1.65 (m, 2H), 0.86 (s, 9H), 0.02 (s, 6H); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 208.1, 204.4, 60.6, 48.7, 40.9, 32.7, 30.2, 26.0, 22.3, 18.4, –5.4.

Enone 3.44. To a solution of keto-aldehyde 3.43 (2.43 g, 8.92 mmol) in Et\textsubscript{2}O (83 mL) and THF (28 mL) was added aqueous KOH solution (89 mL, 0.3 N) and nBu\textsubscript{4}NOH (2.9 mL, 40% aq) in one portion. The reaction mixture was heated at reflux for 8 h and cooled to room temperature, at which point additional KOH (1.50 g, 26.7 mmol) was added in one portion. The reaction mixture was heated at reflux for 15 h, and cooled to room temperature. The biphasic reaction mixture was separated, and the aqueous layer was extracted with Et\textsubscript{2}O (2 x 100 mL). The combined organic
extracts were washed with brine (100 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10% EtOAc/hexanes) to afford the title compound (1.48 g, 65%) as a colorless oil. The spectral data for this compound are consistent with those reported in the literature.¹⁸ ¹H NMR (CDCl₃, 500 MHz) δ 6.90 (ddd, J = 10.0, 2.8, 1.3 Hz, 1H), 5.97 (ddd, J = 10.0, 2.5, 0.75 Hz, 1H), 3.79 – 3.67 (m, 2H), 2.68 – 2.57 (m, 1H), 2.49 (dt, J = 16.8, 4.8 Hz, 1H), 2.36 (ddd, J = 17.0, 12.3, 5.0 Hz, 1H), 2.17 – 2.08 (m, 1H), 1.79 – 1.66 (m, 2H), 1.66 – 1.56 (m, 1H), 0.89 (s, 9H), 0.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 200.0, 155.4, 129.0, 60.5, 37.4, 37.0, 33.1, 28.7, 26.0, 18.4, –5.21, –5.24.

Ketone 3.46. To a solution of vinyl iodide 3.45 (0.313 g, 1.36 mmol) in Et₂O (2.3 mL, previously sparged with argon gas for 20 min) at –78 °C was added tert-butyllithium (1.70 mL, 1.60 M in pentane, 2.72 mmol) dropwise via syringe. After 20 min, lithium 2-thienylcyanocuprate solution (5.43 mL, 0.25 M in THF, 1.36 mmol) was added dropwise via syringe. The reaction mixture was allowed to stir for 1 h at –78 °C. A solution of enone 3.44 (0.230 g, 0.905 mmol) in Et₂O (1.0 mL) was added dropwise via syringe. The transfer was completed with additional portions of Et₂O (2 × 0.5 mL). After allowing the reaction mixture to warm to –40 °C and stir for 1 h, the reaction was quenched with 9:1 saturated NH₄Cl solution/NH₄OH (10 mL). After warming to room temperature, the solution turned a deep blue color. The aqueous layer was extracted with Et₂O (3 × 15 mL). The combined organic extracts were washed with 9:1 saturated NH₄Cl solution/NH₄OH (2 × 10 mL), washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified
using flash chromatography (SiO₂, 5% EtOAc/hexanes) to afford the title compound (0.298 g, 92%) as a colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ 5.09 (d, J = 9.5 Hz, 1H), 3.71 – 3.60 (m, 2H), 3.56 – 3.48 (m, 2H), 2.55 – 2.24 (m, 6H), 2.24 – 2.10 (m, 2H), 1.88 – 1.79 (m, 1H), 1.73 (s, 3H), 1.69 – 1.59 (m, 1H), 1.39 (qd, J = 13.0, 4.8 Hz, 1H), 1.22 – 1.13 (m, 1H), 0.89 (s, 9H), 0.04 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 211.0, 132.0, 131.7, 61.2, 47.6, 43.4, 42.4, 41.0, 38.1, 36.3, 35.3, 31.1, 26.1, 23.0, 18.4, −5.1, −5.2; IR (thin film) ν 2954, 2930, 2897, 2857, 1717, 1255, 1096, 835, 775 cm⁻¹; HRMS (Cl) m/z calc'd for C₁₉H₃₅ClO₂SiNH₄ (M + NH₄)⁺ 376.2439, found 376.2437. ¹H-NOESY-2D (500 MHz, CDCl₃) spectra were obtained for ketone 3.46 and selected NOE interactions are shown.

cis- and trans-Decalones 3.47. To a solution of alkyl chloride 3.46 (0.298 g, 0.829 mmol) in tert-butyl alcohol (8.3 mL) at 30 °C was added potassium tert-butoxide (0.62 mL, 1.6 M in THF, 0.995 mmol) dropwise via syringe. After stirring for 6 h at 30 °C, the reaction was quenched with saturated NH₄Cl solution (16 mL). The aqueous layer was extracted with pentane (3 x 20 mL), and the combined organic extracts were washed with water (4 x 20 mL) and brine (20 mL). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 5% EtOAc/hexanes) to afford a 1:1 mixture of trans-
and cis-decalones (176.4 mg, 71%) as a colorless oil, which was characterized as a mixture. 1H NMR (CDCl$_3$, 500 MHz) δ 5.54 (s, 1H), 5.30 (s, 1H), 3.78 – 3.62 (m, 4H), 2.51 – 2.34 (m, 4H), 2.33 – 2.25 (m, 2H), 2.22 – 1.77 (m, 14H), 1.70 – 1.29 (m, 6H), 1.67 (s, 3H), 1.63 (s, 3H), 0.897 (s, 9H), 0.895 (s, 9H), 0.059 (s, 6H), 0.058 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 214.0, 212.8, 135.7, 124.5, 122.3, 61.6, 61.1, 51.2, 47.1, 46.1, 42.2, 41.1, 38.1, 38.0, 35.9, 35.3, 34.9, 32.7, 39.8, 28.2, 28.1, 26.1, 23.81, 23.80, 23.0, 21.9, 18.4, –5.12, –5.14, –5.17. IR (thin film) ν 2953, 2928, 2857, 1713, 1472, 1254, 1100, 836, 776 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{19}$H$_{34}$O$_2$SiNa (M + Na)$^+$ 345.2226, found 345.2226.

cis-Decalin 3.48 and trans-decalin 3.49. Methylmagnesium bromide (1.54 mL, 3.0 M in Et$_2$O, 4.62 mmol) was added dropwise to a solution of a mixture of cis- and trans-decalones 3.47 (0.213 g, 0.923 mmol) in THF (9.2 mL) cooled to 0 °C. The reaction mixture was allowed to warm to room temperature for 30 min, and the reaction was quenched with saturated aqueous NH$_4$Cl solution (12 mL) at 0 °C. The aqueous layer was extracted with Et$_2$O (3 × 20 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 5 → 10% EtOAc/hexanes), yielding trans-decalin 3.49 (0.103 g, 46%) and cis-decalin 3.48 (0.101 g, 45%) as colorless oils.

cis-Decalin 3.48: 1H NMR (CDCl$_3$, 500 MHz) δ 5.57 (d, $J = 4.0$ Hz, 1H), 3.71 – 3.64 (m, 1H), 3.63 – 3.56 (m, 1H), 2.03 – 1.94 (m, 2H), 1.91 – 1.81 (m, 3H), 1.72 – 1.36 (m, 6H), 1.65 (s, 3H), 1.35 – 1.22 (m, 2H), 1.30 (s, 3H), 1.10 (qd, $J = 13.0$, 4.0 Hz, 1H), 0.89 (s, 9H), 0.04 (s, 6H); 13C
NMR (125 MHz, CDCl₃) δ 134.7, 124.9, 72.6, 61.7, 45.5, 40.1, 36.4, 36.2, 35.3, 31.2, 29.4, 28.0, 26.1, 23.7, 18.7, −5.08, −5.12; IR (thin film) ν 3380 (br), 2956, 2929, 2893, 2857, 1462, 1254, 1095, 835, 774 cm⁻¹; HRMS (ESI) m / z calcd for C₂₀H₃₈O₂SiNa (M + Na)⁺ 361.2539, found 361.2547.

trans-Decalin 3.49: ¹H NMR (CDCl₃, 500 MHz) δ 5.53 (s, 1H), 3.74 − 3.67 (m, 1H), 3.67 − 3.59 (m, 1H), 2.06 − 1.86 (m, 4H), 1.85 − 1.76 (m, 1), 1.72 − 1.60 (m, 2H), 1.66 (s, 3H), 1.47 − 1.28 (m, 4H), 1.22 (s, 3H), 1.17 − 1.00 (m, 3H), 0.90 (s, 9H), 0.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 134.3, 123.5, 70.7, 61.5, 47.8, 40.5, 40.1, 38.5, 36.1, 31.0, 28.6, 27.9, 26.1, 23.8, 22.6, 18.5, −5.07, −5.11; IR (thin film) ν 3455 (br), 2954, 2928, 2857, 1462, 1375, 1255, 1096, 835, 774 cm⁻¹; HRMS (ESI) m / z calcd for C₂₀H₃₈O₂SiNa (M + Na)⁺ 361.2539, found 361.2544.

Epoxides 3.50 and 3.51. To a solution of *trans*-decalin 3.49 (0.109 g, 0.321 mmol) in acetone (16.1 mL) was added saturated aqueous NaHCO₃ (10.7 mL). The resulting mixture was cooled to 0 °C and a solution of Oxone® (0.217 g, 0.353 mmol) in H₂O (2 mL) was added dropwise over 5 minutes. The reaction mixture was stirred vigorously for 30 min at 0 °C, diluted with H₂O (20 mL) and extracted with EtOAc (4 × 20 mL). The combined organic extracts were diluted with hexanes until cloudy, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using flash chromatography (SiO₂, 10 → 20% EtOAc/hexanes) to afford β-epoxide 3.50 (25.7 mg, 23%) and α-epoxide 3.51 (72.4 mg, 64%) as colorless oils.

Epoxide 3.50: ¹H NMR (CDCl₃, 500 MHz) δ 3.78 − 3.71 (m, 1H), 3.71 − 3.63 (m, 1H), 3.17 (s, 1H), 2.02 − 1.93 (m, 1H), 1.90 − 1.78 (m, 2H), 1.69 − 1.56 (m, 4H), 1.55 − 1.38 (m, 4H), 1.30 (s,
3H), 1.20–1.06 (m, 2H), 1.16 (s, 3H), 0.99 (s, 1H), 0.89 (s, 9H), 0.05 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 70.8, 62.1, 61.3, 58.5, 41.9, 41.1, 40.1, 36.2, 35.9, 29.1, 29.0, 27.7, 26.1, 24.9, 21.7, 18.5, −5.12, −5.16; IR (thin film) ν 3480 (br), 2929, 2857, 1462, 1377, 1255, 1096, 836, 775 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{20}$H$_{38}$O$_3$SiNa (M + Na)$^+$ 377.2488, found 377.2488.

Epoxide 3.51: 1H NMR (CDCl$_3$, 500 MHz) δ 3.78–3.70 (m, 1H), 3.70–3.61 (m, 1H), 2.90 (s, 1H), 2.13–2.01 (m, 2H), 1.78–1.70 (m, 1H), 1.68–1.54 (m, 3H), 1.52–1.44 (m, 1H), 1.41–1.32 (m, 4H), 1.29 (s, 3H), 1.18 (s, 3H), 1.17–1.06 (m, 1H), 1.04 (s, 1H), 0.89 (s, 9H), 0.85 (t, J = 11.8 Hz, 1H), 0.05 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 70.4, 62.4, 61.1, 58.2, 47.3, 41.4, 39.7, 36.4, 36.3, 30.8, 28.6, 28.2, 26.1, 23.7, 19.6, 18.4, −5.11, −5.18; IR (thin film) ν 3481 (br), 2954, 2928, 2856, 1450, 1378, 1255, 1095, 836, 775 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{20}$H$_{38}$O$_3$SiNa (M + Na)$^+$ 377.2488, found 377.2483.

Trifluoroacetate 3.67 (not shown). A mixture of epoxide 3.51 (79.3 mg, 0.224 mmol) and pyridine (60 µL, 0.672 mmol) in CH$_2$Cl$_2$ (2.2 mL) at 0 °C was treated with trifluoroacetic anhydride (50 µL, 0.335 mmol). After 30 minutes, the reaction was quenched with 1 M HCl (3 mL). The aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 3 mL). The combined organic extracts were washed with water (5 mL), washed with saturated NaHCO$_3$ solution (5 mL), dried over MgSO$_4$, filtered and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 5% EtOAc/hexanes) to afford the title compound (82.3 mg, 82%) as a colorless oil. 1H NMR (CDCl$_3$, 500 MHz) δ 3.76–3.69 (m, 1H), 3.67–3.59 (m, 1H), 2.88 (s, 1H), 2.70 (dt, J = 14.8, 3.3 Hz, 1H), 2.15–2.02 (m, 2H), 1.86–1.79 (m, 1H), 1.68–1.52 (m,
3H), 1.57 (s, 3H), 1.49 – 1.21 (m, 4H), 1.30 (s, 3H), 1.05 (qd, $J = 14.0$, 3.5 Hz, 1H), 0.91 (t, $J = 11.0$ Hz, 1H), 0.88 (s, 9H), 0.04 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 156.2 (q, $J = 41$ Hz), 114.5 (q, $J = 285.4$ Hz), 88.2, 62.0, 60.7, 58.0, 48.6, 41.2, 36.2, 35.7, 34.3, 30.8, 27.7, 26.1, 23.73, 23.65, 19.6, 18.4, –5.17, –5.24; IR (thin film) ν 2956, 2930, 2859, 1779, 1452, 1374, 1255, 1157, 1092, 837, 777 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{22}$H$_{37}$F$_3$O$_4$SiNa (M + Na)$^+$ 473.2311, found 473.2301.

Diisocyanides 3.52 and 3.53. The following procedure was adopted from Pronin et al.6 A solution of trifluoroacetate 3.67 (50.7 mg, 0.113 mmol) in TMSCN (0.11 mL) was cooled to 0 °C. A solution of scandium(III) trifluoromethanesulfonate (5.5 mg, 0.0113 mmol) in TMSCN (0.23 mL) was added, and the reaction mixture was allowed to warm to room temperature after 1 h. After 24 h at room temperature, the reaction was quenched with TMEDA (30 µL) and the volatiles were removed under reduced pressure. The crude residue was dissolved in hexanes (5 mL), washed with saturated aqueous NaHCO$_3$ solution (3 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 3 → 6% EtOAc/hexamnes) to afford diisocyanide 3.52 (5.0 mg, 10%) as thin film and diisocyanide 3.53 (6.0 mg, 11%) as a 4:1 mixture of C10 epimers.

Diisocyanide 3.52: 1H NMR (CDCl$_3$, 500 MHz) δ 3.71 – 3.57 (m, 3H), 2.02 (dt, $J = 13.5$, 4.0 Hz, 1H), 1.90 – 1.09 (m, 12H), 1.45 (s, 3H), 1.31 (br s, 3H), 0.90 (s, 9H), 0.13 (s, 9H), 0.06 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 159.0 (br t), 153.3 (br t), 73.5, 61.9 (br t, $J = 5.1$ Hz), 60.7, 60.2 (br t, $J = 4.9$ Hz), 42.6, 40.4, 38.7, 34.8, 34.6, 32.6, 27.6, 26.8, 26.1, 21.1, 20.5, 18.5, 2.4, –5.16,
Diisocyanide 3.53: 1H NMR (CDCl$_3$, 500 MHz) δ 3.71 (d, $J = 9.0$ Hz, 1H), 3.69 – 3.56 (m, 2H), 2.39 – 2.29 (m, 1H), 2.13 (dt, $J = 10.0$, 3.5 Hz, 1H), 1.98 – 1.73 (m, 4H), 1.51 – 1.06 (m, 7H), 1.41 (s, 3H), 1.40 (s, 3H), 0.88 (s, 9H), 0.28 (s, 9H), 0.03 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 156.1 (br t), 155.5 (br t), 81.0, 63.0 (br t, $J = 5.1$ Hz), 60.8, 60.6 (br t, $J = 4.3$ Hz), 47.8, 44.4, 38.4, 38.0, 37.9, 37.3, 28.5, 26.7, 26.1, 21.8, 20.6, 18.4, 1.5, –5.2, –5.3; IR (thin film) v 2952, 2930, 2897, 2858, 2127, 1463, 1384, 1253, 1104, 840, 775 cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{25}$H$_{46}$N$_2$O$_2$Si$_2$Na (M + Na)$^+$ 485.2996, found 485.2990.

Diisocyanide 3.54. To a solution of silyl ether 3.52 (7.8 mg, 0.0169 mmol) in THF (0.2 mL) was added TBAF (90 μL, 1.0 M in THF, 0.0845 mmol). After 24 h, the reaction was quenched with saturated NaHCO$_3$ solution (1 mL). The reaction mixture was extracted with ether (3 x 2 mL). The combined organic extracts were washed with water (5 mL), washed with brine (5 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO$_2$, 2 \rightarrow 3% MeOH/CH$_2$Cl$_2$) to afford diisocyanide 3.54 (2.7 mg, 57%) as a thin film. 1H NMR (CDCl$_3$, 500 MHz) δ 3.78 – 3.64 (s, 3H), 2.05 (dt, $J = 13.0$, 3.3 Hz, 1H), 1.96 – 1.59 (m, 9H), 1.59 – 1.31 (m, 3H), 1.45 (s, 3H), 1.35 (s, 3H), 1.29 – 1.17 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 159.0 (br t), 153.2 (br t), 70.5, 61.2 (br t, $J = 5.4$ Hz), 60.21, 60.17 (br t, $J = 5.3$ Hz), 42.8, 40.2, 38.8, 34.8, 34.3, 32.7, 28.8, 26.6, 21.1, 20.8; IR (thin film) v 3390 (br), 2937, 2857, 2130, 1462, 1384, 1252, 1103, 1039, 840 cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{25}$H$_{46}$N$_2$O$_2$Si$_2$Na (M + Na)$^+$ 485.2996, found 485.3009.
2871, 2134, 1451, 1384, 1122, 1036, 1003, 733 cm⁻¹; HRMS (ESI) m / z calcd for C₁₆H₂₄N₂O₂Na (M + Na)⁺ 299.1736, found 299.1733.

Diisocyanide 3.55. To a solution of silyl ether 3.53 (8.5 mg, 0.0184 mmol) in THF (0.2 mL) was added TBAF (0.10 mL, 1.0 M in THF, 0.0918 mmol). After 24 h, the reaction was quenched with saturated NaHCO₃ solution (1 mL). The reaction mixture was extracted with ether (3 x 2 mL). The combined organic extracts were washed with water (5 mL), washed with brine (5 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 3% MeOH/CH₂Cl₂) to afford diisocyanide 3.55 (3.9 mg, 76%) as a 4:1 mixture of C10 epimers. ¹H NMR (CDCl₃, 500 MHz) δ 4.67 (br s, 1H), 3.90 (td, J = 10.0, 3.0 Hz, 1H), 3.76 (ddd, J = 10.0, 6.5, 4.0 Hz, 1H), 3.55 (d, J = 10.0 Hz, 1H), 2.56 (br s, 1H), 2.29 – 2.19 (m, 1H), 2.12 (dt, J = 13.5, 3.8 Hz, 1H), 2.06 – 1.17 (m, 10H), 1.42 (br s, 3H), 1.40 (br s, 3H), 1.06 (t, J = 12.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3 (br t), 153.1 (br t), 79.7, 62.8 (br t, J = 5.6 Hz), 60.8 (br t, J = 4.6 Hz), 60.1, 48.7, 42.1, 39.4, 39.1, 36.8, 36.3, 28.8, 28.2, 21.6, 19.3; IR (thin film) ν 3357 (br), 2938, 2870, 2130, 1448, 1384, 1116, 1041, 731 cm⁻¹; HRMS (ESI) m / z calcd for C₁₆H₂₄N₂O₂Na (M + Na)⁺ 299.1736, found 299.1727.

Isocyanide 3.68 (not shown). A mixture of cis-decalin 3.48 (0.111 g, 0.327 mmol) and pyridine (80 µL, 0.981 mmol) in CH₂Cl₂ (3.3 mL) at 0 °C was treated with trifluoroacetic anhydride (70
µL, 0.291 mmol). After 30 minutes, the reaction was quenched with 1 M HCl (3 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 3 mL). The combined organic extracts were washed with water (5 mL), washed with saturated NaHCO₃ solution (5 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude trifluoroacetate was dissolved in TMSCN (0.2 mL). A solution of scandium(III) trifluoromethanesulfonate (5.0 mg, 0.0101 mmol) in TMSCN (0.2 mL) was added. After 3.5 h, the reaction was quenched with TMEDA (50 µL) and the volatiles were removed under reduced pressure. The crude residue was suspended in hexanes (5 mL), washed with saturated aqueous NaHCO₃ solution (5 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 50% CH₂Cl₂/hexanes) to afford the title compound (48.7 mg, 69%) as a thin film. ¹H NMR (CDCl₃, 500 MHz) δ 5.62 (d, J = 5.5 Hz, 1H), 3.73 – 3.66 (m, 1H), 3.66 – 3.57 (m, 1H), 2.22 – 2.15 (m, 1H), 2.07 – 1.79 (m, 5H), 1.72 – 1.61 (m, 2H), 1.64 (s, 3H), 1.60 – 1.28 (m, 5H), 1.42 (s, 3H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 153.5 (br t), 133.7, 124.5, 62.0 (br t, J = 4.6 Hz), 61.3, 44.5, 37.9, 36.1, 35.4, 33.4, 31.0, 27.9, 27.4, 26.1, 23.6, 19.4, 18.4, −5.07, −5.13; IR (thin film) ν 2930, 2858, 2127, 1461, 1380, 1255, 1096, 835, 775 cm⁻¹; HRMS (ESI) m / z calcd for C₂₁H₃₇NO₃SiNa (M + Na)⁺ 370.2542, found 370.2533.

Alcohol 3.56. To a solution of silyl ether 3.68 (48.7 mg, 0.140 mmol) in THF (1.4 mL) was added TBAF (0.70 mL, 1.0 M in THF, 0.700 mmol). After 24 h, the reaction was quenched with saturated NaHCO₃ solution (2 mL). The reaction mixture was extracted with ether (3 x 3 mL). The combined organic extracts were washed with water (5 mL), washed with brine (5 mL), dried
over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using flash chromatography (SiO₂, 1.5% MeOH/CH₂Cl₂) to afford alcohol **3.56** (27.1 mg, 83%) as a thin film. ¹H NMR (CDCl₃, 500 MHz) δ 5.62 (d, J = 5.5 Hz, 1H), 3.79 – 3.70 (m, 1H), 3.70 – 3.60 (m, 1H), 2.23 – 2.13 (m, 1H), 2.09 – 1.65 (m, 7H), 1.64 (s, 3H), 1.60 – 1.28 (m, 6H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.4 (br t), 134.1, 124.1, 62.0 (br t, J = 4.5 Hz), 60.8, 44.5, 38.0, 36.0, 35.3, 33.2, 31.0, 27.8, 27.1, 23.6, 19.4; IR (thin film) ν 3399 (br), 2936, 2876, 2833, 2127, 1450, 1379, 1047, 855 cm⁻¹; HRMS (ESI) m / z calcd for C₁₅H₂₃NONa (M + Na)⁺ 256.1677, found 256.1677.

Isocyanides 3.58 and 3.59. A solution of biotin **3.57** (3.4 mg, 0.0141 mmol), EDC•HCl (4.9 mg, 0.0258 mmol), and DMAP (~0.5 mg, 0.004 mmol) in DMF (0.2 mL) was allowed to stir at room temperature for 1 h. Alcohol **3.56** (3.0 mg, 0.0129 mmol) and Et₃N (10 µL) were added as a solution in DMF (0.2 mL). After stirring 6 d at room temperature, saturated NH₄Cl solution (1 mL) and water (1 mL) were added. The reaction mixture was extracted with EtOAc (3 x 2 mL). The combined organic extracts were washed with saturated NaHCO₃ solution (3 mL) and brine (3 mL). The organic phase was dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using flash chromatography (SiO₂, 4% MeOH/CH₂Cl₂) to afford isocyanides **3.58** and **3.59** (4.2 mg, 71%) as a thin film. ¹H NMR and ¹³C NMR spectra were complicated by the mixture of diastereomers. IR (thin film) ν 3254 (br), 2925, 2856, 2129, 1704, 1456, 1261, 1183, 758 cm⁻¹; HRMS (ESI) m / z calcd for C₂₅H₅₇N₃O₅SNa (M + Na)⁺ 482.2453, found 482.2435.
Diisocyanides 3.60 and 3.61. A solution of biotin 3.57 (2.2 mg, 0.00915 mmol), EDC•HCl (3.2 mg, 0.0166 mmol), and DMAP (~0.3 mg, 0.003 mmol) in DMF (0.2 mL) was allowed to stir at room temperature for 1 h. Diol 3.54 (2.3 mg, 0.00832 mmol) and Et$_3$N (10 µL) were added as a solution in DMF (0.2 mL). After stirring 7 d at room temperature, saturated NH$_4$Cl solution (1 mL) and water (1 mL) were added. The reaction mixture was extracted with EtOAc (3 x 2 mL). The combined organic extracts were washed with saturated NaHCO$_3$ solution (3 mL) and brine (3 mL). The organic phase was dried over MgSO$_4$, filtered, and concentrated *in vacuo*. The crude residue was purified using flash chromatography (SiO$_2$, 8% MeOH/CH$_2$Cl$_2$) to afford a 1:1 mixture of diisocyanides 3.60 and 3.61 (1.5 mg, 36%) as a thin film. The 1H NMR spectrum was complicated by the mixture of diastereomers. IR (thin film) ν 3357 (br), 2928, 2867, 2134, 1698, 1461, 1266, 1176, 736 cm$^{-1}$; HRMS (ESI) *m/z* calcd for C$_{26}$H$_{38}$N$_4$O$_4$SNa (M + Na)$^+$ 525.2512, found 525.2491.

Isocyanide 3.63. A solution of 5-carboxy-JF$_{549}$ (3.62, 2.7 mg, 0.0049 mmol), EDC•HCl (1.2 mg, 0.0065 mmol), and DMAP (~0.5 mg, 0.0043 mmol) in CH$_2$Cl$_2$ (0.1 mL) was allowed to stir at room temperature for 5 min. Alcohol 3.56 (1.0 mg, 0.0043 mmol) was added as a solution in CH$_2$Cl$_2$ (0.2 mL). After stirring 3 h at room temperature, the reaction mixture was diluted with
CH₂Cl₂ (2 mL) and saturated NaHCO₃ solution (2 mL) was added. The reaction mixture was extracted with CH₂Cl₂ (3 x 2 mL). The combined organic extracts were washed with water (2 mL). The organic phase was dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10% MeOH/CH₂Cl₂ with 0.1% v/v AcOH additive, dry load with Celite). Additional purification using flash chromatography (SiO₂, 10% MeOH (10% NH₃)/CH₂Cl₂) afforded isocyanide 3.63 (1.0 mg, 34%) as a thin, magenta film.

Diisocyanide 3.64. A solution of 5-carboxy-JF₅₄₉ (3.62, 5.0 mg, 0.0088 mmol), EDC•HCl (3.1 mg, 0.0159 mmol), and DMAP (1.0 mg, 0.0080 mmol) in CH₂Cl₂ (0.1 mL) was allowed to stir at room temperature for 5 min. Alcohol 3.54 (2.2 mg, 0.0080 mmol) was added as a solution in CH₂Cl₂ (0.2 mL). After stirring 3 h at room temperature, the reaction mixture was diluted with CH₂Cl₂ (2 mL) and saturated NaHCO₃ solution (2 mL) was added. The reaction mixture was extracted with CH₂Cl₂ (3 x 2 mL). The combined organic extracts were washed with water (2 mL). The organic phase was dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using flash chromatography (SiO₂, 10% MeOH/CH₂Cl₂ with 0.1% v/v
AcOH additive, dry load with Celite). Additional purification using flash chromatography (SiO$_2$, 10% MeOH (10% NH$_3$)/CH$_2$Cl$_2$) afforded diisocyanide 3.64 (1.0 mg, 18%) as a thin, magenta film. 1H NMR (CDCl$_3$, 500 MHz) δ 8.90 (s, 1H), 8.32 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 6.52 (dd, J = 8.8, 4.8 Hz, 2H), 6.20 (d, J = 2.0 Hz, 2H), 6.08 (dt, J = 8.6, 2.0 Hz, 2H), 4.49 – 4.39 (m, 2H), 3.92 (t, J = 7.3 Hz, 8H), 3.95 – 3.88 (s, 1H), 2.39 (quin, J = 7.2 Hz, 4H), 2.14 – 1.15 (complex), 1.52 (s, 3H), 1.36 (br s, 3H); IR (thin film) ν 2925, 2868, 2132, 1763, 1721, 1594, 1379, 1299, 1218 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{43}$H$_{44}$N$_4$O$_6$Cl (M + Cl)$^-$ 747.2949, found 747.2957.

Procedure for the Evaluation of Antimalarial Activity of Synthetic Isocyanoterpenes

Method: Synchronized malaria parasite lines (3D7, wild type, MRA-102, and chloroquine resistant Dd2, MRA-156, MR4, ATCC® Manassas, VA) were cultured in the presence of a serial dilution of compound for 72 hours and proliferation evaluated with SYBR Green dye as previously described.8 Ninety-six well plate data was read on a Molecular Devices SpectraMAX Gemini EM fluorimeter and plotted with SigmaPlot 10 (Systat) to determine IC$_{50}$ values. The results are tabulated in Table 3.2. The graph used for determining the IC$_{50}$ of kalihinol B (3.8) is included as a representative of the methods employed (Figure 3.3). Jacques Prudhomme completed all antimalarial assays in the laboratory of Professor Karine Le Roch at UCR.

Acknowledgment: We thank MR4 for providing us with malaria parasites contributed by Daniel Carucci, Alister Craig, and TE Wellems.
Table 3.2. Activity of synthetic ICTs against wild-type (3D7) and chloroquine-resistant (Dd2) *P. falciparum*.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Pf straina</th>
<th>IC50 [nM]</th>
<th>IC50 [µg/mL]</th>
<th>std errorb</th>
<th>R</th>
<th>hillslope</th>
<th>Chloroquinec</th>
<th>std error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>3D7</td>
<td>8.4</td>
<td>0.0033</td>
<td>0.0007</td>
<td>0.9914</td>
<td>1.342</td>
<td>0.0063</td>
<td>0.002</td>
</tr>
<tr>
<td>3.8</td>
<td>Dd2</td>
<td>4.6</td>
<td>0.0018</td>
<td>0.0002</td>
<td>0.9938</td>
<td>2.937</td>
<td>0.0399</td>
<td>0.0035</td>
</tr>
<tr>
<td>3.9/3.10</td>
<td>3D7</td>
<td>139</td>
<td>0.0508</td>
<td>0.0072</td>
<td>0.9952</td>
<td>2.3689</td>
<td>0.0052</td>
<td>0.0001</td>
</tr>
<tr>
<td>3.9/3.10</td>
<td>Dd2</td>
<td>144</td>
<td>0.0526</td>
<td>0.0093</td>
<td>0.9959</td>
<td>1.4242</td>
<td>0.0275</td>
<td>0.0086</td>
</tr>
<tr>
<td>3.11</td>
<td>3D7</td>
<td>175</td>
<td>0.0596</td>
<td>0.0117</td>
<td>0.9903</td>
<td>1.4691</td>
<td>0.0066</td>
<td>0.0004</td>
</tr>
<tr>
<td>3.11</td>
<td>Dd2</td>
<td>123</td>
<td>0.0418</td>
<td>0.0188</td>
<td>0.9808</td>
<td>0.6601</td>
<td>0.0413</td>
<td>0.0037</td>
</tr>
<tr>
<td>(±)-3.22</td>
<td>3D7</td>
<td>705</td>
<td>0.1631</td>
<td>0.0894</td>
<td>0.9899</td>
<td>0.5629</td>
<td>0.0059</td>
<td>0.0009</td>
</tr>
<tr>
<td>(±)-3.22</td>
<td>Dd2</td>
<td>247</td>
<td>0.057</td>
<td>0.0234</td>
<td>0.9961</td>
<td>0.5342</td>
<td>0.0322</td>
<td>0.0039</td>
</tr>
<tr>
<td>(±)-3.23d</td>
<td>3D7</td>
<td>180</td>
<td>0.0417</td>
<td>0.0191</td>
<td>0.9748</td>
<td>0.8015</td>
<td>0.0091</td>
<td>0.0007</td>
</tr>
<tr>
<td>(±)-3.23d</td>
<td>Dd2</td>
<td>45</td>
<td>0.0104</td>
<td>0.0073</td>
<td>0.9882</td>
<td>0.2933</td>
<td>0.0337</td>
<td>0.0031</td>
</tr>
<tr>
<td>3.32</td>
<td>3D7</td>
<td>12</td>
<td>0.0034</td>
<td>0.0006</td>
<td>0.9963</td>
<td>7.3863</td>
<td>0.0089</td>
<td>0.0018</td>
</tr>
<tr>
<td>3.32</td>
<td>Dd2</td>
<td>16</td>
<td>0.0043</td>
<td>0.0001</td>
<td>0.9979</td>
<td>4.6016</td>
<td>0.0497</td>
<td>0.0157</td>
</tr>
<tr>
<td>3.33</td>
<td>3D7</td>
<td>2.9</td>
<td>0.0008</td>
<td>0.002</td>
<td>0.984</td>
<td>1.3984</td>
<td>0.0089</td>
<td>0.0018</td>
</tr>
<tr>
<td>3.33</td>
<td>Dd2</td>
<td>31</td>
<td>0.0084</td>
<td>0.0016</td>
<td>0.9917</td>
<td>1.5004</td>
<td>0.0497</td>
<td>0.0157</td>
</tr>
<tr>
<td>3.34</td>
<td>3D7</td>
<td>138</td>
<td>0.0342</td>
<td>0.0037</td>
<td>0.9935</td>
<td>2.6747</td>
<td>0.0089</td>
<td>0.0018</td>
</tr>
<tr>
<td>3.34</td>
<td>Dd2</td>
<td>200</td>
<td>0.0495</td>
<td>0.0089</td>
<td>0.9939</td>
<td>1.3615</td>
<td>0.0497</td>
<td>0.0157</td>
</tr>
<tr>
<td>3.35</td>
<td>3D7</td>
<td>15</td>
<td>0.0041</td>
<td>0.0006</td>
<td>0.9954</td>
<td>1.6148</td>
<td>0.0089</td>
<td>0.0018</td>
</tr>
<tr>
<td>3.35</td>
<td>Dd2</td>
<td>17</td>
<td>0.0047</td>
<td>0.0003</td>
<td>0.9983</td>
<td>3.1883</td>
<td>0.0497</td>
<td>0.0157</td>
</tr>
<tr>
<td>(±)-3.35e</td>
<td>3D7</td>
<td>27</td>
<td>0.0074</td>
<td>0.0013</td>
<td>0.9927</td>
<td>--</td>
<td>0.0058</td>
<td>0.0005</td>
</tr>
<tr>
<td>(±)-3.35e</td>
<td>Dd2</td>
<td>46</td>
<td>0.0127</td>
<td>0.0016</td>
<td>0.9918</td>
<td>--</td>
<td>0.0521</td>
<td>0.0274</td>
</tr>
<tr>
<td>3.36</td>
<td>3D7</td>
<td>1150</td>
<td>0.3155</td>
<td>0.0179</td>
<td>0.9989</td>
<td>2.0297</td>
<td>0.0089</td>
<td>0.0018</td>
</tr>
<tr>
<td>3.36</td>
<td>Dd2</td>
<td>958</td>
<td>0.2628</td>
<td>0.0427</td>
<td>0.9962</td>
<td>1.0929</td>
<td>0.0497</td>
<td>0.0157</td>
</tr>
<tr>
<td>3.37</td>
<td>3D7</td>
<td>312</td>
<td>0.0771</td>
<td>0.0032</td>
<td>0.9995</td>
<td>2.1804</td>
<td>0.0089</td>
<td>0.0018</td>
</tr>
<tr>
<td>3.37</td>
<td>Dd2</td>
<td>529</td>
<td>0.1308</td>
<td>0.0057</td>
<td>0.999</td>
<td>2.8612</td>
<td>0.0497</td>
<td>0.0157</td>
</tr>
<tr>
<td>3.40</td>
<td>3D7</td>
<td>1.9</td>
<td>0.0006</td>
<td>0.0002</td>
<td>0.9833</td>
<td>1.7569</td>
<td>0.0059</td>
<td>0.0009</td>
</tr>
<tr>
<td>3.40</td>
<td>Dd2</td>
<td>1.6</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.9903</td>
<td>0.7528</td>
<td>0.0322</td>
<td>0.0039</td>
</tr>
<tr>
<td>3.41</td>
<td>3D7</td>
<td>244</td>
<td>0.0745</td>
<td>0.0083</td>
<td>0.997</td>
<td>1.4462</td>
<td>0.0061</td>
<td>0.0005</td>
</tr>
<tr>
<td>3.41</td>
<td>Dd2</td>
<td>416</td>
<td>0.1271</td>
<td>0.0438</td>
<td>1.2621</td>
<td>1.2721</td>
<td>0.0419</td>
<td>0.0905</td>
</tr>
<tr>
<td>(±)-3.54f</td>
<td>3D7</td>
<td>302</td>
<td>0.0836</td>
<td>0.018</td>
<td>0.9773</td>
<td>4.7837</td>
<td>0.0091</td>
<td>0.0007</td>
</tr>
<tr>
<td>(±)-3.54f</td>
<td>Dd2</td>
<td>205</td>
<td>0.0566</td>
<td>0.007</td>
<td>0.9833</td>
<td>3.2312</td>
<td>0.0337</td>
<td>0.0031</td>
</tr>
<tr>
<td>(±)-3.55g</td>
<td>3D7</td>
<td>27</td>
<td>0.0075</td>
<td>0.0009</td>
<td>0.9831</td>
<td>2.043</td>
<td>0.0091</td>
<td>0.0007</td>
</tr>
<tr>
<td>(±)-3.55g</td>
<td>Dd2</td>
<td>24</td>
<td>0.0065</td>
<td>0.0009</td>
<td>0.9879</td>
<td>1.2806</td>
<td>0.0337</td>
<td>0.0031</td>
</tr>
<tr>
<td>(±)-3.56h</td>
<td>3D7</td>
<td>391</td>
<td>0.0913</td>
<td>0.0458</td>
<td>0.9726</td>
<td>0.8016</td>
<td>0.0091</td>
<td>0.0007</td>
</tr>
<tr>
<td>(±)-3.56h</td>
<td>Dd2</td>
<td>516</td>
<td>0.1205</td>
<td>0.0351</td>
<td>0.9795</td>
<td>1.4745</td>
<td>0.0337</td>
<td>0.0031</td>
</tr>
</tbody>
</table>

a3D7 is a chloroquine-sensitive strain of *P. falciparum*. Dd2 is a chloroquine-resistant strain of *P. falciparum*. bn = 3.
cChloroquine was used as the antimalarial standard. dPrecipitate at 33.3 µg/mL. eAverage of three separate assays.
fPrecipitate at 11.1 µg/mL. gPrecipitate at 3.7 µg/mL.
Figure 3.3. IC₅₀ (µg/mL) of kalihinol B (3.8) against wild-type (3D7) and chloroquine-resistant (Dd2) strains of *P. falciparum*.

3.7 Notes and References

APPENDIX A: NMR and Chiral HPLC Data
13C spectrum with 1H decoupling

2.19: (±)-cryptone
1H spectrum

Current data parameters
- USER: medaub
- NAME: MED-II-176pu3
- EXPNO: 2
- PROCNO: 1

F2 - Acquisition parameters
- Date_: 20130309
- Time: 13.35
- INSTRUM: cryo500
- PROBHD: 5 mm CPTCI 1H-
- PULPROG: zg30
- TD: 81728
- SOLVENT: CDCl3
- NS: 8
- DS: 2
- SWH: 8012.820 Hz
- FIDRES: 0.098043 Hz
- AQ: 5.0998774 sec
- RG: 4.5
- DW: 62.400 usec
- DE: 6.00 usec
- TE: 298.0 K
- D1: 0.10000000 sec
- MCREST: 0.00000000 sec
- MCWRK: 0.01500000 sec

F2 - Processing parameters
- SI: 65536
- SF: 500.2200315 MHz
- WDW: EM
- SSB: 0
- LB: 0.30 Hz
- GB: 0
- PC: 4.00

1D NMR plot parameters
- CX: 22.80 cm
- CY: 15.00 cm
- F1P: 10.100 ppm
- F1: 5052.22 Hz
- F2P: -0.500 ppm
- F2: -250.11 Hz
- PPMCM: 0.46491 ppm/cm
- HZCM: 232.55846 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

TMS

2.18 ppm
1H spectrum

1H spectrum plot with labels and annotations.
1H spectrum

2.39

Current data parameters
USER medaub
NAME MED-III-120pu
EXPNO 1
PROCNO 1
F2 - Acquisition Parameters
Date_ 20131014
Time 17.11
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 5
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec
======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz
F2 - Processing parameters
SI 65536
SF 500.2200312 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00
1D NMR plot parameters
CX 22.80 cm
CY 8.00 cm
F1P 8.100 ppm
F1 4051.78 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.35965 ppm/cm
HZCM 179.90372 Hz/cm
13C spectrum with 1H decoupling

I

2.39
Current Data Parameters
USER: medaub
NAME: MED-VI-130pu
EXPNO: 4
PROCNO: 1

F2 - Acquisition Parameters
Date: 20150525
Time: 11.43
INSTRUM: av600
PROBHD: 5 mm BBO BB-1H
PULPROG: zg30
TD: 98074
SOLVENT: CDCl3
NS: 8
DS: 2
SWH: 9615.385 Hz
FIDRES: 0.098042 Hz
AQ: 5.0998979 sec
RG: 406
DW: 52.000 usec
DE: 14.33 usec
TE: 298.3 K
D1: 0.10000000 sec

======== CHANNEL f1 ========
SFO1: 600.1342009 MHz
NUC1: 1H
P1: 9.00 usec

F2 - Processing parameters
SI: 65536
SF: 600.1300341 MHz
WDW: EM
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 1.00

1D NMR plot parameters
CX: 22.80 cm
CY: 15.00 cm
F1P: 10.100 ppm
F1: 6061.31 Hz
F2P: -0.100 ppm
F2: -60.01 Hz
PPMCM: 0.44737 ppm/cm
HZCM: 268.47925 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

![Z-restored spin-echo 13C spectrum with 1H decoupling](image)
Current Data Parameters
NAME: MED-VI-130pu
EXPNO: 5
PROCNO: 1

F2 - Acquisition Parameters
Date: 20150525
Time: 11.46
INSTRUM: av600
PROBHD: 5 mm BBO BB-1H
PULPROG: noesygpp
TD: 2048
SOLVENT: CDCl3
NS: 2
DS: 4
SWH: 4930.966 Hz
FIDRES: 2.407698 Hz
AQ: 0.2076672 sec
RG: 912
DW: 101.400 usec
DE: 13.47 usec
TE: 298.2 K
D0: 0.00008994 sec
D1: 2.00000000 sec
D8: 1.00000000 sec
D16: 0.00020000 sec
IN0: 0.00020280 sec

F1 - Acquisition parameters
TD: 113
SFO1: 600.1324 MHz
FIDRES: 43.636871 Hz
Sw: 8.216 ppm
FnMODE: States-TPPI

F2 - Processing parameters
SI: 1024
SF: 600.1300341 MHz
WDW: QSINE
SSB: 2
LB: 0 Hz
GB: 0
PC: 4.00

F1 - Processing parameters
SI: 1024
MC2: States-TPPI
SF: 600.1300341 MHz
WDW: QSINE
SSB: 2
LB: 0 Hz
GB: 0
Current data parameters
USB wo lan
 Name MED-VI-132pu
 Expno 1
 Procno 1

Acquisition parameters
Date 2015-05-25
Time 19:53
Instrum cryo500
Probhd 5 mm CPTCI 1H-
Pulprog zg30
Td 81728
Solvent CDCl3
Ns 8
Ds 2
Swh 8012.820 Hz
Fidres 0.098043 Hz
Aq 5.0998774 sec
Rg 5.7
Dw 62.400 usec
De 6.00 usec
Te 298.0 K
D1 0.1000000 sec
Mcrest 0.0000000 sec
Mcwk 0.0150000 sec

Channel f1
Nucl 1H
P1 7.50 usec
Pl1 1.60 dB
Sfo1 500.2235015 MHz

Processing parameters
Si 65536
Sf 500.2200316 MHz
Wdw EM
Ssb 0
Lb 0.30 Hz
Gb 0
Pc 4.00

NMR plot parameters
Cx 22.80 cm
Cy 15.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
Ppmcm 0.44737 ppm/cm
Hzcm 223.78267 Hz/cm

\(^1H \) spectrum

\[
\text{trans-2.16} + \text{cis-2.16}
\]
Z-restored spin-echo 13C spectrum with 1H decoupling

trans-2.16 + cis-2.16
1H spectrum

2.42: cedrelanol
2.42: cedrelanol
2.43: torreyol

1H spectrum

\[
\text{H}^1 \quad \text{H}^2 \quad \text{OH}
\]

ppm

Integral

ppm
2.43: torreyol
(a)-2.17: 10-isocyano-4-cadinene
Z-restored spin-echo 13C spectrum with 1H decoupling

(a)-2.17: 10-isocyano-4-cadinene
1H spectrum

OTCA

2.61

Current data document

USER: medaub
NAME: MED-III-217pu
EXPNO: 4
PROCNO: 1

F2 - Acquisition parameters
Date: 20151214
Time: 17.01
INSTRUM: cryo500
PROBHD: 5 mm CPTCI 1H-
PULPROG: zg30
TD: 16022
SOLVENT: CDCl3
NS: 1
DS: 2
SWH: 8012.820 Hz
FIDRES: 0.500114 Hz
AQ: 0.9998228 sec
RG: 5.7
DW: 62.400 usec
DE: 6.00 usec
TE: 298.0 K
D1: 0.10000000 sec
MCREST: 0.00000000 sec
MCWRK: 0.01500000 sec

======== CHANNEL f1 ========
NUC1: 1H
P1: 7.50 usec
PL1: 1.60 dB
SFO1: 500.2235015 MHz

F2 - Processing parameters
SI: 65536
SF: 500.2200316 MHz
WDW: EM
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 4.00

1D NMR plot parameters
CX: 22.80 cm
CY: 15.00 cm
F1P: 10.100 ppm
F1: 5052.22 Hz
F2P: -0.100 ppm
F2: -50.02 Hz
PPMCM: 0.44737 ppm/cm
HZCM: 223.78267 Hz/cm

--- Chemical shift relative to internal standard ---
HET: 7.80 ppm
DDL: 1.80 ppm
DOP: 505.2235015 MHz

--- Proton parameters ---
ST: 49.0 N
DF: 505.2235015 MHz
DOM: 0
SA: 0.90 ppm
SB: 0
SC: 6.00

--- HET parameters ---
O: 15.46 cm
C1: 15.46 cm
F1P: 20.13 ppm
F1: 505.2235015 MHz
F2P: 0.00 ppm
F2: 0.00 ppm

SPEC: 0.44737 ppm/cm
HET: 505.2235015 MHz
Z-restored spin-echo 13C spectrum with 1H decoupling

2,61

OTCA
1H spectrum

OTCA

2.62 ppm
2-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

Chemical Shifts

- **Cl**
 - 7.50 ppm

- **OH**
 - 7.26 ppm

- **OTCA**
 - 2.63 ppm

1H NMR plot parameters:
- **CX**: 22.80 cm
- **CY**: 15.00 cm
- **F1P**: 10.100 ppm
- **F1**: 5052.22 Hz
- **F2P**: -0.100 ppm
- **F2**: -50.02 Hz
- **PPMCM**: 0.44737 ppm/cm
- **HZCM**: 223.78267 Hz/cm

1D NMR plot

Current Data Parameters
- **USER**: medaub
- **NAME**: MED-III-245pu2fr18-25
- **EXPNO**: 1
- **PROCNO**: 1

F2 - Acquisition Parameters
- **Date:** 20151214
- **Time**: 17.10
- **INSTRUM**: cryo500
- **PROBHD**: 5 mm CPTCI 1H-
- **PULPROG**: zg30
- **TD**: 81728
- **SOLVENT**: CDCl3
- **NS**: 8
- **DS**: 2
- **SWH**: 8012.820 Hz
- **FIDRES**: 0.098043 Hz
- **AQ**: 5.0998774 sec
- **RG**: 9
- **DW**: 62.400 usec
- **DE**: 6.00 usec
- **TE**: 298.0 K
- **D1**: 0.10000000 sec
- **MCREST**: 0.00000000 sec
- **MCWRK**: 0.01500000 sec

F2 - Processing parameters
- **SI**: 65536
- **SF**: 500.2200316 MHz
- **WDW**: EM
- **SSB**: 0
- **LB**: 0.30 Hz
- **GB**: 0
- **PC**: 4.00
Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER: medaub
NAME: MED-III-245pu2fr18-25
EXPNO: 3
PROCNO: 1

F2 - Acquisition Parameters

Date: 20151214
Time: 18.35
INSTRUM: cryo500
PROBHD: 5 mm CPTCI 1H-
PULPROG: SpinEchopg30gp.prd
TD: 65536
SOLVENT: CDCl3
NS: 128
DS: 4
SWH: 30303.031 Hz
FIDRES: 0.462388 Hz
AQ: 1.0813940 sec
RG: 11585.2
DW: 16.500 usec
DE: 6.00 usec
TE: 298.0 K
D1: 0.25000000 sec
d11: 0.03000000 sec
D16: 0.00020000 sec
d17: 0.00019600 sec
MCREST: 0.00000000 sec
MCWRK: 0.01500000 sec
P2: 33.10 usec

======== CHANNEL f1 ========
NUC1: 13C
P1: 16.55 usec
P11: 500.00 usec
P12: 2000.00 usec
PL0: 120.00 dB
PL1: -1.00 dB
SFO1: 125.7942548 MHz
SP1: 2.70 dB
SP2: 2.70 dB
SPNAM1: Crp60,0.5,20.1
SPNAM2: Crp60comp.4
SPOFF1: 0.00 Hz
SPOFF2: 0.00 Hz

======== CHANNEL f2 ========
CPDPRG2: waltz16
NUC2: 1H
PCPD2: 100.00 usec
PL2: 1.60 dB
PL12: 24.50 dB
SFO2: 500.2225011 MHz

====== GRADIENT CHANNEL =====
GPNAM1: SINE.100
GPNAM2: SINE.100
GPX1: 0.00 %
GPX2: 0.00 %
GPY1: 0.00 %
GPY2: 0.00 %
GPZ1: 30.00 %
GPZ2: 50.00 %
p15: 500.00 usec
p16: 1000.00 usec

F2 - Processing parameters

SI: 65536
SF: 125.7804099 MHz
WDW: EM
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 2.00

1D NMR plot parameters

CX: 22.80 cm
CY: 15.65 cm
F1P: 200.000 ppm
F1: 25156.08 Hz
F2P: -10.000 ppm
F2: -1257.80 Hz
PPMCM: 9.21053 ppm/cm
HZCM: 1158.50378 Hz/cm

2.63

OTCA
OH
Cl
OTCA
2.64
Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER: medaub
NAME: MED-III-245pu2fr33-48

EXPNO: 3
PROCNO: 1

F2 - Acquisition Parameters

Date: 20151214
Time: 18.42
INSTRUM: cryo500
PROBHD: 5 mm CPTCI 1H-
PULPROG: SpinEchopg30gp.prd
TD: 65536
SOLVENT: CDCl3
NS: 176
DS: 4
SWH: 30303.031 Hz
FIDRES: 0.462388 Hz
AQ: 1.0813940 sec
RG: 11585.2
DW: 16.500 usec
DE: 6.00 usec
TE: 298.0 K
D1: 0.25000000 sec
d11: 0.03000000 sec
d16: 0.00020000 sec
d17: 0.00019600 sec
MCREST: 0.00000000 sec
MCWRK: 0.01500000 sec
P2: 33.10 usec

======== CHANNEL f1 ========
NUC1: 13C
P1: 16.55 usec
P11: 500.00 usec
P12: 2000.00 usec
PL0: 120.00 dB
PL1: -1.00 dB
SFO1: 125.7942548 MHz
SP1: 2.70 dB
SP2: 2.70 dB
SPNAM1: Crp60,0.5,20.1
SPNAM2: Crp60comp.4
SPOFF1: 0.00 Hz
SPOFF2: 0.00 Hz

======== CHANNEL f2 ========
CPDPRG2: waltz16
NUC2: 1H
PCPD2: 100.00 usec
PL2: 1.60 dB
PL12: 24.50 dB
SFO2: 500.2225011 MHz

====== GRADIENT CHANNEL =====
GPNAM1: SINE.100
GPNAM2: SINE.100
GPX1: 0.00 %
GPX2: 0.00 %
GPY1: 0.00 %
GPY2: 0.00 %
GPZ1: 30.00 %
GPZ2: 50.00 %
p15: 500.00 usec
p16: 1000.00 usec

F2 - Processing parameters
SI: 65536
SF: 125.7804113 MHz
WDW: EM
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 2.00

1D NMR plot parameters
CX: 22.80 cm
CY: 15.65 cm
F1P: 200.000 ppm
F1: 25156.08 Hz
F2P: -10.000 ppm
F2: -1257.80 Hz
PPMCM: 9.21053 ppm/cm
HZCM: 1158.50378 Hz/cm
13C spectrum with 1H decoupling

2.65
Current Data Parameters
USER medaub
NAME MED-VI-291pu
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20151221
Time 15.56
INSTRUM gn500
PROBHD 5 mm broadband
PULPROG zgdc30
TD 65536
SOLVENT CDCl3
NS 136
DS 4
SWH 30303.031 Hz
FIDRES 0.462388 Hz
AQ 1.0813940 sec
RG 23170.5
DW 16.500 usec
DE 4.50 usec
TE 298.0 K
D1 0.25000000 sec
d11 0.03000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 13C
P1 9.00 usec
PL1 -0.60 dB
SFO1 125.5327181 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 80.00 usec
PL2 -3.00 dB
PL12 12.80 dB
SFO2 499.1824959 MHz

F2 - Processing parameters
SI 65536
SF 125.5188998 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 2.00

1D NMR plot parameters
CX 22.80 cm
CY 15.65 cm
F1P 200.000 ppm
F1 25103.78 Hz
F2P -10.000 ppm
F2 -1255.19 Hz
PPMCM 9.21053 ppm/cm
HZCM 1156.09509 Hz/cm

13C spectrum with 1H decoupling
1H spectrum

(±)-trans-2.66
209

Z-restored spin-echo 13C spectrum with 1H decoupling

(2)-trans-2.66
Z-restored spin-echo 13C spectrum with 1H decoupling

\[(\pm)-\alpha=2.66\]
(±)-2.67
Z-restored spin-echo 13C spectrum with 1H decoupling

(±)-2.67

\[
\begin{array}{c}
\text{Cl} \\
\text{OH}
\end{array}
\]
Current Data Parameters

USER medaub
NAME MED-IV-101pufr13-17
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160111
Time 15.00
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 8
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200305 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 2.00

1D NMR plot parameters
CX 22.80 cm
CY 15.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm

1H spectrum
215

Z-restored spin-echo 13C spectrum with 1H decoupling

\[
\text{Cl} \quad \text{OAc} \\
\text{OH} \\
2.72
\]
$\text{Z-restored spin-echo 13C spectrum with 1H decoupling}$

OH

Cl

2.73

OAc

217
1-restored spin-echo 13C spectrum with 1H decoupling

\[\text{trans-2.74} \quad \text{cis-2.74} \]
Current Data Parameters

<table>
<thead>
<tr>
<th>USER</th>
<th>medaub</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>MED-VII-28pufr17-18</td>
</tr>
<tr>
<td>EXPNO</td>
<td>1</td>
</tr>
<tr>
<td>PROCNO</td>
<td>1</td>
</tr>
</tbody>
</table>

F2 - Acquisition Parameters

- **Date**: 20160114
- **Time**: 14.24
- **INSTRUM**: cryo500
- **PROBHD**: 5 mm CPTCI 1H-
- **PULPROG**: zg30
- **TD**: 81728
- **SOLVENT**: CDCl3
- **NS**: 8
- **DS**: 2
- **SWH**: 8012.820 Hz
- **FIDRES**: 0.098043 Hz
- **AQ**: 5.0998774 sec
- **RG**: 6.3
- **DW**: 62.400 usec
- **DE**: 6.00 usec
- **TE**: 298.0 K
- **D1**: 0.10000000 sec
- **MCREST**: 0.00000000 sec
- **MCWRK**: 0.01500000 sec

F2 - Processing parameters

- **SI**: 65536
- **SF**: 500.2200301 MHz
- **WDW**: EM
- **SSB**: 0
- **LB**: 0.30 Hz
- **GB**: 0
- **PC**: 4.00

1D NMR plot parameters

- **CX**: 22.80 cm
- **CY**: 15.00 cm
- **F1P**: 10.100 ppm
- **F1**: 5052.22 Hz
- **F2P**: -0.100 ppm
- **F2**: -50.02 Hz
- **PPMCM**: 0.44737 ppm/cm
- **HZCM**: 223.78267 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

trans-2.66
Current Data Parameters
USER: medaub
NAME: MED-VII-28pufr24-25

F2 - Acquisition Parameters
Date: 20160114
Time: 14.29
INSTRUM: cryo500
PROBHD: 5 mm CPTCI 1H-
PULPROG: zg30
TD: 81728
SOLVENT: CDCl3
NS: 8
DS: 2
SWH: 8012.820 Hz
FIDRES: 0.098043 Hz
AQ: 5.0998774 sec
RG: 8
DW: 62.400 usec
DE: 6.00 usec
TE: 298.0 K
D1: 0.10000000 sec
MCREST: 0.00000000 sec
MCWRK: 0.01500000 sec

======== CHANNEL f1 ========
NUC1: 1H
P1: 7.50 usec
PL1: 1.60 dB
SFO1: 500.2235015 MHz

F2 - Processing parameters
SI: 65536
SF: 500.2200304 MHz
WDW: EM
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 4.00

1D NMR plot parameters
CX: 22.80 cm
CY: 15.00 cm
F1P: 10.100 ppm
F1: 5052.22 Hz
F2P: -0.100 ppm
F2: -50.02 Hz
PPMCM: 0.44737 ppm/cm
HZCM: 223.78267 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

cis-2.66

\[\text{ cis-2.66 } \]
1H spectrum

![Chemical Structure](image)

2.67

major product
Z-restored spin-echo 13C spectrum with 1H decoupling

2.67

major product
$\text{Z-restored spin-echo 13C spectrum with 1H decoupling}$

Current Data Parameters

USER medaub

NAME MED-V-135pufr54-73

EXPNO 3

PROCNO 1

F2 - Acquisition Parameters

Date_ 20141125

Time 16.16

INSTRUM cryo500

PROBHD 5 mm CPTCI 1H-

PULPROG SpinEchopg30gp.prd

TD 65536

SOLVENT CDCl3

NS 120

DS 4

SWH 30303.031 Hz

FIDRES 0.462388 Hz

AQ 1.0813940 sec

RG 11585.2

DW 16.500 usec

DE 6.00 usec

TE 298.0 K

D1 0.25000000 sec

d11 0.03000000 sec

D16 0.00020000 sec

d17 0.00019600 sec

MCREST 0.00000000 sec

MCWRK 0.01500000 sec

P2 33.10 usec

**======== CHANNEL f1 ========

NUC1 13C

P1 16.55 usec

P11 500.00 usec

P12 2000.00 usec

PL0 120.00 dB

PL1 -1.00 dB

SFO1 125.7942548 MHz

SP1 2.70 dB

SP2 2.70 dB

SPNAM1 Crp60,0.5,20.1

SPNAM2 Crp60comp.4

SPOFF1 0.00 Hz

SPOFF2 0.00 Hz

**======== CHANNEL f2 ========

CPDPRG2 waltz16

NUC2 1H

PCPD2 100.00 usec

PL2 1.60 dB

PL12 24.50 dB

SFO2 500.2225011 MHz

**====== GRADIENT CHANNEL =====

GPNAM1 SINE.100

GPNAM2 SINE.100

GPX1 0.00 %

GPX2 0.00 %

GPY1 0.00 %

GPY2 0.00 %

GPZ1 30.00 %

GPZ2 50.00 %

p15 500.00 usec

p16 1000.00 usec

F2 - Processing parameters

SI 65536

SF 125.7804099 MHz

WDW EM

SSB 0

LB 1.00 Hz

GB 0

PC 2.00

1D NMR plot parameters

CX 22.80 cm

CY 20.00 cm

F1P 180.000 ppm

F1 22640.47 Hz

F2P 0.000 ppm

F2 0.00 Hz

PPMCM 7.89474 ppm/cm

HZCM 993.00330 Hz/cm
Current Data Parameters

USER
medaub

NAME
MED-V-135pufr32-50

EXPNO
4

PROCNO
1

F2 - Acquisition Parameters

- **Date**
 20141125

- **Time**
 16.50

- **INSTRUM**
 av600

- **PROBHD**
 5 mm TBI 1H/13

- **PULPROG**
 zg30

- **TD**
 98074

- **SOLVENT**
 CDCl3

- **NS**
 8

- **DS**
 2

- **SWH**
 9615.385 Hz

- **FIDRES**
 0.098042 Hz

- **AQ**
 5.0998979 sec

- **RG**
 2050

- **DW**
 52.000 usec

- **DE**
 14.54 usec

- **TE**
 298.1 K

- **D1**
 0.10000000 sec

======== CHANNEL f1 ========

- **SFO1**
 600.1342009 MHz

- **NUC1**
 1H

- **P1**
 8.00 usec

F2 - Processing parameters

- **SI**
 65536

- **SF**
 600.1300340 MHz

- **WDW**
 EM

- **SSB**
 0

- **LB**
 0.30 Hz

- **GB**
 0

- **PC**
 1.00

1D NMR plot parameters

- **CX**
 22.80 cm

- **CY**
 15.00 cm

- **F1P**
 8.100 ppm

- **F1**
 4861.05 Hz

- **F2P**
 -0.100 ppm

- **F2**
 -60.01 Hz

- **PPMCM**
 0.35965 ppm/cm

- **HZCM**
 215.83626 Hz/cm

OH

Cl

2.82
Z-restored spin-echo 13C spectrum with 1H decoupling

2.82

ppm

Z-restored spin-echo 13C spectrum with 1H decoupling

trans-2.83
Z-restored spin-echo 13C spectrum with 1H decoupling

cis-2.83
235

O

Cl

H

cis-2.83

O

gnoesy

NOE

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

ppm

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

ppm

%
%
usec

=====

F1 - Processing parameters
SI
1024
MC2
TPPI
SF
500.2200310 MHz
WDW
QSINE
SSB
2
LB
0 Hz
GB
0

F2 - Processing parameters
SI
1024
SF
500.2200310 MHz
WDW
QSINE
SSB
2
LB
0 Hz
GB
0
PC
2.00

F1 - Acquisition parameters
TD
168
SFO1
500.2226 MHz
FIDRES
31.527441 Hz
SW
10.589 ppm
FnMODE
undefined

====== GRADIENT CHANNEL
GPNAM[1]
sine.100
GPNAM[2]
sine.100
GPX1
0 %
GPX2
0 %
GPY1
0 %
GPY2
0 %
GPZ1
40.00
GPZ2
-40.00
P16
1000.00

======== CHANNEL f1 ========
NUC1
1H
P1
7.50 usec
P2
15.00 usec
PL1
1.60 dB
SFO1
500.2225544 MHz

F2 - Acquisition Parameters
Date_
20141202
Time
13.53
INSTRUM
cryo500
PROBHD
5 mm CPTCI 1HPULPROG
noesygptp
TD
2048
SOLVENT
CDCl3
NS
2
DS
4
SWH
5296.610 Hz
FIDRES
2.586236 Hz
AQ
0.1933312 sec
RG
114
DW
94.400 usec
DE
6.00 usec
TE
298.0 K
D0
0.00000300 sec
D1
2.00000000 sec
D8
0.80000001 sec
D16
0.00020000 sec
d20
0.39880002 sec
IN0
0.00009440 sec

Current Data Parameters
NAME
MED-V-167pufr25-31
EXPNO
3
PROCNO
1


Current Data Parameters
USER medaub
NAME MED-V-187puA
EXPNO 1
PROCNO 1
F2 - Acquisition Parameters
Date_ 20141229
Time 17.53
INSTRUM av600
PROBHD 5 mm TBI 1H/13
PULPROG zg30
TD 98074
SOLVENT CDCl3
NS 8
DS 2
SWH 9615.385 Hz
FIDRES 0.098042 Hz
AQ 5.0998979 sec
RG 645
DW 52.000 usec
DE 14.54 usec
TE 298.0 K
D1 0.10000000 sec
TD0 1

======== CHANNEL f1 ========
SFO1 600.1342009 MHz
NUC1 1H
P1 8.00 usec

F2 - Processing parameters
SI 65536
SF 600.1300339 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 22.80 cm
CY 55.00 cm
F1P 10.100 ppm
F1 6061.31 Hz
F2P -0.100 ppm
F2 -60.01 Hz
PPMCM 0.44737 ppm/cm
HZCM 268.47925 Hz/cm

OHC
O
H
Cl
2.85
13C spectrum with 1H decoupling

\[
\begin{array}{c}
\text{OHC} \\
\text{H} \\
\text{Cl} \\
2.85
\end{array}
\]
OHC
O
H
Cl

2.87
c(a. 80% pure)

1H spectrum
Z-restored spin-echo 13C spectrum with 1H decoupling
Current Data Parameters

NAME MED-V-187pu3
EXPNO 5
PROCNO 1
F2 - Acquisition Parameters
Date_ 20150105
Time 12.44
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG noesygptp
TD 2048
SOLVENT CDCl3
NS 2
DS 4
SWH 5341.880 Hz
FIDRES 2.608340 Hz
AQ 0.1916928 sec
RG 22.6
DW 93.600 usec
DE 6.00 usec
TE 298.0 K
D0 0.00000300 sec
D1 2.00000000 sec
D8 0.80000001 sec
D16 0.00020000 sec
d20 0.39880002 sec
IN0 0.00009360 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
P2 15.00 usec
PL1 1.60 dB
SFO1 500.2224664 MHz

====== GRADIENT CHANNEL =====
GPNAM[1] sine.100
GPNAM[2] sine.100
GPX1 0 %
GPX2 0 %
GPY1 0 %
GPY2 0 %
GPZ1 40.00 %
GPZ2 -40.00 %
P16 1000.00 usec

F1 - Acquisition parameters
TD 112
SFO1 500.2225 MHz
FIDRES 47.695362 Hz
SW 10.679 ppm
FnMODE undefined

F2 - Processing parameters
SI 1024
SF 500.2200316 MHz
WDW QSINE
SSB 2
LB 0 Hz
GB 0
PC 1.40

F1 - Processing parameters
SI 1024
MC2 TPPI
SF 500.2200316 MHz
WDW QSINE
SSB 2
LB 0 Hz
GB 0
1H spectrum

1.24

- 2.11

ppm
2.11

2-restored spin-echo 13C spectrum with 1H decoupling

O

O

H

H

Cl

2.11
Current Data Parameters

NAME MED-V-58pu

F2 - Acquisition Parameters

Date_ 20140925
INSTRUM av600
PROBHD 5 mm TBI 1H/13
PULPROG zg30
TD 98074
SOLVENT CDCl3
NS 8
DS 2
SWH 9615.385 Hz
FIDRES 0.098042 Hz
AQ 5.0998979 sec
RG 512
DW 52.000 usec
DE 14.54 usec
TE 298.0 K
D1 0.10000000 sec

======== CHANNEL f1 ========
SFO1 600.1342009 MHz
NUC1 1H
P1 8.00 usec

F2 - Processing parameters

SI 65536
SF 600.1300347 MHz
WDW EM
SSB 0
LB 0.30 Hz
PC 2.00

1D NMR plot parameters

CX 22.80 cm
CY 18.00 cm
F1P 8.100 ppm
F1 4861.05 Hz
F2P -0.100 ppm
F2 -60.01 Hz
PPMCM 0.35965 ppm/cm
HZCM 215.83626 Hz/cm

O
2.95

H
Cl
H
Cl

2.95
2-restored spin-echo 13C spectrum with 1H decoupling
Current Data Parameters

NAME MED-IV-291pu
EXPNO 4
PROCNO 1

F2 - Acquisition Parameters
Date_ 20140901
Time 13.46
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG noesygptp
TD 2048
SOLVENT CDCl3
NS 2
DS 4
SWH 4222.973 Hz
FIDRES 2.061999 Hz
AQ 0.2424832 sec
RG 64
DW 118.400 usec
DE 6.00 usec
TE 298.0 K
D0 0.00000300 sec
D1 2.00000000 sec
D8 0.80000001 sec
D16 0.00020000 sec
d20 0.39880002 sec
IN0 0.00011840 sec

-= CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
P2 15.00 usec
PL1 1.60 dB
SFO1 500.2219216 MHz

====== GRADIENT CHANNEL =====
GPNAM[1] sine.100
GPNAM[2] sine.100
GPX1 0 %
GPX2 0 %
GPY1 0 %
GPY2 0 %
GPZ1 40.00 %
GPZ2 -40.00 %
P16 1000.00 usec

F1 - Acquisition parameters
TD 116
SFO1 500.2219 MHz
FIDRES 36.404938 Hz
SW 8.442 ppm
FnMODE undefined

F2 - Processing parameters
SI 1024
SF 500.2200310 MHz
WDW QSINE
SSB 2
LB 0 Hz
GB 0
PC 1.40

F1 - Processing parameters
SI 1024
MC2 TPPI
SF 500.2200310 MHz
WDW QSINE
SSB 2
LB 0 Hz
GB 0
$\text{cis-2.7} + \text{trans-2.7}$

Current Data Parameters

USER medaub

NAME MED-IV-296pu

EXPNO 2

PROCNO 1

F2 - Acquisition Parameters

Date_ 20140905

Time 13.41

INSTRUM cryo500

PROBHD 5 mm CPTCI 1H-

PULPROG zg30

TD 81728

SOLVENT CDCl3

NS 8

DS 2

SWH 8012.820 Hz

FIDRES 0.098043 Hz

AQ 5.0998774 sec

RG 4.5

DW 62.400 usec

DE 6.00 usec

TE 298.0 K

D1 0.10000000 sec

MCREST 0.00000000 sec

MCWRK 0.01500000 sec

======== CHANNEL f1 ========

NUC1 1H

P1 7.50 usec

PL1 1.60 dB

SFO1 500.2235015 MHz

F2 - Processing parameters

SI 65536

SF 500.2200311 MHz

WDW EM

SSB 0

LB 0.30 Hz

GB 0

PC 2.50

1D NMR plot parameters

CX 22.80 cm

CY 13.00 cm

F1P 8.100 ppm

F1 4051.78 Hz

F2P -0.100 ppm

F2 -50.02 Hz

PPMCM 0.35965 ppm/cm

HZCM 179.90372 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

cis-2.7 + trans-2.7
Current Data Parameters

USER medaub
NAME MED-V-147pufr23-32
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters

Date_ 20141115
Time 17.34
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 7.1
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

1H spectrum

F1 - Processing parameters

SI 65536
SF 500.2200333 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

1D NMR plot parameters

CX 22.80 cm
CY 35.00 cm
F1P 8.100 ppm
F1 4051.78 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.35965 ppm/cm
HZCM 179.90372 Hz/cm
2-restored spin-echo 13C spectrum with 1H decoupling
Current Data Parameters

USER medaub
NAME MED-V-147pufr16-22
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20141115
Time 17.24
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 5.7
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200334 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 5.00

1D NMR plot parameters
CX 22.80 cm
CY 15.00 cm
F1P 8.100 ppm
F1 4051.78 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.35965 ppm/cm
HZCM 179.90372 Hz/cm

H spectrum

OH
H
Cl
H
EtOAc
(trace E/Ο/Ο)
Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters
USER medaub
NAME MED-V-147pufr16-22
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20141115
Time 17.29
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG SpinEchopg30gp.prd
TD 65536
SOLVENT CDCl3
NS 232
DS 4
SWH 30303.031 Hz
FIDRES 0.462388 Hz
AQ 1.0813940 sec
RG 11585.2
DW 16.500 usec
DE 6.00 usec
TE 298.0 K
D1 0.25000000 sec
d11 0.03000000 sec
d16 0.00020000 sec
d17 0.00019600 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec
P2 33.10 usec

======== CHANNEL f1 ========
NUC1 13C
P1 16.55 usec
P11 500.00 usec
P12 2000.00 usec
PL0 120.00 dB
PL1 -1.00 dB
SFO1 125.7942548 MHz
SP1 2.70 dB
SP2 2.70 dB
SPNAM1 Crp60,0.5,20.1
SPNAM2 Crp60comp.4
SPOFF1 0.00 Hz
SPOFF2 0.00 Hz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 100.00 usec
PL2 1.60 dB
PL12 24.50 dB
SFO2 500.2225011 MHz

====== GRADIENT CHANNEL =====
GPNAM1 SINE.100
GPNAM2 SINE.100
GPX1 0.00 %
GPX2 0.00 %
GPY1 0.00 %
GPY2 0.00 %
GPZ1 30.00 %
GPZ2 50.00 %
p15 500.00 usec
p16 1000.00 usec

F2 - Processing parameters
SI 65536
SF 125.7804085 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 2.00

1D NMR plot parameters
CX 22.80 cm
CY 40.00 cm
F1P 160.000 ppm
F1 20124.87 Hz
F2P 0.000 ppm
F2 0.00 Hz
PPMCM 7.01754 ppm/cm
HZCM 882.66956 Hz/cm

O
H
H
Cl
H
H
2.103
OH
1H spectrum

Current Data Parameters

NAME MED-V-149pu
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20141116
Time 14.00
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 4.5
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

====== CHANNEL f1 ======
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200335 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 5.00

1D NMR plot parameters
CX 22.80 cm
CY 18.00 cm
F1P 8.100 ppm
F1 4051.78 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.35965 ppm/cm
HZCM 179.90372 Hz/cm

OH
O
H
Cl
2-restored spin-echo 13C spectrum with 1H decoupling

\[
\text{\begin{align*}
\text{H} & \quad \text{OH} \\
\text{H} & \quad \text{OH} \\
\text{Cl} & \\
\text{H} & \\
\text{O} & \\
2.101
\end{align*}}
\]
Z-restored spin-echo 13C spectrum with 1H decoupling

![Z-restored spin-echo 13C spectrum with 1H decoupling]

Current Data Parameters

USER medaub
NAME MED-V-150pu
EXPNO 7
PROCNO 1

F2 - Acquisition Parameters

- **Date** 20141118
- **Time** 9.31
- **INSTRUM** cryo500
- **PROBHD** 5 mm CPTCI 1H-
- **PULPROG** SpinEchopg30gp.prd
- **TD** 65536
- **SOLVENT** CDCl3
- **NS** 816
- **DS** 4
- **SWH** 30303.031 Hz
- **FIDRES** 0.462388 Hz
- **AQ** 1.0813940 sec
- **RG** 13004
- **DW** 16.500 usec
- **DE** 6.00 usec
- **TE** 298.0 K
- **D1** 1.00000000 sec
- **d11** 0.03000000 sec
- **D16** 0.00020000 sec
- **d17** 0.00019600 sec
- **MCREST** 0.00000000 sec
- **MCWRK** 0.01500000 sec
- **P2** 31.00 usec

======== CHANNEL f1 ========

- **NUC1** 13C
- **P1** 15.50 usec
- **P11** 500.00 usec
- **P12** 2000.00 usec
- **PL0** 120.00 dB
- **PL1** -1.00 dB
- **SFO1** 125.7942548 MHz
- **SP1** 3.20 dB
- **SP2** 3.20 dB
- **SPNAM1** Crp60,0.5,20.1
- **SPNAM2** Crp60comp.4
- **SPOFF1** 0.00 Hz
- **SPOFF2** 0.00 Hz

======== CHANNEL f2 ========

- **CPDPRG2** waltz16
- **NUC2** 1H
- **PCPD2** 100.00 usec
- **PL2** 1.60 dB
- **PL12** 24.60 dB
- **SFO2** 500.2225011 MHz

====== GRADIENT CHANNEL =====

- **GPNAM1** SINE.100
- **GPNAM2** SINE.100
- **GPX1** 0.00 %
- **GPX2** 0.00 %
- **GPY1** 0.00 %
- **GPY2** 0.00 %
- **GPZ1** 30.00 %
- **GPZ2** 50.00 %
- **p15** 500.00 usec
- **p16** 1000.00 usec

F2 - Processing parameters

- **SI** 65536
- **SF** 125.7804097 MHz
- **WDW** EM
- **SSB** 0
- **LB** 1.00 Hz
- **GB** 0
- **PC** 2.00

1D NMR plot parameters

- **CX** 22.80 cm
- **CY** 15.65 cm
- **F1P** 180.000 ppm
- **F1** 22640.47 Hz
- **F2P** 0.000 ppm
- **F2** 0.00 Hz
- **PPMCM** 7.89474 ppm/cm
- **HZCM** 993.00330 Hz/cm

2.104
Current Data Parameters

USER: medaub
NAME: MED-V-198pufr16-22
EXPNO: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20150110
Time: 15.35
INSTRUM: cryo500
PROBHD: 5 mm CPTCI 1H-
PULPROG: zg30
TD: 81728
SOLVENT: CDCl3
NS: 8
DS: 2
SWH: 8012.820 Hz
FIDRES: 0.098043 Hz
AQ: 5.0998774 sec
RG: 5.7
DW: 62.400 usec
DE: 6.00 usec
TE: 298.0 K
D1: 0.10000000 sec
MCREST: 0.00000000 sec
MCWRK: 0.01500000 sec

F1 - Processing parameters
SI: 65536
SF: 500.2200318 MHz
WDW: EM
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 1.00

1D NMR plot parameters
CX: 22.80 cm
CY: 60.00 cm
F1P: 8.100 ppm
F1: 4051.78 Hz
F2P: -0.100 ppm
F2: -50.02 Hz
PPMCM: 0.35965 ppm/cm
HZCM: 179.90372 Hz/cm

2.105
(trace CH₂Cl₂)
Z-restored spin-echo 13C spectrum with 1H decoupling

![Chemical Structure](image)

Current Data Parameters

USER: medaub
NAME: MED-V-198pu2
EXPNO: 3
PROCNO: 1

F2 - Acquisition Parameters

Date: 20150112
Time: 21.04
INSTRUM: cryo500
PROBHD: 5 mm CPTCI 1H-
PULPROG: SpinEchopg30gp.prd
TD: 65536
SOLVENT: CDCl3
NS: 14376
DS: 4
SWH: 30303.031 Hz
FIDRES: 0.462388 Hz
AQ: 1.0813940 sec
RG: 11585.2
DW: 16.500 usec
DE: 6.00 usec
TE: 298.0 K
D1: 1.50000000 sec
d11: 0.03000000 sec
D16: 0.00020000 sec
d17: 0.00019600 sec
MCREST: 0.00000000 sec
MCWRK: 0.01500000 sec
P2: 31.00 usec

======== CHANNEL f1 ========

NUC1: 13C
P1: 15.50 usec
P11: 500.00 usec
P12: 2000.00 usec
PL0: 120.00 dB
PL1: -1.00 dB
SFO1: 125.7942548 MHz
SP1: 3.20 dB
SP2: 3.20 dB
SPNAM1: Crp60,0.5,20.1
SPNAM2: Crp60comp.4
SPOFF1: 0.00 Hz
SPOFF2: 0.00 Hz

======== CHANNEL f2 ========

CPDPRG2: waltz16
NUC2: 1H
PCPD2: 100.00 usec
PL2: 1.60 dB
PL12: 24.60 dB
SFO2: 500.2225011 MHz

====== GRADIENT CHANNEL =====

GPNAM1: SINE.100
GPNAM2: SINE.100
GPX1: 0.00 %
GPX2: 0.00 %
GPY1: 0.00 %
GPY2: 0.00 %
GPZ1: 30.00 %
GPZ2: 50.00 %
p15: 500.00 usec
p16: 1000.00 usec

F2 - Processing parameters

SI: 65536
SF: 125.7804076 MHz
WDW: EM
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 1.00

1D NMR plot parameters

CX: 22.80 cm
CY: 150.00 cm
F1P: 180.000 ppm
F1: 22640.47 Hz
F2P: -10.000 ppm
F2: -1257.80 Hz
PPMCM: 8.33333 ppm/cm
HZCM: 1048.17017 Hz/cm
1H spectrum of kalihinol B
2.2 kalihinol B

Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

\[\text{trans} : 2.117\]
Z-restored spin-echo 13C spectrum with 1H decoupling

trans-2.117
264

2-restored spin-echo 13C spectrum with 1H decoupling

as=2.117
1H spectrum

trans-2.118

Current data parameters

USER medaub
NAME MED-VI-227pufr7
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters

Date_ 20150924
Time 12.32
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 4.5
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

**** CHANNEL f1 ========

NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters

SI 65536
SF 500.2200312 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters

CX 22.80 cm
CY 15.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm
2-restored spin-echo 13C spectrum with 1H decoupling

trans-2.118
Z-restored spin-echo 13C spectrum with 1H decoupling

cis-2.118
13C spectrum with 1H decoupling

trans-2.119
13C spectrum with 1H decoupling

O

H

OTMS

cis-2.119

ppm 200 175 150 125 100 75 50 25 0

2.65 27.00 26.63 26.24 27.34 37.96 54.36 74.91 76.91 77.16 77.41 81.37 86.78 203.94
1H spectrum

(c. 75% pure)
2-restored spin-echo 13C spectrum with 1H decoupling

(2.120)

(ca. 75% pure)
<table>
<thead>
<tr>
<th>ppm</th>
<th>Integral</th>
<th>OHC</th>
<th>O</th>
<th>H</th>
<th>OTMS</th>
<th>2.121</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9649</td>
<td>1.0000</td>
<td>2.0397</td>
<td>1.1036</td>
<td>3.0863</td>
<td>4.4577</td>
<td>1.1175</td>
</tr>
</tbody>
</table>
2-restored spin-echo 13C spectrum with 1H decoupling
Current Data Parameters

USER medaub
NAME MED-VI-242pufr26-34
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20151002
Time 13.33
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 5
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200311 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters
CX 22.80 cm
CY 30.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

2.122
1H spectrum

Cl

O

OTMS

2.123

H

H

H

H

H

OTMS

ppm

Integral

1.000

1.064

2.295

1.070

1.148

3.337

1.251

2.278

2.244

1.339

4.497

3.538

6.982

3.358

10.267

ppm

7.2600

5.3813

5.3617

3.7002

3.6866

3.6733

3.5720

3.5600

3.5549

3.5449

3.5307

3.5290

3.5145

2.7629

2.7455

2.5763

2.5616

2.4299

2.4170

2.4125

2.4016

2.3956

2.3915

2.3759

2.3726

2.3663

2.1716

2.1520

2.1431

2.1230

1.8824

1.8694

1.8635

1.8580

1.8507

1.8378

1.7935

1.7769

1.6829

1.6805

1.6578

1.6081

1.5959

1.5840

1.5779

1.5687

1.5626

1.5604

1.2029

1.1889

1.1742

1.0665

0.9113

0.1156

0.1093

0.1023

0.0983

0.0945

0.0919
Z-restored spin-echo 13C spectrum with 1H decoupling

2.123
Current Data Parameters
NAME MED-VI-244pu
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters
Date_ 20151006
Time 10.43
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG noesy
TD 2048
SOLVENT CDCl3
NS 2
DS 4
SWH 4084.967 Hz
FIDRES 1.994613 Hz
AQ 0.2506752 sec
RG 128
DW 122.400 usec
DE 6.00 usec
TE 298.0 K
D0 0.00000300 sec
D1 2.00000000 sec
D8 0.80000001 sec
D16 0.00020000 sec
d20 0.39880002 sec

F2 - Processing parameters
SI 1024
SF 500.2200312 MHz
WDW QSINE
SSB 2
LB 0 Hz
GB 0
PC 2.00

F1 - Acquisition parameters
TD 145
SFO1 500.2219 MHz
FIDRES 28.172188 Hz
SW 8.166 ppm
FnMODE undefined

F1 - Processing parameters
SI 1024
MC2 TPPI
SF 500.2200312 MHz
WDW QSINE
SSB 2
LB 0 Hz
GB 0
1H spectrum

Current Data Parameters

USER medaub
NAME MED-VI-249pu
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20151008
Time 10.11
INSTRUM gn500
PROBHD 5 mm broadband
PULPROG zg30
TD 81728
SOLVENT CDCl3T
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 181
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 12.00 usec
PL1 -5.80 dB
SFO1 499.1834943 MHz

F2 - Processing parameters
SI 65536
SF 499.1800271 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 22.80 cm
CY 50.00 cm
F1P 10.100 ppm
F1 5041.72 Hz
F2P -0.100 ppm
F2 -49.92 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.31740 Hz/cm

O

H

OTMS

H

OTMS

cis-2,124

trans-2,124
13C spectrum with 1H decoupling

cis-2.124 + trans-2.124
Current Data Parameters

USER
- medaub

NAME
- MED-VI-250puB

EXPNO
- 1

PROCNO
- 1

F2 - Acquisition Parameters

- Date: 20151010
- Time: 9.40
- INSTRUM: cryo500
- PROBHD: 5 mm CPTCI 1H-
- PULPROG: zg30
- TD: 81728
- SOLVENT: CDCl3
- NS: 8
- DS: 2
- SWH: 8012.820 Hz
- FIDRES: 0.098043 Hz
- AQ: 5.0998774 sec
- RG: 8
- DW: 62.400 usec
- DE: 6.00 usec
- TE: 298.0 K
- D1: 0.10000000 sec
- MCREST: 0.00000000 sec
- MCWRK: 0.01500000 sec

======== CHANNEL f1 ========

NUC1
- 1H

P1
- 7.50 usec

PL1
- 1.60 dB

SFO1
- 500.2235015 MHz

F2 - Processing parameters

- SI: 65536
- SF: 500.2200313 MHz
- WDW: EM
- SSB: 0
- LB: 0.30 Hz
- GB: 0
- PC: 1.00

1D NMR plot parameters

- CX: 22.80 cm
- CY: 60.00 cm
- F1P: 10.100 ppm
- F1: 5052.22 Hz
- F2P: -0.100 ppm
- F2: -50.02 Hz
- PPMCM: 0.44737 ppm/cm
- HZCM: 223.78267 Hz/cm
2.125
1H spectrum

- **user**: medaub
- **name**: MED-VI-250puA
- **expno**: 1
- **procno**: 1

F2 - Acquisition Parameters
- **date**: 20151010
- **time**: 9.33
- **instrument**: cryo500
- **probhd**: 5 mm CPTCI 1H-
- **pulprog**: zg30
- **td**: 81728
- **solvent**: CDCl3
- **ns**: 8
- **ds**: 2
- **swh**: 8012.820 Hz
- **fidres**: 0.098043 Hz
- **aq**: 5.0998774 sec
- **rg**: 5.7
- **dw**: 62.400 usec
- **de**: 6.00 usec
- **te**: 298.0 K
- **d1**: 0.10000000 sec
- **mcrest**: 0.00000000 sec
- **mcwrk**: 0.01500000 sec

F2 - Processing parameters
- **si**: 65536
- **sf**: 500.2200313 MHz
- **wdw**: EM
- **ssb**: 0
- **lb**: 0.30 Hz
- **gb**: 0
- **pc**: 1.00

1D NMR plot parameters
- **cx**: 22.80 cm
- **cy**: 40.00 cm
- **f1p**: 10.100 ppm
- **f1**: 5052.22 Hz
- **f2p**: -0.100 ppm
- **f2**: -50.02 Hz
- **pppcm**: 0.44737 ppm/cm
- **hzc**: 223.78267 Hz/cm

Chemical Shifts
- 2.126

Structural Formula
- OTMS
- OH

Molecular Structure
- The image shows a molecular structure with OTMS and OH groups.
287

2.126

$\text{H} \quad \text{H} \quad \text{H} \quad \text{OTMS}$

$\text{H} \quad \text{H}$

OH

287
1H spectrum

```
H
H
O
H
H
O
O

2.111
```
Z-restored spin-echo 13C spectrum with 1H decoupling

\begin{center}
\begin{tabular}{c}
\textbf{H} \\
\hline
\textbf{OH} \\
\textbf{H} \\
\textbf{OH} \\
\textbf{H} \\
\end{tabular}
\end{center}

\textbf{ppm}
1H spectrum

OTFA

H

H

H

H

H

2.127

Current data parameters:

- **User:** medaub
- **Name:** MED-VI-262cr
- **Experiment number:** 1
- **Protocol number:** 1

F2 - Acquisition parameters:

- **Date:** 20151017
- **Time:** 13.02
- **Instrument:** cryo500
- **Probehead:** 5 mm CPTCI 1H-
- **Pulsed program:** zg30
- **Time domain (TD):** 81728
- **Solvent:** CDCl3
- **NS:** 8
- **DS:** 2
- **SWH:** 8012.820 Hz
- **FIDRES:** 0.098043 Hz
- **AQ:** 5.0998774 sec
- **RG:** 5.7
- **DW:** 62.400 usec
- **DE:** 6.00 usec
- **TE:** 298.0 K
- **D1:** 0.1000000 sec
- **MCREST:** 0.0000000 sec
- **MCWRK:** 0.0150000 sec

F2 - Processing parameters:

- **SI:** 65536
- **SF:** 500.2200313 MHz
- **Windowing:** EM
- **Sideband suppression (SSB):** 0
- **Line broadening (LB):** 0.30 Hz
- **Grey scale (GB):** 0
- **Peak capacity (PC):** 4.00

1D NMR plot parameters:

- **CX:** 22.80 cm
- **CY:** 30.00 cm
- **F1P:** 10.100 ppm
- **F1:** 5052.22 Hz
- **F2P:** -0.100 ppm
- **F2:** -50.02 Hz
- **PPMCM:** 0.44737 ppm/cm
- **HZCM:** 223.78267 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

[Diagram of chemical structure]

2.127

[Table of chemical shifts]

ppm
Z-restored spin-echo 13C spectrum with 1H decoupling

![Z-restored spin-echo 13C spectrum with 1H decoupling](image-url)
Z-restored spin-echo 13C spectrum with 1H decoupling

3.9 + 3.10
1H spectrum

O 3.19: (–)-cryptone
13C spectrum with 1H decoupling

3.19

\((\rightarrow)\)-cryptone
299

Z-restored spin-echo 13C spectrum with 1H decoupling

3.20 (+)-cedrelanol
1H spectrum

![Diagram](image)

3.21: (−)-torreyol

Data Parameters

USER medaub

NAME MED-VI-191pufr30-44

EXPNO 1

PROCNO 1

F2 - Acquisition Parameters

- **Date**: 20150720
- **Time**: 18.15
- **INSTRUM**: av600
- **PROBHD**: 5 mm BBO BB-1H
- **PULPROG**: zg30
- **TD**: 98074
- **SOLVENT**: CDCl3
- **NS**: 8
- **DS**: 2
- **SWH**: 9615.385 Hz
- **FIDRES**: 0.098042 Hz
- **AQ**: 5.0998979 sec
- **RG**: 724
- **DW**: 52.000 usec
- **DE**: 14.33 usec
- **TE**: 294.6 K
- **D1**: 0.10000000 sec

======== CHANNEL f1 ========

- **SFO1**: 600.1342009 MHz
- **NUC1**: 1H
- **P1**: 9.00 usec

F2 - Processing parameters

- **SI**: 65536
- **SF**: 600.1300347 MHz
- **WDW**: EM
- **SSB**: 0
- **LB**: 0.30 Hz
- **GB**: 0
- **PC**: 1.00

1D NMR plot parameters

- **CX**: 22.80 cm
- **CY**: 35.00 cm
- **F1P**: 10.100 ppm
- **F1**: 6061.31 Hz
- **F2P**: -0.100 ppm
- **F2**: -60.01 Hz
- **PPMCM**: 0.44737 ppm/cm
- **HZCM**: 268.47925 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

3.21: (+)-torreyol
1H spectrum

(a) 3.23
Z-restored spin-echo 13C spectrum with 1H decoupling

(a) 3.23
Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

Current Data Parameters

USER medaub
NAME MED-VI-114pufr21-27
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20150513
Time 21.34
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 4
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec
======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200308 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters
CX 22.80 cm
CY 15.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm
308

Z-restored spin-echo 13C spectrum with 1H decoupling

![Chemical structure](image)
Z-restored spin-echo 13C spectrum with 1H decoupling

![13C spectrum with 1H decoupling](image)

Table 1: Chemical Shifts

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTFA</td>
<td>3.65</td>
</tr>
</tbody>
</table>

Figure 1: Molecular Structure

![Molecular Structure](image)
1H spectrum

Current Data Parameters

USER medaub
NAME MED-VI-285pu2fr8-14
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters

Date_ 20151223
Time 9.09
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 6.3
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========

NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters

SI 65536
SF 500.2200305 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

1D NMR plot parameters

CX 22.80 cm
CY 55.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm

The diagram shows a 1H NMR spectrum with assignments for various chemical shifts. The top of the page contains a structural formula with assignments at 3.26 ppm.
Z-restored spin-echo 13C spectrum with 1H decoupling

\[\text{ppm} \]

\[\text{TMSO} \]

\[3.26 \]

\[\text{ppm} \]

\[\text{TMSO} \]

\[3.26 \]
1H spectrum

\[
\begin{align*}
&\text{TMSO} \\
&\text{3.27}
\end{align*}
\]
2-restored spin-echo 13C spectrum with 1H decoupling

![Diagram of molecular structure with chemical shifts]

- Z-restored spin-echo 13C spectrum with 1H decoupling

- Current Data Parameters
 - USER: medaub
 - NAME: MED-VI-285pu5
 - EXPNO: 2
 - PROCNO: 1

- Acquisition Parameters
 - Date: 20151223
 - Time: 13.06
 - INSTRUM: cryo500
 - PROBHD: 5 mm CPTCI 1H-
 - PULPROG: SpinEchopg30gp.prd
 - TD: 65536
 - SOLVENT: CDCl3
 - NS: 728
 - DS: 4
 - SWH: 30303.031 Hz
 - FIDRES: 0.462388 Hz
 - AQ: 1.0813940 sec
 - RG: 13004
 - DW: 16.500 usec
 - DE: 6.00 usec
 - TE: 298.0 K
 - D1: 1.50000000 sec
 - d11: 0.03000000 sec
 - D16: 0.00020000 sec
 - d17: 0.00019600 sec
 - MCREST: 0.00000000 sec
 - MCWRK: 0.01500000 sec
 - P2: 31.00 usec

- Processing parameters
 - SI: 65536
 - SF: 125.7804071 MHz
 - WDW: EM
 - SSB: 0
 - LB: 1.00 Hz
 - GB: 0
 - PC: 2.00

- NMR plot parameters
 - CX: 22.80 cm
 - CY: 100.00 cm
 - F1P: 200.000 ppm
 - F1: 25156.08 Hz
 - F2P: -10.000 ppm
 - F2: -1257.80 Hz
 - PPMCM: 9.21053 ppm/cm
 - HZCM: 1158.50378 Hz/cm
1H spectrum

![1H spectrum](image)

Current Data Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTRUM</td>
<td>cryo500</td>
</tr>
<tr>
<td>PROBHD</td>
<td>5 mm CPTCI 1H-</td>
</tr>
<tr>
<td>PULPROG</td>
<td>zg30</td>
</tr>
<tr>
<td>TD</td>
<td>81728</td>
</tr>
<tr>
<td>SOLVENT</td>
<td>CDCl₃</td>
</tr>
<tr>
<td>NS</td>
<td>8</td>
</tr>
<tr>
<td>DS</td>
<td>2</td>
</tr>
<tr>
<td>SWH</td>
<td>8012.820 Hz</td>
</tr>
<tr>
<td>FIDRES</td>
<td>0.098043 Hz</td>
</tr>
<tr>
<td>AQ</td>
<td>5.0998774 sec</td>
</tr>
<tr>
<td>RG</td>
<td>9</td>
</tr>
<tr>
<td>DW</td>
<td>62.400 usec</td>
</tr>
<tr>
<td>DE</td>
<td>6.00 usec</td>
</tr>
<tr>
<td>TE</td>
<td>298.0 K</td>
</tr>
<tr>
<td>D1</td>
<td>0.10000000 sec</td>
</tr>
<tr>
<td>MCREST</td>
<td>0.00000000 sec</td>
</tr>
<tr>
<td>MCWRK</td>
<td>0.01500000 sec</td>
</tr>
</tbody>
</table>

Processing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>65536</td>
</tr>
<tr>
<td>SF</td>
<td>500.2200305 MHz</td>
</tr>
<tr>
<td>WDW</td>
<td>EM</td>
</tr>
<tr>
<td>SSB</td>
<td>0</td>
</tr>
<tr>
<td>LB</td>
<td>0.30 Hz</td>
</tr>
<tr>
<td>GB</td>
<td>0</td>
</tr>
<tr>
<td>PC</td>
<td>15.00</td>
</tr>
</tbody>
</table>

NMR plot parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX</td>
<td>22.80 cm</td>
</tr>
<tr>
<td>CY</td>
<td>80.00 cm</td>
</tr>
<tr>
<td>F1P</td>
<td>10.100 ppm</td>
</tr>
<tr>
<td>F1</td>
<td>5052.22 Hz</td>
</tr>
<tr>
<td>F2P</td>
<td>-0.100 ppm</td>
</tr>
<tr>
<td>F2</td>
<td>-50.02 Hz</td>
</tr>
<tr>
<td>PPMCM</td>
<td>0.44737 ppm/cm</td>
</tr>
<tr>
<td>HZCM</td>
<td>223.78267 Hz/cm</td>
</tr>
</tbody>
</table>

TMSO

NC

3.28
317

Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

![Chemical structure](image)

Current Data Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER</td>
<td>medaub</td>
</tr>
<tr>
<td>NAME</td>
<td>MED-VI-295pu</td>
</tr>
<tr>
<td>EXPNO</td>
<td>1</td>
</tr>
<tr>
<td>PROCNO</td>
<td>1</td>
</tr>
<tr>
<td>Date_</td>
<td>20160109</td>
</tr>
<tr>
<td>Time</td>
<td>11.13</td>
</tr>
<tr>
<td>INSTRUM</td>
<td>cryo500</td>
</tr>
<tr>
<td>PROBHD</td>
<td>5 mm CPTCI 1H-</td>
</tr>
<tr>
<td>PULPROG</td>
<td>zg30</td>
</tr>
<tr>
<td>TD</td>
<td>81728</td>
</tr>
<tr>
<td>SOLVENT</td>
<td>CDCl$_3$</td>
</tr>
<tr>
<td>NS</td>
<td>8</td>
</tr>
<tr>
<td>DS</td>
<td>2</td>
</tr>
<tr>
<td>SWH</td>
<td>8012.820 Hz</td>
</tr>
<tr>
<td>FIDRES</td>
<td>0.098043 Hz</td>
</tr>
<tr>
<td>AQ</td>
<td>5.0998774 sec</td>
</tr>
<tr>
<td>RG</td>
<td>8</td>
</tr>
<tr>
<td>DW</td>
<td>62.400 usec</td>
</tr>
<tr>
<td>DE</td>
<td>6.00 usec</td>
</tr>
<tr>
<td>TE</td>
<td>298.0 K</td>
</tr>
<tr>
<td>D1</td>
<td>0.10000000 sec</td>
</tr>
<tr>
<td>MCREST</td>
<td>0.00000000 sec</td>
</tr>
<tr>
<td>MCWRK</td>
<td>0.01500000 sec</td>
</tr>
</tbody>
</table>

F1 - Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUC1</td>
<td>1H</td>
</tr>
<tr>
<td>P1</td>
<td>7.50 usec</td>
</tr>
<tr>
<td>PL1</td>
<td>1.60 dB</td>
</tr>
<tr>
<td>SFO1</td>
<td>500.2235015 MHz</td>
</tr>
</tbody>
</table>

F2 - Processing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>65536</td>
</tr>
<tr>
<td>SF</td>
<td>500.2200305 MHz</td>
</tr>
<tr>
<td>WDW</td>
<td>EM</td>
</tr>
<tr>
<td>SSB</td>
<td>0</td>
</tr>
<tr>
<td>LB</td>
<td>0.30 Hz</td>
</tr>
<tr>
<td>GB</td>
<td>0</td>
</tr>
<tr>
<td>PC</td>
<td>4.00</td>
</tr>
</tbody>
</table>

1D NMR plot parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX</td>
<td>22.80 cm</td>
</tr>
<tr>
<td>CY</td>
<td>25.00 cm</td>
</tr>
<tr>
<td>F1P</td>
<td>10.100 ppm</td>
</tr>
<tr>
<td>F2P</td>
<td>-0.100 ppm</td>
</tr>
<tr>
<td>PPMCM</td>
<td>0.44737 ppm/cm</td>
</tr>
<tr>
<td>HZCM</td>
<td>223.78267 Hz/cm</td>
</tr>
</tbody>
</table>

2D NMR plot parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>25.46 cm</td>
</tr>
<tr>
<td>CY</td>
<td>25.46 cm</td>
</tr>
<tr>
<td>P1</td>
<td>26.50 ppm</td>
</tr>
<tr>
<td>P2</td>
<td>26.50 ppm</td>
</tr>
<tr>
<td>Ps</td>
<td>-5.00 ppm</td>
</tr>
<tr>
<td>Ps</td>
<td>-5.00 ppm</td>
</tr>
<tr>
<td>OCH</td>
<td>0.44777 ppm/cm</td>
</tr>
<tr>
<td>OCH</td>
<td>223.78267 Hz/cm</td>
</tr>
</tbody>
</table>

Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

3.33

Current data parameters
USER medaub
NAME MED-VI-296pu
EXPNO 1
PROCNO 1
F2 - Acquisition parameters
Date_ 20160110
Time 10.54
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 6.3
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200305 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters
CX 22.80 cm
CY 50.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm

NC
H
H
H
HO
NC
3.33
Z-restored spin-echo 13C spectrum with 1H decoupling

\[
\begin{align*}
\text{NC} & \quad \text{NC} \\
\text{H} & \quad \text{H} \\
\text{HO} & \quad \text{NC} \\
\text{H} & \quad \text{H} \\
\text{3.33} &
\end{align*}
\]
1H spectrum

7:1 favoring Δ^9-isomer

Current data parameters

USER medaub
NAME MED-VI-299pu
EXPNO 1
PROCNO 1

F2 - Acquisition parameters
Date_ 20160110
Time 13.30
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 9
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200306 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters
CX 22.80 cm
CY 35.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm
z-restored spin-echo 13C spectrum with 1H decoupling

7:1 favoring Δ9-isomer
1H spectrum
Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER medaub
NAME MED-VI-199pu
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters

Date_ 20150812
Time 16.33
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG SpinEchopg30gp.prd
TD 65536
SOLVENT CDCl3
NS 112
DS 4
SWH 30303.031 Hz
FIDRES 0.462388 Hz
AQ 1.0813940 sec
RG 11585.2
DW 16.500 usec
DE 6.00 usec
TE 298.0 K
D1 0.25000000 sec
d11 0.03000000 sec
D16 0.00020000 sec
d17 0.00019600 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec
P2 33.10 usec

======== CHANNEL f1 ========

NUC1 13C
P1 16.55 usec
P11 500.00 usec
P12 2000.00 usec
PL0 120.00 dB
PL1 -1.00 dB
SFO1 125.7942548 MHz
SP1 2.70 dB
SP2 2.70 dB
SPNAM1 Crp60,0.5,20.1
SPNAM2 Crp60comp.4
SPOFF1 0.00 Hz
SPOFF2 0.00 Hz

======== CHANNEL f2 ========

CPDPRG2 waltz16

NUC2 1H
PCPD2 100.00 usec
PL2 1.60 dB
PL12 24.50 dB
SFO2 500.2225011 MHz

====== GRADIENT CHANNEL =====

GPNAM1 SINE.100
GPNAM2 SINE.100
GPX1 0.00 %
GPX2 0.00 %
GPY1 0.00 %
GPY2 0.00 %
GPZ1 30.00 %
GPZ2 50.00 %
p15 500.00 usec
p16 1000.00 usec

F2 - Processing parameters

SI 65536
SF 125.7804078 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.00

1D NMR plot parameters

CX 22.80 cm
CY 15.65 cm
F1P 200.000 ppm
F1 25156.08 Hz
F2P -10.000 ppm
F2 -1257.80 Hz
PPMCM 9.21053 ppm/cm
HZCM 1158.50378 Hz/cm

3.66
1H spectrum

![Chemical structure]

ppm

<table>
<thead>
<tr>
<th>Integral</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>7.260</td>
</tr>
<tr>
<td>1.142</td>
<td>3.829</td>
</tr>
<tr>
<td>7.640</td>
<td>2.047</td>
</tr>
<tr>
<td>3.839</td>
<td>2.022</td>
</tr>
<tr>
<td>3.429</td>
<td>1.932</td>
</tr>
<tr>
<td>4.881</td>
<td>1.925</td>
</tr>
<tr>
<td>1.342</td>
<td>1.906</td>
</tr>
<tr>
<td>3.567</td>
<td>1.899</td>
</tr>
<tr>
<td>3.476</td>
<td>1.893</td>
</tr>
<tr>
<td>10.163</td>
<td>1.838</td>
</tr>
</tbody>
</table>

Chemical shifts and integrals for various peaks in the 1H NMR spectrum.
Z-restored spin-echo 13C spectrum with 1H decoupling
Current Data Parameters

USER medaub
NAME MED-VI-285puC
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20151223
Time 13.38
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 9
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

========== CHANNEL f1 =========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200305 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters
CX 22.80 cm
CY 60.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm
2-restored spin-echo 13C spectrum with 1H decoupling

[Diagram of molecular structure]

ppm
Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

Current Data Parameters

USER medaub
NAME MED-VI-297pu
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160109
Time 12.12
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 6.3
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200306 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters
CX 22.80 cm
CY 25.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

Current data parameters
USER medaub
NAME MED-VI-298pu
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160110
Time 12.50
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 9
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200306 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters
CX 22.80 cm
CY 35.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm

NC
H
H
CN
OH
3.36
Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

![Chemical Structure](image)

5.6:1 favoring Δ²-isomer
Z-restored spin-echo 13C spectrum with 1H decoupling

5.6:1 favoring Δ9-isomer
The text in the image is a table for an NMR spectrum. The table contains chemical shifts in parts per million (ppm) and corresponding intensities. The spectrum is marked with peaks at specific ppm values, indicating the positions of protons or other nuclei. The tabulated data includes the following columns:

- **ppm**: Chemical shift values
- **Integral**: Peak integrals

The spectrum shows a compound with a peak at 3.39 ppm, which is highlighted with a bounding box. The spectrum is labeled as "1H spectrum." The page number is 338.
13C spectrum with 1H decoupling
1H spectrum

3.40
Z-restored spin-echo 13C spectrum with 1H decoupling
Z-restored spin-echo 13C spectrum with 1H decoupling

3.41
<table>
<thead>
<tr>
<th>ppm</th>
<th>Integral</th>
<th>9.0550</th>
<th>5.9522</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.25995</td>
<td>3.67682</td>
<td>3.66784</td>
<td>3.65605</td>
</tr>
<tr>
<td>3.65160</td>
<td>3.64452</td>
<td>3.64123</td>
<td>3.63776</td>
</tr>
<tr>
<td>2.51600</td>
<td>2.51007</td>
<td>2.49788</td>
<td>2.49273</td>
</tr>
<tr>
<td>2.48054</td>
<td>2.46875</td>
<td>2.45564</td>
<td>2.45212</td>
</tr>
<tr>
<td>2.43899</td>
<td>2.41636</td>
<td>2.38222</td>
<td>2.37679</td>
</tr>
<tr>
<td>2.37185</td>
<td>2.36618</td>
<td>2.35574</td>
<td>2.12709</td>
</tr>
<tr>
<td>1.94084</td>
<td>1.92809</td>
<td>1.91218</td>
<td>1.90005</td>
</tr>
<tr>
<td>1.88725</td>
<td>1.88304</td>
<td>1.87097</td>
<td>1.86628</td>
</tr>
<tr>
<td>1.75088</td>
<td>1.74556</td>
<td>1.73989</td>
<td>1.73398</td>
</tr>
<tr>
<td>1.72169</td>
<td>1.70954</td>
<td>1.69683</td>
<td>1.68691</td>
</tr>
<tr>
<td>1.68108</td>
<td>1.66879</td>
<td>0.86266</td>
<td>0.01990</td>
</tr>
</tbody>
</table>

1H spectrum

OHC

O

OTBS

3.43

Current Data Parameters

USER medaub
NAME MED-VI-287pu
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters

Date 20151216
Time 13.14
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 7.1
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

F1

NUC 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters

SI 65536
SF 500.2200317 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters

CX 22.80 cm
CY 40.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm
Z-restored spin-echo 13C spectrum with 1H decoupling

![Chemical Structure Image]

Current Data Parameters

USER medaub
NAME MED-VI-287pu
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters

- **Date_**: 20151216
- **Time**: 13.17
- **INSTRUM**: cryo500
- **PROBHD**: 5 mm CPTCI 1H-
- **PULPROG**: SpinEchopg30gp.prd
- **TD**: 65536
- **SOLVENT**: CDCl3
- **NS**: 128
- **DS**: 4
- **SWH**: 30303.031 Hz
- **FIDRES**: 0.462388 Hz
- **AQ**: 1.0813940 sec
- **RG**: 13004
- **DW**: 16.500 usec
- **DE**: 6.00 usec
- **TE**: 298.0 K
- **D1**: 0.25000000 sec
- **d11**: 0.03000000 sec
- **D16**: 0.00020000 sec
- **d17**: 0.00019600 sec
- **MCREST**: 0.00000000 sec
- **MCWRK**: 0.01500000 sec
- **P2**: 33.10 usec

F1: 13C
- **P1**: 16.55 usec
- **P11**: 500.00 usec
- **P12**: 2000.00 usec
- **PL0**: 120.00 dB
- **PL1**: -1.00 dB
- **SFO1**: 125.7942548 MHz
- **SP1**: 2.70 dB
- **SP2**: 2.70 dB
- **SPNAM1**: Crp60,0.5,20.1
- **SPNAM2**: Crp60comp.4
- **SPOFF1**: 0.00 Hz
- **SPOFF2**: 0.00 Hz

F2: 1H
- **CPDPRG2**: waltz16
- **PCPD2**: 100.00 usec
- **PL2**: 1.60 dB
- **PL12**: 24.50 dB
- **SFO2**: 500.2225011 MHz

F2 - Processing parameters

- **SI**: 65536
- **SF**: 125.7804085 MHz
- **WDW**: EM
- **SSB**: 0
- **LB**: 1.00 Hz
- **GB**: 0
- **PC**: 2.00

1D NMR plot parameters

- **CX**: 22.80 cm
- **CY**: 15.65 cm
- **F1P**: 220.000 ppm
- **F1**: 27671.69 Hz
- **F2P**: -10.000 ppm
- **F2**: -1257.80 Hz
- **PPMCM**: 10.08772 ppm/cm
- **HZCM**: 1268.83752 Hz/cm
13C spectrum with 1H decoupling

OTBS

3.44
Current Data Parameters

USER medaub
NAME MED-VII-46pu
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160124
Time 11.54
INSTRUM gn500
PROBHD 5 mm broadband
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 114
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 12.00 usec
PL1 -5.80 dB
SFO1 499.1834943 MHz

F2 - Processing parameters
SI 65536
SF 499.1800272 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 22.80 cm
CY 60.00 cm
F1P 10.100 ppm
F1 5041.72 Hz
F2P -0.100 ppm
F2 -49.92 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.31740 Hz/cm

O

OTBS

3.46

Cl

H
13C spectrum with 1H decoupling

OTBS 3.46

O
OTBS

Cl

H
Current Data Parameters

NAME MED-VII-46pu
EXPNO 4
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160124
Time 12.04
INSTRUM gn500
PROBHD 5 mm broadband
PULPROG noesygptp
TD 2048
SOLVENT CDCl3
NS 2
DS 4
SWH 4496.403 Hz
FIDRES 2.195509 Hz
AQ 0.2277376 sec
RG 1290.2
DW 111.200 usec
DE 6.00 usec
TE 298.0 K
D0 0.00000300 sec
D1 2.00000000 sec
D8 1.00000000 sec
D16 0.00025000 sec
d20 0.49875000 sec
IN0 0.00011120 sec

======== CHANNEL f1 ========
NUC1 1H
P1 12.00 usec
P2 24.00 usec
PL1 -5.80 dB
SFO1 499.1821199 MHz

====== GRADIENT CHANNEL =====
GPNAM[1] sine.100
GPNAM[2] sine.100
GPX1 0 %
GPX2 0 %
GPY1 0 %
GPY2 0 %
GPZ1 40.00 %
GPZ2 -40.00 %
P16 1000.00 usec

F1 - Acquisition parameters
TD 256
SFO1 499.1821 MHz
FIDRES 17.564074 Hz
SW 9.008 ppm
FnMODE TPPI

F2 - Processing parameters
SI 1024
SF 499.1800272 MHz
WDW QSINE
SSB 2
LB 0 Hz
GB 0
PC 1.40

F1 - Processing parameters
SI 1024
MC2 TPPI
SF 499.1800272 MHz
WDW QSINE
SSB 2
LB 0 Hz
GB 0
1H spectrum

trans-3.47 + cis-3.47
13C spectrum with 1H decoupling

 cis-3.47

 trans-3.47

 Current Data Parameters

 USER medaub
 NAME MED-VII-45pu
 EXPNO 2
 PROCNO 1

 F2 - Acquisition Parameters
 Date_ 20160124
 Time 11.41
 INSTRUM gn500
 PROBHD 5 mm broadband
 PULPROG zgdc30
 TD 65536
 SOLVENT CDCl3
 NS 408
 DS 4
 SWH 30303.031 Hz
 FIDRES 0.462388 Hz
 AQ 1.0813940 sec
 RG 46341
 DW 16.500 usec
 DE 4.50 usec
 TE 298.0 K
 D1 0.25000000 sec
 d11 0.03000000 sec
 MCREST 0.00000000 sec
 MCWRK 0.01500000 sec

 ======== CHANNEL f1 ========
 NUC1 13C
 P1 9.00 usec
 PL1 -0.60 dB
 SFO1 125.5327181 MHz

 ======== CHANNEL f2 ========
 CPDPRG2 waltz16
 NUC2 1H
 PCPD2 80.00 usec
 PL2 -3.00 dB
 PL12 12.80 dB
 SFO2 499.1824959 MHz

 F2 - Processing parameters
 SI 65536
 SF 125.5188976 MHz
 WDW EM
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 2.00

 1D NMR plot parameters
 CX 22.80 cm
 CY 30.00 cm
 F1P 220.000 ppm
 F1 27614.16 Hz
 F2P -10.000 ppm
 F2 -1255.19 Hz
 PPMCM 10.08772 ppm/cm
 HZCM 1266.19946 Hz/cm
1H spectrum

![Chemical structure](image)

Integral

<table>
<thead>
<tr>
<th>ppm</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>2.128</td>
<td></td>
</tr>
<tr>
<td>2.229</td>
<td></td>
</tr>
<tr>
<td>3.132</td>
<td></td>
</tr>
<tr>
<td>11.068</td>
<td></td>
</tr>
<tr>
<td>6.285</td>
<td></td>
</tr>
<tr>
<td>1.322</td>
<td></td>
</tr>
<tr>
<td>9.959</td>
<td></td>
</tr>
<tr>
<td>6.299</td>
<td></td>
</tr>
</tbody>
</table>

ppm

<table>
<thead>
<tr>
<th>ppm</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.000</td>
<td>7.25995</td>
</tr>
<tr>
<td>2.000</td>
<td>5.57631</td>
</tr>
<tr>
<td>3.000</td>
<td>5.56786</td>
</tr>
<tr>
<td>4.000</td>
<td>3.70175</td>
</tr>
<tr>
<td>5.000</td>
<td>3.69078</td>
</tr>
<tr>
<td>6.000</td>
<td>3.68170</td>
</tr>
<tr>
<td>7.000</td>
<td>3.67075</td>
</tr>
<tr>
<td>8.000</td>
<td>3.66520</td>
</tr>
<tr>
<td>9.000</td>
<td>3.65432</td>
</tr>
<tr>
<td>10.000</td>
<td>3.62145</td>
</tr>
<tr>
<td>11.000</td>
<td>3.60697</td>
</tr>
<tr>
<td>12.000</td>
<td>3.59201</td>
</tr>
<tr>
<td>13.000</td>
<td>3.58694</td>
</tr>
<tr>
<td>14.000</td>
<td>3.57187</td>
</tr>
<tr>
<td>15.000</td>
<td>1.98411</td>
</tr>
<tr>
<td>16.000</td>
<td>1.90201</td>
</tr>
<tr>
<td>17.000</td>
<td>1.89610</td>
</tr>
<tr>
<td>18.000</td>
<td>1.87107</td>
</tr>
<tr>
<td>19.000</td>
<td>1.86153</td>
</tr>
<tr>
<td>20.000</td>
<td>1.83953</td>
</tr>
<tr>
<td>21.000</td>
<td>1.69941</td>
</tr>
<tr>
<td>22.000</td>
<td>1.69188</td>
</tr>
<tr>
<td>23.000</td>
<td>1.67229</td>
</tr>
<tr>
<td>24.000</td>
<td>1.66458</td>
</tr>
<tr>
<td>25.000</td>
<td>1.64694</td>
</tr>
<tr>
<td>26.000</td>
<td>1.60442</td>
</tr>
<tr>
<td>27.000</td>
<td>1.57786</td>
</tr>
<tr>
<td>28.000</td>
<td>1.56716</td>
</tr>
<tr>
<td>29.000</td>
<td>1.55225</td>
</tr>
<tr>
<td>30.000</td>
<td>1.54324</td>
</tr>
<tr>
<td>31.000</td>
<td>1.53335</td>
</tr>
<tr>
<td>32.000</td>
<td>1.52701</td>
</tr>
<tr>
<td>33.000</td>
<td>1.50821</td>
</tr>
<tr>
<td>34.000</td>
<td>1.47671</td>
</tr>
<tr>
<td>35.000</td>
<td>1.45035</td>
</tr>
<tr>
<td>36.000</td>
<td>1.42454</td>
</tr>
<tr>
<td>37.000</td>
<td>1.41773</td>
</tr>
<tr>
<td>38.000</td>
<td>1.40100</td>
</tr>
<tr>
<td>39.000</td>
<td>1.32187</td>
</tr>
<tr>
<td>40.000</td>
<td>1.30248</td>
</tr>
<tr>
<td>41.000</td>
<td>1.28478</td>
</tr>
<tr>
<td>42.000</td>
<td>1.27915</td>
</tr>
<tr>
<td>43.000</td>
<td>1.26837</td>
</tr>
<tr>
<td>44.000</td>
<td>1.25282</td>
</tr>
<tr>
<td>45.000</td>
<td>1.11567</td>
</tr>
<tr>
<td>46.000</td>
<td>1.10789</td>
</tr>
<tr>
<td>47.000</td>
<td>1.09103</td>
</tr>
<tr>
<td>48.000</td>
<td>1.08334</td>
</tr>
<tr>
<td>49.000</td>
<td>0.88721</td>
</tr>
<tr>
<td>50.000</td>
<td>0.05399</td>
</tr>
<tr>
<td>51.000</td>
<td>0.04322</td>
</tr>
</tbody>
</table>

Current Data Parameters

USER

NAME

EXPNO

PROCNO

F2 - Acquisition Parameters

Date

Time

INSTRUM

PROBHD

PULPROG

TD

SOLVENT

NS

DS

SWH

FIDRES

AQ

RG

DW

DE

TE

D1

MCREST

MCWRK

======== CHANNEL f1 ========

NUC1

P1

PL1

SFO1

F2 - Processing parameters

SI

SF

WDW

SSB

LB

GB

PC

1D NMR plot parameters

CX

CY

F1P

F1

F2P

F2

PPMCM

HZCM
2-restored spin-echo 13C spectrum with 1H decoupling

```
3.48
```

Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER medaub
NAME MED-VII-49pufr29-36
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters

Date_ 20160125
Time 17.17
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG SpinEchopg30gp.prd
TD 65536
SOLVENT CDCl3
NS 120
DS 4
SWH 30303.031 Hz
FIDRES 0.462388 Hz
AQ 1.0813940 sec
RG 13004
DW 16.500 usec
DE 6.00 usec
TE 298.0 K
D1 0.25000000 sec
d11 0.03000000 sec
D16 0.00020000 sec
d17 0.00019600 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec
P2 33.10 usec

F2 - Processing parameters

SI 65536
SF 125.7804076 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 2.00

1D NMR plot parameters

CX 22.80 cm
CY 15.65 cm
F1P 200.000 ppm
F1 25156.08 Hz
F2P -10.000 ppm
F2 -1257.80 Hz
PPMCM 9.21053 ppm/cm
HZCM 1158.50378 Hz/cm
1H spectrum

\[
\begin{array}{c}
\text{OTBS} \\
\text{3.49} \\
\text{H} \\
\text{H} \\
\text{OH}
\end{array}
\]
Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

OTBS

3.50

OH

H

H

H

O
3.50

Z-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

H

OTBS

3.51
Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER: medaub

NAME: MED-VII-60pufr64-80

EXPNO: 2

PROCNO: 1

F2 - Acquisition Parameters

- **Date**: 20160205
- **Time**: 9.36
- **INSTRUM**: cryo500
- **PROBHD**: 5 mm CPTCI 1H-
- **PULPROG**: SpinEchopg30gp.prd
- **TD**: 65536
- **SOLVENT**: CDCl3
- **NS**: 104
- **DS**: 4
- **SWH**: 30303.031 Hz
- **FIDRES**: 0.462388 Hz
- **AQ**: 1.0813940 sec
- **RG**: 11585.2
- **DW**: 16.500 usec
- **DE**: 6.00 usec
- **TE**: 298.0 K
- **D1**: 0.25000000 sec
- **d11**: 0.03000000 sec
- **D16**: 0.00020000 sec
- **d17**: 0.00019600 sec
- **MCREST**: 0.00000000 sec
- **MCWRK**: 0.01500000 sec
- **P2**: 33.10 usec

F1 - CHANNEL

- **NUC**: 13C
- **P1**: 16.55 usec
- **P11**: 500.00 usec
- **P12**: 2000.00 usec
- **PL0**: 120.00 dB
- **PL1**: -1.00 dB
- **SFO1**: 125.7942548 MHz
- **SP1**: 2.70 dB
- **SP2**: 2.70 dB
- **SPNAM1**: Crp60,0.5,20.1
- **SPNAM2**: Crp60comp.4
- **SPOFF1**: 0.00 Hz
- **SPOFF2**: 0.00 Hz

F2 - CHANNEL

- **CPDPRG**: waltz16
- **NUC**: 1H
- **PCPD**: 100.00 usec
- **PL2**: 1.60 dB
- **PL12**: 24.50 dB
- **SFO2**: 500.2225011 MHz

F2 - Processing parameters

- **SI**: 65536
- **SF**: 125.7804085 MHz
- **WDW**: EM
- **SSB**: 0
- **LB**: 1.00 Hz
- **GB**: 0
- **PC**: 2.00

1D NMR plot parameters

- **CX**: 22.80 cm
- **CY**: 15.65 cm
- **F1P**: 200.000 ppm
- **F1**: 25156.08 Hz
- **F2P**: -10.000 ppm
- **F2**: -1257.80 Hz
- **PPMCM**: 9.21053 ppm/cm
- **HZCM**: 1158.50378 Hz/cm

otbs 3.51

H

H

OH

O
Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER medaub
NAME MED-VII-65pu
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160211
Time 9.15
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG SpinEchopg30gp.prd
TD 65536
SOLVENT CDCl3
NS 440
DS 4
SWH 30303.031 Hz
FIDRES 0.462388 Hz
AQ 1.0813940 sec
RG 11585.2
DW 16.500 usec
DE 6.00 usec
TE 298.0 K

D1 1.00000000 sec
d11 0.03000000 sec
d16 0.00020000 sec
d17 0.00019600 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec
P2 31.00 usec

======== CHANNEL f1 ========
NUC1 13C
P1 15.50 usec
P11 500.00 usec
P12 2000.00 usec
PL0 120.00 dB
PL1 -1.00 dB
SFO1 125.7942548 MHz
SP1 3.20 dB
SP2 3.20 dB
SPNAM1 Crp60,0.5,20.1
SPNAM2 Crp60comp.4
SPOFF1 0.00 Hz
SPOFF2 0.00 Hz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 100.00 usec
PL2 1.60 dB
PL12 24.60 dB
SFO2 500.2225011 MHz

====== GRADIENT CHANNEL =====
GPNAM1 SINE.100
GPNAM2 SINE.100
GPX1 0.00 %
GPX2 0.00 %
GPY1 0.00 %
GPY2 0.00 %
GPZ1 30.00 %
GPZ2 50.00 %
p15 500.00 usec
p16 1000.00 usec

F2 - Processing parameters
SI 65536
SF 125.7804080 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 2.00

1D NMR plot parameters
CX 22.80 cm
CY 15.65 cm
F1P 200.000 ppm
F1 25156.08 Hz
F2P -10.000 ppm
F2 -1257.80 Hz
PPMCM 9.21053 ppm/cm
HZCM 1158.50378 Hz/cm
1H spectrum

Current data parameters

USER medaub
NAME MED-VII-74puA
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160217
Time 9.23
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG zg30
TD 81728
SOLVENT CDCl3
NS 8
DS 2
SWH 8012.820 Hz
FIDRES 0.098043 Hz
AQ 5.0998774 sec
RG 6.3
DW 62.400 usec
DE 6.00 usec
TE 298.0 K
D1 0.10000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 7.50 usec
PL1 1.60 dB
SFO1 500.2235015 MHz

F2 - Processing parameters
SI 65536
SF 500.2200321 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 4.00

1D NMR plot parameters
CX 22.80 cm
CY 45.00 cm
F1P 10.100 ppm
F1 5052.22 Hz
F2P -0.100 ppm
F2 -50.02 Hz
PPMCM 0.44737 ppm/cm
HZCM 223.78267 Hz/cm
2-restored spin-echo 13C spectrum with 1H decoupling

H

TMSO

OTBS

3.52

ppm

180 160 140 120 100 80 60 40 20 0

Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER medaub
NAME MED-VII-74puA
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160217
Time 9.28
INSTRUM cryo500
PROBHD 5 mm CPTCI 1H-
PULPROG SpinEchopg30gp.prd
TD 65536
SOLVENT CDCl3
NS 656
DS 4
SWH 30303.031 Hz
FIDRES 0.462388 Hz
AQ 1.0813940 sec
RG 13004
DW 16.500 usec
DE 6.00 usec
TE 298.0 K
D1 1.00000000 sec
D11 0.03000000 sec
D16 0.00020000 sec
d17 0.00019600 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec
P2 31.00 usec

======== CHANNEL f1 ========
NUC1 13C
P1 15.50 usec
P11 500.00 usec
P12 2000.00 usec
PL0 120.00 dB
PL1 -1.00 dB
SFO1 125.7942548 MHz
SP1 3.20 dB
SP2 3.20 dB
SPNAM1 Crp60,0.5,20.1
SPNAM2 Crp60comp.4
SPOFF1 0.00 Hz
SPOFF2 0.00 Hz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 100.00 usec
PL2 1.60 dB
PL12 24.60 dB
SFO2 500.2225011 MHz

====== GRADIENT CHANNEL =====
GPNAM1 SINE.100
GPNAM2 SINE.100
GPX1 0.00 %
GPX2 0.00 %
GPY1 0.00 %
GPY2 0.00 %
GPZ1 30.00 %
GPZ2 50.00 %
p15 500.00 usec
p16 1000.00 usec

F2 - Processing parameters
SI 65536
SF 125.7804085 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 2.00

1D NMR plot parameters
CX 22.80 cm
CY 30.00 cm
F1P 200.000 ppm
F1 25156.08 Hz
F2P -10.000 ppm
F2 -1257.80 Hz
PPMCM 9.21053 ppm/cm
HZCM 1158.50378 Hz/cm
Current Data Parameters

USER
medaub
NAME
MED-VII-74puB
EXPNO
1
PROCNO
1

F2 - Acquisition Parameters

- **Date:** 20160217
- **Time:** 13.35
- **INSTRUM:** cryo500
- **PROBHD:** 5 mm CPTCI 1H-
- **PULPROG:** zg30
- **TD:** 81728
- **SOLVENT:** CDCl3
- **NS:** 8
- **DS:** 2
- **SWH:** 8012.820 Hz
- **FIDRES:** 0.098043 Hz
- **AQ:** 5.0998774 sec
- **RG:** 6.3
- **DW:** 62.400 usec
- **DE:** 6.00 usec
- **TE:** 298.0 K
- **D1:** 0.10000000 sec
- **MCREST:** 0.00000000 sec
- **MCWRK:** 0.01500000 sec

====== CHANNEL f1 ========

- **NUC1:** 1H
- **P1:** 7.50 usec
- **PL1:** 1.60 dB
- **SFO1:** 500.2235015 MHz

F2 - Processing parameters

- **SI:** 65536
- **SF:** 500.2200319 MHz
- **WDW:** EM
- **SSB:** 0
- **LB:** 0.30 Hz
- **GB:** 0
- **PC:** 4.00

1D NMR plot parameters

- **CX:** 22.80 cm
- **CY:** 45.00 cm
- **F1P:** 10.100 ppm
- **F1:** 5052.22 Hz
- **F2P:** -0.100 ppm
- **F2:** -50.02 Hz
- **PPMCM:** 0.44737 ppm/cm
- **HZCM:** 223.78267 Hz/cm

OTBS

- H_3.53^N

Chemical Structure:

- CN
- TMSO
- 3.53
- OTBS
Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER medaub
NAME MED-VII-74puB
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters

- **Date:** 20160217
- **Time:** 13.39
- **INSTRUM:** cryo500
- **PROBHD:** 5 mm CPTCI 1H-
- **PULPROG:** SpinEchopg30gp.prd
- **TD:** 65536
- **SOLVENT:** CDCl3
- **NS:** 616
- **DS:** 4
- **SWH:** 30303.031 Hz
- **FIDRES:** 0.462388 Hz
- **AQ:** 1.0813940 sec
- **RG:** 7298.2
- **DW:** 16.500 usec
- **DE:** 6.00 usec
- **TE:** 298.0 K
- **D1:** 1.00000000 sec
- **d11:** 0.03000000 sec
- **D16:** 0.00020000 sec
- **d17:** 0.00019600 sec
- **MCREST:** 0.00000000 sec
- **MCWRK:** 0.01500000 sec
- **P2:** 31.00 usec

F2 - Processing parameters

- **SI:** 65536
- **SF:** 125.7804085 MHz
- **WDW:** EM
- **SSB:** 0
- **LB:** 1.00 Hz
- **GB:** 0
- **PC:** 2.00

1D NMR plot parameters

- **CX:** 22.80 cm
- **CY:** 30.00 cm
- **F1P:** 200.000 ppm
- **F1:** 25156.08 Hz
- **F2P:** -10.000 ppm
- **F2:** -1257.80 Hz
- **PPMCM:** 9.21053 ppm/cm
- **HZCM:** 1158.50378 Hz/cm

Chemical shifts:

- 3.53 ppm
- H
- NC
- CN
- O
- TMS

Structure diagram:

- Molecules and chemical bonds are shown with appropriate labels.

Additional notes:

- Detailed spectral parameters and annotations are provided for analysis.

Graphical representation:

- Spectral lines and peaks are highlighted for interpretation.

Technical details:

- Instrumentation and acquisition conditions are thoroughly documented.

Conclusion:

The Z-restored spin-echo 13C spectrum with 1H decoupling provides valuable insights into the chemical structure of the compound, allowing for accurate assignments and analysis.
Z-restored spin-echo 13C spectrum with 1H decoupling

[Chemical structure image]

3.54
1H spectrum

\[\text{3.55} \]
2-restored spin-echo 13C spectrum with 1H decoupling
OTBS

3.68

1H spectrum

ppm

Integral

1.0000
2.3508
1.1319
4.8116
5.2847
1.5906
8.0817
9.2093
6.1992

ppm

7.26008
5.61781
3.71626
3.69588
3.68561
3.68002
3.67037
3.64187
3.62733
3.61312
3.60714
3.59303
2.18643
2.00285
1.98760
1.92516
1.91006
1.88882
1.83284
1.80645
1.67582
1.64431
1.56727
1.52883
1.49711
1.47036
1.45016
1.42395
1.35831
1.34296
1.32805
1.31764
1.25117
1.00520
0.88170
0.75544
0.04195
0.03538
2-restored spin-echo 13C spectrum with 1H decoupling
1H spectrum

![1H spectrum diagram]

Current data parameters:
- **USER**: medaub
- **NAME**: MED-VII-73pu2
- **EXPNO**: 2
- **PROCNO**: 1

F2 - Acquisition Parameters
- **Date**: 20160216
- **Time**: 10.33
- **INSTRUM**: cryo500
- **PROBHD**: 5 mm CPTCI 1H-
- **PULPROG**: zg30
- **TD**: 81728
- **SOLVENT**: CDCl3
- **NS**: 8
- **DS**: 2
- **SWH**: 8012.820 Hz
- **FIDRES**: 0.098043 Hz
- **AQ**: 5.0998774 sec
- **RG**: 6.3
- **DW**: 62.400 usec
- **DE**: 6.00 usec
- **TE**: 298.0 K
- **D1**: 0.10000000 sec
- **MCREST**: 0.00000000 sec
- **MCWRK**: 0.01500000 sec

F1 - Processing parameters
- **SI**: 65536
- **SF**: 500.2200322 MHz
- **WDW**: EM
- **SSB**: 0
- **LB**: 0.30 Hz
- **GB**: 0
- **PC**: 4.00

1D NMR plot parameters
- **CX**: 22.80 cm
- **CY**: 15.00 cm
- **F1P**: 10.100 ppm
- **F2P**: -0.100 ppm
- **PPMCM**: 0.44737 ppm/cm
- **HZCM**: 223.78267 Hz/cm

Other parameters:
- **OH**: 3.56
- **H**: 3.56
- **NC**:

Chemical shifts and integrals:
- ppm: 1.000, 2.330, 1.055, 3.716, 1.239, 6.074, 11.459
- OH: 3.56

Chemical structure

![Chemical structure diagram]
Z-restored spin-echo 13C spectrum with 1H decoupling

[Chemical structure image]

3.56
Z-restored spin-echo 13C spectrum with 1H decoupling

Current Data Parameters

USER medaub
NAME MED-VII-113pu
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters

- **Date** 20160322
- **Time** 9.45
- **INSTRUM** cryo500
- **PROBHD** 5 mm CPTCI 1H-
- **PULPROG** SpinEchopg30gp.prd
- **TD** 65536
- **SOLVENT** CDCl3
- **NS** 704
- **DS** 4
- **SWH** 30303.031 Hz
- **FIDRES** 0.462388 Hz
- **AQ** 1.0813940 sec
- **RG** 11585.2
- **DW** 16.500 usec
- **DE** 6.00 usec
- **TE** 298.0 K
- **D1** 1.00000000 sec
- **d11** 0.03000000 sec
- **D16** 0.00020000 sec
- **d17** 0.00019600 sec
- **MCREST** 0.00000000 sec
- **MCWRK** 0.01500000 sec

F2 - Processing parameters

- **SI** 65536
- **SF** 125.7804080 MHz
- **WDW** EM
- **SSB** 0
- **LB** 1.00 Hz
- **GB** 0
- **PC** 2.00

1D NMR plot parameters

- **CX** 22.80 cm
- **CY** 80.00 cm
- **F1P** 200.000 ppm
- **F1** 25156.08 Hz
- **F2P** -10.000 ppm
- **F2** -1257.80 Hz
- **PPMCM** 9.21053 ppm/cm
- **HZCM** 1158.50378 Hz/cm

Chemical Structures

- 3.58
- 3.59
1H spectrum

![Chemical Structures](image)

Current data parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>20160505</td>
</tr>
<tr>
<td>Time</td>
<td>15.02</td>
</tr>
<tr>
<td>INSTRUM</td>
<td>cryo500</td>
</tr>
<tr>
<td>PROBHD</td>
<td>5 mm CPTCI 1H-</td>
</tr>
<tr>
<td>PULPROG</td>
<td>zg30</td>
</tr>
<tr>
<td>TD</td>
<td>81728</td>
</tr>
<tr>
<td>SOLVENT</td>
<td>CDCl3</td>
</tr>
<tr>
<td>NS</td>
<td>56</td>
</tr>
<tr>
<td>DS</td>
<td>2</td>
</tr>
<tr>
<td>SWH</td>
<td>8012.820 Hz</td>
</tr>
<tr>
<td>FIDRES</td>
<td>0.098043 Hz</td>
</tr>
<tr>
<td>AQ</td>
<td>5.0998774 sec</td>
</tr>
<tr>
<td>RG</td>
<td>8</td>
</tr>
<tr>
<td>DW</td>
<td>62.400 usec</td>
</tr>
<tr>
<td>DE</td>
<td>6.00 usec</td>
</tr>
<tr>
<td>TE</td>
<td>298.0 K</td>
</tr>
<tr>
<td>D1</td>
<td>0.10000000 sec</td>
</tr>
<tr>
<td>MCREST</td>
<td>0.00000000 sec</td>
</tr>
<tr>
<td>MCWRK</td>
<td>0.01500000 sec</td>
</tr>
</tbody>
</table>

Channel f1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUC1</td>
<td>1H</td>
</tr>
<tr>
<td>P1</td>
<td>7.50 usec</td>
</tr>
<tr>
<td>PL1</td>
<td>1.60 dB</td>
</tr>
<tr>
<td>SFO1</td>
<td>500.2235015 MHz</td>
</tr>
</tbody>
</table>

Processing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>65536</td>
</tr>
<tr>
<td>SF</td>
<td>500.2200315 MHz</td>
</tr>
<tr>
<td>WDW</td>
<td>EM</td>
</tr>
<tr>
<td>SSB</td>
<td>0</td>
</tr>
<tr>
<td>LB</td>
<td>0.30 Hz</td>
</tr>
<tr>
<td>GB</td>
<td>0</td>
</tr>
<tr>
<td>PC</td>
<td>4.00</td>
</tr>
</tbody>
</table>

1D NMR plot parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX</td>
<td>22.80 cm</td>
</tr>
<tr>
<td>CY</td>
<td>80.00 cm</td>
</tr>
<tr>
<td>F1P</td>
<td>10.100 ppm</td>
</tr>
<tr>
<td>F2P</td>
<td>-0.100 ppm</td>
</tr>
<tr>
<td>PPMCM</td>
<td>0.44737 ppm/cm</td>
</tr>
<tr>
<td>HZCM</td>
<td>223.78267 Hz/cm</td>
</tr>
</tbody>
</table>

Other data

- **USER**: medaub
- **NAME**: MED-VII-118pu2
- **EXPNO**: 2
- **PROCNO**: 1

Additional data

- **Acquisition parameters**
 - **Date**: 20160505
 - **Time**: 15.02
 - **INSTRUM**: cryo500
 - **PROBHD**: 5 mm CPTCI 1H-
 - **PULPROG**: zg30
 - **TD**: 81728
 - **SOLVENT**: CDCl3
 - **NS**: 56
 - **DS**: 2
 - **SWH**: 8012.820 Hz
 - **FIDRES**: 0.098043 Hz
 - **AQ**: 5.0998774 sec
 - **RG**: 8
 - **DW**: 62.400 usec
 - **DE**: 6.00 usec
 - **TE**: 298.0 K
 - **D1**: 0.10000000 sec
 - **MCREST**: 0.00000000 sec
 - **MCWRK**: 0.01500000 sec

- **Processing parameters**
 - **SI**: 65536
 - **SF**: 500.2200315 MHz
 - **WDW**: EM
 - **SSB**: 0
 - **LB**: 0.30 Hz
 - **GB**: 0
 - **PC**: 4.00

- **NMR plot parameters**
 - **CX**: 22.80 cm
 - **CY**: 80.00 cm
 - **F1P**: 10.100 ppm
 - **F2P**: -0.100 ppm
 - **PPMCM**: 0.44737 ppm/cm
 - **HZCM**: 223.78267 Hz/cm

- **Other data**
 - **USER**: medaub
 - **NAME**: MED-VII-118pu2
 - **EXPNO**: 2
 - **PROCNO**: 1
1H spectrum

(trace CH₂Cl₂)
1H spectrum

(trace CH$_2$Cl$_2$)
Determination of enantiomeric excess of \((R,E)-5-(3,3\text{-dimethyloxiran-2-yl})-3\text{-methylpent-2-en-1-yl} 4\text{-nitrobenzoate (2.141)}\)

Chiralpak AS-H column, 5\% iPrOH in hexanes, flow rate of 0.5 mL/min
Determination of enantiomeric excess of \((S,E)-5-(3,3\text{-dimethyloxiran-2-yl})-3\text{-methylpent-2-en-1-yl} 4\text{-nitrobenzoate (2.141)}\) prepared using a Shi epoxidation of geraniol

Chiralpak AS-H column, 5% \(i\)PrOH in hexanes, flow rate of 1 mL/min
Determination of enantiomeric excess of (S,E)-5-(3,3-dimethylloxiran-2-yl)-3-methypent-2-en-1-yl 4-nitrobenzoate (2.141) prepared using a Sharpless dihydroxylation of geranyl acetate, mesylation, and epoxide formation.

Chiralpak AS-H column, 5% iPrOH in hexanes, flow rate of 1 mL/min.
Determination of enantiomeric excess of (R)-cryptone (3.19)

Chiralpak AD-H column, 2% iPrOH in hexanes, flow rate of 0.5 mL/min

Signal 3: DAD1 D, Sig=230,16 Ref=360,100

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Enantiomeric Excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.927</td>
<td>BB</td>
<td>0.3153</td>
<td>3.19316e4</td>
<td>1583.48645</td>
<td>49.5504</td>
</tr>
<tr>
<td>2</td>
<td>19.718</td>
<td>BB</td>
<td>0.3625</td>
<td>3.25110e4</td>
<td>1391.95129</td>
<td>50.4496</td>
</tr>
</tbody>
</table>

Totals: 6.44426e4 2975.43774

Signal 3: DAD1 D, Sig=230,16 Ref=360,100

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Enantiomeric Excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.573</td>
<td>BB</td>
<td>0.2838</td>
<td>2905.68164</td>
<td>157.06201</td>
<td>5.8487</td>
</tr>
<tr>
<td>2</td>
<td>20.404</td>
<td>BB</td>
<td>0.4093</td>
<td>4.67749e4</td>
<td>1799.40332</td>
<td>94.1513</td>
</tr>
</tbody>
</table>

Totals: 4.96805e4 1956.46533
APPENDIX B: X-Ray Crystallographic Data
X-ray Data Collection, Structure Solution and Refinement:

A colorless crystal of approximate dimensions 0.087 x 0.104 x 0.235 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2\(^1\) program package was used to determine the unit-cell parameters and for data collection (120 sec/frame scan time for a hemisphere of diffraction data). The raw frame data was processed using SAINT\(^2\) and SADABS\(^3\) to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL\(^4\) program. The systematic absences were consistent with the hexagonal space groups \(R\bar{3}\) and \(R\bar{3}\). The non-centrosymmetric space group \(R3\) was assigned and later determined to be correct.

The structure was solved by direct methods and refined on \(F^2\) by full-matrix least-squares techniques. The analytical scattering factors\(^5\) for neutral atoms were used throughout the analysis. Hydrogen atom H(2) was located from a difference-Fourier map and refined (x,y,z and \(U_{iso}\)). The remaining hydrogen atoms were included using a riding model.

At convergence, \(wR^2 = 0.0909\) and Goof = 1.038 for 217 variables refined against 4475 data (0.78 Å), \(R1 = 0.0391\) for those 4030 data with \(I > 2.0\sigma(I)\). The absolute structure was assigned by refinement of the Flack\(^6\) parameter.

Definitions:

\[
wR^2 = \frac{\sum[w(F_o^2-F_c^2)^2]}{\sum[w(F_o^2)]^{1/2}}
\]

\[
R1 = \frac{\sum|F_o|-|F_c|}{\sum|F_o|}
\]

\[
\text{Goof} = S = \frac{\sum[w(F_o^2-F_c^2)^2]}{(n-p)}^{1/2}
\]

where \(n\) is the number of reflections and \(p\) is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

\(^2\) SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
Crystal data and structure refinement for **2.102**.

Identification code
edv36 (Mary Beth Daub)

Empirical formula
C$_{20}$ H$_{33}$ Cl O$_2$

Formula weight
340.91

Temperature
133(2) K

Wavelength
0.71073 Å

Crystal system
Trigonal

Space group
$R3$

Unit cell dimensions

\[
a = 29.890(4) \text{ Å} \quad \alpha = 90^\circ.
\]

\[
b = 29.890(4) \text{ Å} \quad \beta = 90^\circ.
\]

\[
c = 5.8875(7) \text{ Å} \quad \gamma = 120^\circ.
\]

Volume
4555.3(13) Å3

Z
9

Density (calculated)
1.118 Mg/m3

Absorption coefficient
0.196 mm$^{-1}$

F(000)
1674

Crystal color
colorless

Crystal size
0.235 x 0.104 x 0.087 mm3

Theta range for data collection
1.363 to 27.103°

Index ranges

\[-35 \leq h \leq 38, \quad -38 \leq k \leq 38, \quad -7 \leq l \leq 7\]

Reflections collected
14320

Independent reflections
4475 [R(int) = 0.0325]

Completeness to theta = 25.500°
100.0 %

Absorption correction
Semi-empirical from equivalents

Max. and min. transmission
0.8621 and 0.8081

Refinement method
Full-matrix least-squares on F2

Data / restraints / parameters
4475 / 1 / 217

Goodness-of-fit on F2
1.038

Final R indices [I>2sigma(I) = 4030 data]
R1 = 0.0391, wR2 = 0.0879

R indices (all data, 0.78Å)
R1 = 0.0458, wR2 = 0.0909

Absolute structure parameter
-0.04(3)

Largest diff. peak and hole
0.231 and -0.176 e.Å$^{-3}$
Atomic coordinates \((x \times 10^4) \) and equivalent isotropic displacement parameters \((\text{Å}^2 \times 10^3) \) for 2.102. U(eq) is defined as one third of the trace of the orthogonalized \(\text{U}^{ij} \) tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>8687(1)</td>
<td>7730(1)</td>
<td>1355(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>7761(1)</td>
<td>8189(1)</td>
<td>4036(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>6829(1)</td>
<td>9742(1)</td>
<td>2200(3)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>7330(1)</td>
<td>9417(1)</td>
<td>4167(4)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>7809(1)</td>
<td>9791(1)</td>
<td>2793(5)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>8295(1)</td>
<td>9986(1)</td>
<td>4236(5)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>8288(1)</td>
<td>9578(1)</td>
<td>5765(5)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>7879(1)</td>
<td>9109(1)</td>
<td>5959(4)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>7367(1)</td>
<td>8933(1)</td>
<td>4790(4)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>7271(1)</td>
<td>8584(1)</td>
<td>2681(4)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>6766(1)</td>
<td>8468(1)</td>
<td>1471(4)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>6742(1)</td>
<td>8954(1)</td>
<td>898(4)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>6814(1)</td>
<td>9279(1)</td>
<td>3008(4)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>7265(1)</td>
<td>8071(1)</td>
<td>3110(4)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>7231(1)</td>
<td>7795(1)</td>
<td>875(4)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>7523(1)</td>
<td>7507(1)</td>
<td>1373(5)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>7920(1)</td>
<td>7841(1)</td>
<td>3176(5)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>8480(1)</td>
<td>8176(1)</td>
<td>2363(5)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>8531(1)</td>
<td>8528(1)</td>
<td>396(5)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>8829(1)</td>
<td>8482(1)</td>
<td>4319(6)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>6845(1)</td>
<td>7710(1)</td>
<td>4770(5)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>8782(1)</td>
<td>9746(1)</td>
<td>7075(7)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>6365(1)</td>
<td>9012(1)</td>
<td>4661(4)</td>
<td>22(1)</td>
</tr>
</tbody>
</table>
Bond lengths [Å] and angles [°] for 2.102.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)-C(15)</td>
<td>1.828(3)</td>
</tr>
<tr>
<td>O(1)-C(14)</td>
<td>1.436(3)</td>
</tr>
<tr>
<td>O(1)-C(11)</td>
<td>1.450(3)</td>
</tr>
<tr>
<td>O(2)-C(10)</td>
<td>1.443(3)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.533(4)</td>
</tr>
<tr>
<td>C(1)-C(10)</td>
<td>1.543(4)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.549(3)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.525(4)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.507(4)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.325(4)</td>
</tr>
<tr>
<td>C(4)-C(19)</td>
<td>1.512(4)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.513(4)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.553(3)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.544(4)</td>
</tr>
<tr>
<td>C(7)-C(11)</td>
<td>1.545(3)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.527(4)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.524(3)</td>
</tr>
<tr>
<td>C(10)-C(20)</td>
<td>1.521(4)</td>
</tr>
<tr>
<td>C(11)-C(18)</td>
<td>1.529(4)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.530(4)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.528(4)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.533(4)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.535(4)</td>
</tr>
<tr>
<td>C(15)-C(17)</td>
<td>1.516(4)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.520(4)</td>
</tr>
<tr>
<td>C(14)-O(1)-C(11)</td>
<td>111.20(19)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(10)</td>
<td>113.9(2)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)</td>
<td>109.2(2)</td>
</tr>
<tr>
<td>C(10)-C(1)-C(6)</td>
<td>112.5(2)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>110.4(2)</td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>113.5(2)</td>
</tr>
<tr>
<td>C(5)-C(4)-C(3)</td>
<td>122.6(3)</td>
</tr>
<tr>
<td>C(5)-C(4)-C(19)</td>
<td>122.6(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C(3)-C(4)-C(19)</td>
<td>114.8(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>124.6(2)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(1)</td>
<td>108.2(2)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)</td>
<td>114.4(2)</td>
</tr>
<tr>
<td>C(1)-C(6)-C(7)</td>
<td>111.23(19)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(11)</td>
<td>109.1(2)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(6)</td>
<td>110.6(2)</td>
</tr>
<tr>
<td>C(11)-C(7)-C(6)</td>
<td>116.2(2)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>113.2(2)</td>
</tr>
<tr>
<td>C(10)-C(9)-C(8)</td>
<td>111.6(2)</td>
</tr>
<tr>
<td>O(2)-C(10)-C(20)</td>
<td>108.1(2)</td>
</tr>
<tr>
<td>O(2)-C(10)-C(9)</td>
<td>105.6(2)</td>
</tr>
<tr>
<td>C(20)-C(10)-C(9)</td>
<td>112.4(2)</td>
</tr>
<tr>
<td>O(2)-C(10)-C(1)</td>
<td>110.0(2)</td>
</tr>
<tr>
<td>C(20)-C(10)-C(1)</td>
<td>111.1(2)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(1)</td>
<td>109.5(2)</td>
</tr>
<tr>
<td>O(1)-C(11)-C(18)</td>
<td>108.1(2)</td>
</tr>
<tr>
<td>O(1)-C(11)-C(12)</td>
<td>103.7(2)</td>
</tr>
<tr>
<td>C(18)-C(11)-C(12)</td>
<td>111.1(2)</td>
</tr>
<tr>
<td>O(1)-C(11)-C(7)</td>
<td>108.53(19)</td>
</tr>
<tr>
<td>C(18)-C(11)-C(7)</td>
<td>113.8(2)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(7)</td>
<td>111.1(2)</td>
</tr>
<tr>
<td>C(13)-C(12)-C(11)</td>
<td>103.7(2)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)</td>
<td>104.0(2)</td>
</tr>
<tr>
<td>O(1)-C(14)-C(13)</td>
<td>106.6(2)</td>
</tr>
<tr>
<td>O(1)-C(14)-C(15)</td>
<td>106.5(2)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)</td>
<td>116.5(2)</td>
</tr>
<tr>
<td>C(17)-C(15)-C(16)</td>
<td>111.2(3)</td>
</tr>
<tr>
<td>C(17)-C(15)-C(14)</td>
<td>110.7(2)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(14)</td>
<td>112.9(2)</td>
</tr>
<tr>
<td>C(17)-C(15)-Cl(1)</td>
<td>107.7(2)</td>
</tr>
<tr>
<td>C(16)-C(15)-Cl(1)</td>
<td>107.7(2)</td>
</tr>
<tr>
<td>C(14)-C(15)-Cl(1)</td>
<td>106.27(19)</td>
</tr>
</tbody>
</table>
Anisotropic displacement parameters (Å$^2 \times 10^3$) for 2.102. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^* U^{11} + ... + 2h k a^* b^* U^{12}]$

<table>
<thead>
<tr>
<th></th>
<th>U^{11}</th>
<th>U^{22}</th>
<th>U^{33}</th>
<th>U^{23}</th>
<th>U^{13}</th>
<th>U^{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>45(1)</td>
<td>44(1)</td>
<td>46(1)</td>
<td>-8(1)</td>
<td>-1(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>23(1)</td>
<td>21(1)</td>
<td>23(1)</td>
<td>-3(1)</td>
<td>-4(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>28(1)</td>
<td>22(1)</td>
<td>16(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>19(1)</td>
<td>16(1)</td>
<td>16(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>21(1)</td>
<td>17(1)</td>
<td>26(1)</td>
<td>5(1)</td>
<td>2(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>21(1)</td>
<td>18(1)</td>
<td>37(2)</td>
<td>3(1)</td>
<td>-1(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>22(2)</td>
<td>21(1)</td>
<td>32(2)</td>
<td>-2(1)</td>
<td>-7(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>26(1)</td>
<td>21(1)</td>
<td>18(1)</td>
<td>-1(1)</td>
<td>-6(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>18(1)</td>
<td>17(1)</td>
<td>12(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>17(1)</td>
<td>16(1)</td>
<td>14(1)</td>
<td>1(1)</td>
<td>0(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>25(1)</td>
<td>22(1)</td>
<td>17(1)</td>
<td>-6(1)</td>
<td>-6(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>23(1)</td>
<td>25(1)</td>
<td>15(1)</td>
<td>-4(1)</td>
<td>-5(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>20(1)</td>
<td>18(1)</td>
<td>17(1)</td>
<td>1(1)</td>
<td>0(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>19(1)</td>
<td>16(1)</td>
<td>17(1)</td>
<td>0(1)</td>
<td>-3(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>27(2)</td>
<td>18(1)</td>
<td>23(1)</td>
<td>-4(1)</td>
<td>-4(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>36(2)</td>
<td>23(2)</td>
<td>35(2)</td>
<td>-6(1)</td>
<td>-6(1)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>30(2)</td>
<td>23(1)</td>
<td>22(1)</td>
<td>2(1)</td>
<td>0(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>36(2)</td>
<td>29(2)</td>
<td>27(1)</td>
<td>-2(1)</td>
<td>2(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>41(2)</td>
<td>39(2)</td>
<td>35(2)</td>
<td>10(1)</td>
<td>13(1)</td>
<td>26(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>30(2)</td>
<td>42(2)</td>
<td>42(2)</td>
<td>-10(2)</td>
<td>-4(1)</td>
<td>24(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>26(2)</td>
<td>21(1)</td>
<td>25(1)</td>
<td>5(1)</td>
<td>2(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>32(2)</td>
<td>29(2)</td>
<td>58(2)</td>
<td>3(2)</td>
<td>-21(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>20(1)</td>
<td>25(2)</td>
<td>23(1)</td>
<td>0(1)</td>
<td>2(1)</td>
<td>13(1)</td>
</tr>
</tbody>
</table>
Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($Å^2 x 10^{-3}$) for 2.102.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2)</td>
<td>6875(14)</td>
<td>9924(14)</td>
<td>3200(60)</td>
<td>33(10)</td>
</tr>
<tr>
<td>H(1A)</td>
<td>7344</td>
<td>9595</td>
<td>5625</td>
<td>20</td>
</tr>
<tr>
<td>H(2A)</td>
<td>7837</td>
<td>9612</td>
<td>1431</td>
<td>26</td>
</tr>
<tr>
<td>H(2B)</td>
<td>7774</td>
<td>10087</td>
<td>2278</td>
<td>26</td>
</tr>
<tr>
<td>H(3A)</td>
<td>8599</td>
<td>10118</td>
<td>3218</td>
<td>32</td>
</tr>
<tr>
<td>H(3B)</td>
<td>8336</td>
<td>10278</td>
<td>5180</td>
<td>32</td>
</tr>
<tr>
<td>H(5A)</td>
<td>7910</td>
<td>8867</td>
<td>6896</td>
<td>25</td>
</tr>
<tr>
<td>H(6A)</td>
<td>7087</td>
<td>8728</td>
<td>5916</td>
<td>19</td>
</tr>
<tr>
<td>H(7A)</td>
<td>7559</td>
<td>8788</td>
<td>1593</td>
<td>19</td>
</tr>
<tr>
<td>H(8A)</td>
<td>6732</td>
<td>8276</td>
<td>50</td>
<td>24</td>
</tr>
<tr>
<td>H(8B)</td>
<td>6469</td>
<td>8243</td>
<td>2458</td>
<td>24</td>
</tr>
<tr>
<td>H(9A)</td>
<td>7016</td>
<td>9163</td>
<td>-219</td>
<td>24</td>
</tr>
<tr>
<td>H(9B)</td>
<td>6404</td>
<td>8854</td>
<td>194</td>
<td>24</td>
</tr>
<tr>
<td>H(12A)</td>
<td>6867</td>
<td>7551</td>
<td>463</td>
<td>27</td>
</tr>
<tr>
<td>H(12B)</td>
<td>7397</td>
<td>8046</td>
<td>-377</td>
<td>27</td>
</tr>
<tr>
<td>H(13A)</td>
<td>7695</td>
<td>7479</td>
<td>-11</td>
<td>36</td>
</tr>
<tr>
<td>H(13B)</td>
<td>7286</td>
<td>7156</td>
<td>1962</td>
<td>36</td>
</tr>
<tr>
<td>H(14A)</td>
<td>7912</td>
<td>7613</td>
<td>4440</td>
<td>27</td>
</tr>
<tr>
<td>H(16A)</td>
<td>8421</td>
<td>8771</td>
<td>889</td>
<td>53</td>
</tr>
<tr>
<td>H(16B)</td>
<td>8313</td>
<td>8320</td>
<td>-867</td>
<td>53</td>
</tr>
<tr>
<td>H(16C)</td>
<td>8892</td>
<td>8720</td>
<td>-102</td>
<td>53</td>
</tr>
<tr>
<td>H(17A)</td>
<td>8715</td>
<td>8711</td>
<td>4949</td>
<td>53</td>
</tr>
<tr>
<td>H(17B)</td>
<td>9185</td>
<td>8688</td>
<td>3772</td>
<td>53</td>
</tr>
<tr>
<td>H(17C)</td>
<td>8813</td>
<td>8243</td>
<td>5501</td>
<td>53</td>
</tr>
<tr>
<td>H(18A)</td>
<td>6874</td>
<td>7402</td>
<td>5022</td>
<td>37</td>
</tr>
<tr>
<td>H(18B)</td>
<td>6504</td>
<td>7609</td>
<td>4136</td>
<td>37</td>
</tr>
<tr>
<td>H(18C)</td>
<td>6888</td>
<td>7890</td>
<td>6218</td>
<td>37</td>
</tr>
<tr>
<td>H(19A)</td>
<td>8744</td>
<td>9460</td>
<td>8030</td>
<td>64</td>
</tr>
<tr>
<td>H(19B)</td>
<td>8855</td>
<td>10043</td>
<td>8037</td>
<td>64</td>
</tr>
<tr>
<td>H(19C)</td>
<td>9068</td>
<td>9845</td>
<td>6009</td>
<td>64</td>
</tr>
<tr>
<td>H(20A)</td>
<td>6042</td>
<td>8928</td>
<td>3885</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>H(20B)</td>
<td>6419</td>
<td>9242</td>
<td>5946</td>
<td>33</td>
</tr>
<tr>
<td>H(20C)</td>
<td>6345</td>
<td>8693</td>
<td>5216</td>
<td>33</td>
</tr>
</tbody>
</table>
Torsion angles [°] for 2.102.

<table>
<thead>
<tr>
<th>Torsion angle</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(10)-C(1)-C(2)-C(3)</td>
<td>169.2(2)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)-C(3)</td>
<td>-64.0(3)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>38.4(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>-5.3(4)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(19)</td>
<td>175.2(3)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>-3.2(4)</td>
</tr>
<tr>
<td>C(19)-C(4)-C(5)-C(6)</td>
<td>176.3(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-C(1)</td>
<td>-21.5(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-C(7)</td>
<td>103.1(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)-C(5)</td>
<td>53.7(3)</td>
</tr>
<tr>
<td>C(10)-C(1)-C(6)-C(5)</td>
<td>-178.7(2)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)-C(7)</td>
<td>-72.7(3)</td>
</tr>
<tr>
<td>C(10)-C(1)-C(6)-C(7)</td>
<td>54.8(3)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)-C(8)</td>
<td>-174.4(2)</td>
</tr>
<tr>
<td>C(1)-C(6)-C(7)-C(8)</td>
<td>-51.4(3)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)-C(11)</td>
<td>60.5(3)</td>
</tr>
<tr>
<td>C(1)-C(6)-C(7)-C(11)</td>
<td>-176.5(2)</td>
</tr>
<tr>
<td>C(11)-C(7)-C(8)-C(9)</td>
<td>-178.1(2)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)-C(9)</td>
<td>52.9(3)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)-C(10)</td>
<td>-56.3(3)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)-O(2)</td>
<td>175.1(2)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)-C(20)</td>
<td>-67.2(3)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)-C(1)</td>
<td>56.7(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(10)-O(2)</td>
<td>-47.4(3)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(10)-O(2)</td>
<td>-172.4(2)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(10)-C(20)</td>
<td>-167.1(2)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(10)-C(20)</td>
<td>67.9(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(10)-C(9)</td>
<td>68.2(3)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(10)-C(9)</td>
<td>-56.8(3)</td>
</tr>
<tr>
<td>C(14)-O(1)-C(11)-C(18)</td>
<td>93.5(2)</td>
</tr>
<tr>
<td>C(14)-O(1)-C(11)-C(12)</td>
<td>-24.5(3)</td>
</tr>
<tr>
<td>C(14)-O(1)-C(11)-C(7)</td>
<td>-142.7(2)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(11)-O(1)</td>
<td>174.31(19)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(11)-O(1)</td>
<td>-59.9(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(8)-C(7)-C(11)-C(18)</td>
<td>-65.4(3)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(11)-C(18)</td>
<td>60.5(3)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(11)-C(12)</td>
<td>60.9(3)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(11)-C(12)</td>
<td>-173.3(2)</td>
</tr>
<tr>
<td>O(1)-C(11)-C(12)-C(13)</td>
<td>32.7(3)</td>
</tr>
<tr>
<td>C(18)-C(11)-C(12)-C(13)</td>
<td>-83.2(3)</td>
</tr>
<tr>
<td>C(7)-C(11)-C(12)-C(13)</td>
<td>149.1(2)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)-C(14)</td>
<td>-29.0(3)</td>
</tr>
<tr>
<td>C(11)-O(1)-C(14)-C(13)</td>
<td>6.1(3)</td>
</tr>
<tr>
<td>C(11)-O(1)-C(14)-C(15)</td>
<td>131.1(2)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-O(1)</td>
<td>14.9(3)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-C(15)</td>
<td>-103.7(3)</td>
</tr>
<tr>
<td>O(1)-C(14)-C(15)-C(17)</td>
<td>61.5(3)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)-C(17)</td>
<td>-179.7(2)</td>
</tr>
<tr>
<td>O(1)-C(14)-C(15)-C(16)</td>
<td>-63.9(3)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)-C(16)</td>
<td>54.8(3)</td>
</tr>
<tr>
<td>O(1)-C(14)-C(15)-Cl(1)</td>
<td>178.21(17)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)-Cl(1)</td>
<td>-63.1(3)</td>
</tr>
</tbody>
</table>
Hydrogen bonds for 2.102 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2)-H(2)...O(2)#1</td>
<td>0.77(4)</td>
<td>1.97(4)</td>
<td>2.732(2)</td>
<td>171(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -y+5/3,x-y+4/3,z+1/3