Lawrence Berkeley National Laboratory
Recent Work

Title
THE EFFECT OF CONSERVATION PROGRAMS ON ELECTRIC UTILITY EARNINGS: RESULTS OF TWO CASE STUDIES

Permalink
https://escholarship.org/uc/item/51q6f3mz

Author
Kahn, E.

Publication Date
1984-08-01
THE EFFECT OF CONSERVATION PROGRAMS ON ELECTRIC UTILITY EARNINGS: RESULTS OF TWO CASE STUDIES

E. Kahn, C. Pignone, J. Eto, J. McMahon, and M. Levine

August 1984

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The Effect of Conservation Programs on Electric Utility Earnings: Results of Two Case Studies

E. Kahn, C. Pignone, J. Eto, J. McMahon, and M. Levine

Applied Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

August 1984

Synopsis

This paper develops methods to measure the impact of conservation programs on electric utility earnings. The methods are applied to two case studies. Detroit Edison represents a case where impacts are unfavorable. This utility has "excess capacity" which is only made worse by conservation. Pacific Gas and Electric represents a case where conservation helps defer the need for new capacity. Even in this case, programs targeted at summer peak demand are more beneficial than those which save baseload energy. Conditions determining the earnings impact of conservation are complex, involving regulatory factors that are specific to individual utilities.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building Systems, Building Energy Research Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
The Effect of Conservation Programs on Electric Utility Earnings: Results of Two Case Studies

E. Kahn, C. Pignone, J. Eto, J. McMahon, and M. Levine

Electric utilities have become increasingly involved in end-use conservation programs over the past decade. Many of these programs have originated within the industry itself, but many have also been mandated by state and local government agencies. Although the scope and magnitude of these efforts have increased steadily over time, utilities are not universally enthusiastic about conservation. Indeed, some utilities are now actively promoting load growth for the first time in ten years.\(^1\) To account for this difference in behavior, we have investigated the effect of conservation programs on utility earnings. Most analysis of utility conservation programs focus on the consumer viewpoint.\(^2\) Within this perspective, it is common to distinguish between those consumers who participate in a conservation program and those who do not. Participants receive direct benefits from conservation. Non-participants only benefit if there are long-run benefits from conservation which do not accrue to participants. There is much in common between the non-participant perspective and the viewpoint of the utility shareholder. In both cases the quantities of interest are avoided costs and lost revenues. If conservation programs cause a revenue loss greater than avoided cost, either non-participants must pay higher prices through a rate increase, or shareholder earnings decline.

In this study we examine the case of imperfect regulation where conservation programs reduce revenues and there is no corresponding rate increase to offset the loss. This case corresponds to mandated conservation programs such as the proposed imposition of appliance efficiency standards by the U.S. Department of Energy. This type of national policy can be expected to have different impacts on electric utilities shareholders in different regions. We examine the potential range of variation by considering two particular utilities where the effect of conservation programs is quite different. To represent those utilities which would lose earnings from national appliance standards, we modelled Detroit Edison Company. The favorable case was represented by Pacific Gas and Electric Company.

The single most important determinant of the earnings effect of an exogenous conservation program is the degree of excess capacity. Where excess capacity is substantial, conservation programs can destabilize utilities. The "spiral of impossibility" scenario which characterizes this instability is just a case of insufficient demand for an inflexible supply mix.\(^3\) Where excess capacity is already substantial, additional conservation will only make the supply/demand mismatch
worse. On the other hand, relative supply scarcity (lack of excess capacity) creates favorable conditions for increased earnings from conservation.

Our general approach to modelling conservation programs is based on the use of the LBL/ORNl Energy Forecasting model. This is an end-use forecasting model of residential energy consumption. We apply it at the rate class level to determine changes in energy sales and utility revenues. This is a unique application, since forecasting is not commonly done on a tariff class-specific basis. It is necessary to capture this level of detail to measure the revenue loss from conservation adequately. The results of the forecasting model are also used in the LBL Hourly Demand Model. This model spreads monthly kWh consumption across the diurnal cycle. Hourly load changes are translated into avoided capacity costs using appropriate measures of value.

The analysis conducted here is important because it reveals a potential conflict between socially beneficial investments and the private interest of electric utility shareholders. It is common to find that conservation programs represent part of the optimal least cost expansion of regional power systems. Since the criterion used in these studies is a total social cost test, conflicts with private interests are not made apparent. This analysis shows that utility earnings may or may not decline if conservation is mandated. Where earnings losses would occur, utilities may be expected to oppose conservation programs.

Definition and Measurement of Earnings

The shareholder perspective involves the changes in earnings associated with conservation. Because earnings is the difference between revenues and costs, it is harder to measure precisely than either of its components terms. Given the complexity of the task, a somewhat simplified approach has been adopted. We will focus on a figure-of-merit that is related to what accountants call Earnings Before Interest and Taxes (EBIT). EBIT will allow us to capture the important economic and regulatory variables without the unnecessary detail of corporate tax and debt analysis.

A particularly important stage in this analysis is the estimation of revenues lost through conservation. This is a difficult task because residential electricity rates are often non-linear. Prices vary with the level of use, either directly (inverted rates) or inversely (declining rates). Thus, we need to know where in the price structure conservation is occurring. The data used to make such estimates is called the sales frequency distribution. All previous conservation studies have neglected this distribution and the non-linear revenue effect. We will use a simple technique for measuring revenue impacts in our three test case utilities, all of which have non-linear rate schedules.
Broadly speaking, earnings is the difference between operating margin and fixed costs. The operating margin \((OPM)\) is just the difference between revenues \((R)\) and operating costs \((OC)\). Formally, we may write

\[
OPM = R - OC.
\]

(1)

Since we will be interested in changes in these quantities, it is useful to introduce subscripts to denote different cases and the first difference operator \(\Delta (\Delta X = X_2 - X_1)\). With this notation, we define changes in the operating margin \(\Delta OPM\) as follows:

\[
\Delta OPM = OPM_2 - OPM_1,
\]

\[
= \Delta R - \Delta OC.
\]

(2)

Next, we define \(EBIT\) as it will be used in this study,

\[
EBIT = OPM - (Depreciation + Investment),
\]

\[
= OPM - (Embedded Fixed Costs + Marginal Fixed Costs).
\]

(3)

This definition of \(EBIT\) differs from the accountant's usage by addition of the investment term. It is important to represent changes in utility investment due to conservation, because this is a major potential benefit of such programs. Moreover, the unfavorable conditions for utility investment in today's markets means that a true measure of shareholder income must include the negative impact of marginal investment. An example of a similar approach is ref. (7).

Strictly speaking, Eq. (3) could overstate the negative effects of investment if the earnings from future investment are not counted in future estimates of revenues. The argument for adopting Eq. (3) rests on the "capital minimization" strategy utilities are now employing. When earnings are less than the cost of capital, investment is destabilizing (see ref. 8). Eq. (3) emphasizes the negative short-term effect of these conditions. Finally, we must write Eq. (3) in first difference form, since it is changes in \(EBIT\) that we will measure, namely,

\[
\Delta EBIT = \Delta OPM - \Delta EFC - \Delta MFC,
\]

(4)

where \(EFC\) = embedded fixed costs (depreciation),

and \(MFC\) = marginal fixed costs (investment).

It is useful to describe the typical conditions affecting the sign and magnitude of each term in Eq. (4). The first term, \(\Delta OPM\), is most sensitive to the fuel type associated with the utility's marginal cost. Utilities with a substantial dependence on oil and gas for incremental production will typically have smaller \(OPM\) than those which use coal or nuclear fuel on the margin. In the latter case, conservation will typically result in \(\Delta OPM < 0\). The lost revenue will be greater than marginal cost. For oil and gas-fired utilities \(\Delta OPM\) can be either positive or negative, so an accurate measure of marginal revenues and marginal costs is important.
The second term in Eq. (4), \(\Delta \text{EFC} \), should be identically zero. This follows from the fixed level of embedded cost and its re-allocation in the rate-making process. Load shape changes will induce changes in the class responsibility for embedded cost recovery, but not in the sum total. Thus, rate shifts are inevitably part of load shape changes, but there should be no impact on \(\Delta \text{EBIT} \). Other studies of load shape changes estimate the size of the revenue shifts.\(^9\) This is done by using the fixed cost allocation rules employed by particular utilities and calculating changes in class responsibility. It should be noted that fixed cost allocation methods differ widely\(^10\) and are to some degree arbitrary. We make no analysis of such effects.

The last term in Eq. (4), \(\Delta \text{MFC} \), will reflect the long-run conservation benefit of avoided investment. Typically, \(- \Delta \text{MFC} > 0\) because conservation programs reduce capacity requirements. It is possible that \(\Delta \text{MFC} = 0 \), if the utility has substantial excess capacity. In this case, reducing the need for incremental capacity has no value because there was no such need to begin with. Where avoided investment does have value, there may be problems involved in valuing the benefit quantitatively. We will follow methods used by the utilities studied.

Tools and Methods

Load shape changes associated with particular conservation programs for particular utilities are estimated using the LBL Hourly Demand Model coupled with the LBL Energy Forecasting Model. These have been described elsewhere.\(^11\) The unique application made of these models here is to use them at the level of utility rate classes. In this section we describe the methods used to estimate each term in Eq. (4) for \(\Delta \text{EBIT} \).

The revenue term for a non-linear rate schedule can be written formally as

\[
R = \sum_{i=1}^{n} (\text{Frac}_i) (P_i) (\text{Total Sales}),
\]

where \(\text{Frac}_i \) = fraction of total sales in rate block \(i \),
\(P_i \) = price per kWh in rate block \(i \),
\(n \) = number of rate blocks.

The terms \(\text{Frac}_i \) are typically read off a sales frequency distribution table. This table lists for any consumption level \(j \) the total number of kilowatt-hours sold at or below that level. Then \(\text{Frac}_i \) is just the cumulative total sold in the quantity range spanned by rate block \(i \). In most cases there are only two or three blocks. The problem of revenue forecasting is estimating how the size of \(\text{Frac}_i \) varies with \(\text{Total Sales} \). We will rely on a standard industry procedure known as the block-adjustment method. It is illustrated in Figure 1. Formal definitions are found in the literature.\(^12\)
Figure 1 shows two sales frequency distributions representing the Pacific Gas and Electric Company. Each curve has a mean value μ associated with it. In this case the average kWh/month occurs at about 75% of cumulative sales. The line drawn at $B_{1,0}$ represents the upper boundary of the first rate block (340 kWh/mo.). It intersects the Base Case curve at about 52% of cumulative sales. The block-adjustment method for altering sales frequency distributions amounts to changing the block boundary points in proportion to changes in average use. Formally, the rule is given by

$$\frac{B_{i,n}}{B_{i,o}} = \frac{\mu_o}{\mu_n},$$

where $B_{i,o}$ = Rate block i boundary in base case,

$B_{i,n}$ = Adjusted rate block i boundary in test case,

μ_o = Base case mean kWh/bill,

μ_n = Test case mean kWh/bill.

Intuitively, the logic of Eq. (6) is this. If consumption on the average decreased ($\mu_o/\mu_n > 1$), then more sales occur at lower levels of consumption. This means that the first (lowest quantity) rate block must have a larger fraction of total sales than in the base case. To reflect this larger fraction, Eq. (6) just moves the rate block boundary up, rather than shift the sales frequency curve. This is a linear approximation to the actual process, which does involve a shift of the curve.

It should also be noted that in the case of a decrease in average use, Eq. (6) will tend to under-predict changes in rate block fractions when large reductions in the average use occur. The block-adjustment rule identifies point a in this Figure as the end of rate block 1. This point corresponds to 63% of sales. The actual curve for the Test Case shows an intersection with the boundary of rate block 1 at point b. This corresponds to 66% of sales. A deviation of this kind means that Eq. (6) will under-predict revenue loss with inverted rates and over-predict such losses with declining block rates.

The second term in ΔOPM is the marginal cost of production. Utilities typically use complex computer simulations of system operations to calculate marginal cost. The detail of such calculations can be substantial. A heuristic representation of the marginal cost structure can help to identify the magnitude of profitable conservation potential by defining the high cost periods. Figure 2 represents one such representation. This is an annual load duration curve (LDC) for Detroit Edison representing conditions in the latter half of the 1980's. Using the results of a utility production cost analysis, the area under the curve is filled from the bottom up in the order of increasing cost. This allows a rough estimate of which generating units are the marginal producers and what fraction of the time they play this role. To illustrate this procedure, let us focus on the Monroe generating station in Figure 2.
The Monroe station consists of four 750 MW coal-burning units. These units, which were base-loaded in 1983, will become cycling units with the addition of DE's Fermi 2 nuclear station and the Belle River 1 and 2 coal units. Figure 2 represents the fraction of time that a unit is marginal by projecting to the time axis the load variation served by that unit. The load variation is just the vertical distance between the horizontal lines denoting the unit's energy output. The curvature of the LDC determines how much load variation exists at any point. Figure 2 shows that the Monroe station is the marginal producer 47% of the year. The next highest units, River Rouge and Purchases, are also coal-fired units. Their costs are 10-15% greater than Monroe's. Only a small fraction of the load is met by oil and gas fired generation. The Figure 2 estimate is that such units are marginal less than 4% of the year.

To evaluate marginal cost changes due to conservation using a representation such as Figure 2 requires approximations about the coincidence of residential class and total system loads. If, for example, conservation load changes were equal in all hours, then the average marginal cost represents fuel savings. Where the load impact is more concentrated on the peak hours than the higher cost resources are the relevant marginal units. In our case study of Detroit Edison, we found that appliance standards produced fuel savings approximating average marginal cost. An air-conditioning only standard saves higher cost fuels. Because the residential peak (where such savings occur) is not fully coincident with DE's system peak, we approximate fuel savings by the cost of purchased power. This is above River Rouge coal cost but below pumped storage cost.

For marginal fixed costs we must translate load shape changes into capacity changes and then put a value on the unit of capacity. It is common to use reliability measures such as the Loss of Load Probability (LOLP) to measure capacity changes due to load changes. LOLP and other reliability indices are reviewed in ref. (14). For Pacific Gas and Electric Company, for example, we use monthly LOLP estimates and corresponding hourly distributions to identify the hours in which load reductions have capacity value. We then use the price schedule PG&E has developed to pay small power producers for capacity as a valuation of load changes. This price schedule is based on combustion turbine costs. Where a utility has substantial excess capacity, as in the case of Detroit Edison, avoided capacity costs are zero.

Overview of Test Utilities

Detroit Edison (DE) and Pacific Gas and Electric (PG&E) span a broad range of economic and regulatory parameters. The marginal cost structures differ, rate designs vary, and the supply/demand balance are all different.

Because DE has substantial reserve margins throughout our study period, we do not expect that any capacity savings will be associated with load reduction programs. The operating margin
term should be negative, since DE has highly inverted rates and coal-based marginal costs. DE's rate schedules are complex, involving a distinction between large and small families as well as special tariffs for space heating, water heating, and senior citizens. Forecasting sales by tariff class requires forecasts of the number of customers on each tariff.

PG&E represents a polar opposite case to DE. Here the operating margin term can be expected to be zero. This is due to regulatory practices which take the load forecasting risk out of utility earnings. The Electric Revenue Adjustment Mechanism (ERAM) automatically guarantees earnings if there is a deviation from forecast loads. We estimate the value of ERAM by calculating changes in operating margin in the absence of ERAM. These changes should be negative, but less so than in the case of DE. PG&E has inverted rates, but the inversion is less steep than DE. Marginal costs are oil and gas based, therefore higher than DE's. PG&E should realize capacity savings from load reductions. We expect this term to show a sizable benefit.

Results for Detroit Edison

Table 1 shows results for the Base Case and Appliance Standards Case for DE. The Appliance Standards Case is the level 4 case evaluated by the U.S. Department of Energy in considering -- and ultimately rejecting -- a mandatory appliance efficiency standard in 1982.\(^4\) This standard level represents an increased energy efficiency for major appliances and heating and cooling equipment of approximately 25 percent, compared with current efficiency levels. The column labelled "Loss" is the loss of operating margin in millions of 1984 dollars. This is the product of changes in operating margin and the total loss of sales due to appliance standards. As anticipated, the change in operating margin is negative. Rates are always higher than avoided energy costs. On the average, DE loses 4-5 cents/kwh (1984 dollars) from conservation. Over time, DE loses up to 5% of residential sales due to appliance standards.

These calculations assume a very simple model of rate-making. DE is currently applying for a 3-year rate increase which would result in an extra $1 billion revenue requirement by 1985. This rate proposal reflects the costs associated with the new Belle River and Fermi 2 plants. Given DE's substantial reserves and the growing regulatory use of trended rate increases,\(^15\) we assume that DE will only achieve this proposed real level of rates by 2000. All revenue estimates are based upon this assumed price trajectory. Given that DE will make no substantial capital additions before 2000, this simple model is plausible. In other cases we will use similar simple representations.

We test the sensitivity of Table 1 by considering the case of an air-conditioner only standard. Table 2 summarizes the results. Although these results are a subset of the Table 1 data, they show a proportionally greater negative impact. Revenue losses associated with cooling are
large since they come in the tail blocks of the inverted rate structure. Even though avoided costs are somewhat higher than in the case of Table 1, this does not offset larger revenue loss.

One basic dynamic neglected in our approach is the eventual recognition of the revenue losses we estimate. In practice, rates would eventually be re-adjusted and future losses eliminated. It is difficult to estimate how long this process would take. For illustrative purposes, we consider 4-year and 8-year lags. To estimate the cumulative effects of losses estimated in Table 2 for DE, we consider the present value of losses discounted at the utility's real cost of capital. We use the real rate because Table 2 results are already in 1984 dollars. To bring 1988 values back to 1984, we discount by \((1+r)^4\), and so on. Table 4 presents these calculations for 4- and 8-year lags at 4% and 8% real cost of capital.

Results for Pacific Gas and Electric

The cost structure of PG&E is considerably more complex than that of Detroit Edison. PG&E experiences large seasonal swings in hydropower availability. During the spring snowmelt, non-oil and gas resources are the marginal producers for substantial periods of time. The marginal cost structure of PG&E is best represented on a monthly basis with costs decomposed into the oil- and gas-based component and the non-oil and gas component. The relative size of each component varies monthly. The monthly distribution varies with the annual fraction of non-oil and gas resources on the margin. Figure 3 plots the monthly distribution of the non-oil and gas fraction for various annual values. As the annual non-oil and gas fraction increases, the efficiency (heat rate) of the oil and gas generation improves. Only the most efficient units are called on to meet load. This relationship is illustrated in Figure 4.

Using the relations indicated in Figures 3 and 4, the marginal cost structure for PG&E is specified by the following variables: (1) a price trajectory for oil and gas, (2) a price trajectory for non-oil and gas resources, (3) a trajectory of the annual non-oil and gas fraction of marginal cost. PG&E has made many estimates of these variables. They do not all agree with one another. For our purposes, we will rely principally on estimates associated with PG&E's proposal to rate base the Diablo Canyon power plant. The main feature of the scenario described in that case is a decline in the annual non-oil and gas component from over 30% of marginal cost at present to about 5% by the late 1990's. We incorporate these bounds and estimate a smooth trajectory between them. These assumptions for item (3), as well as our assumptions for (1) and (2), represented by geothermal prices, are given in Table 5.

To estimate changes in EBIT, we specify an appliance standards scenario which is more strict than the corresponding scenario used for DE. This is necessary because California already has appliance standards approximating those which are under discussion by DOE. To measure a
conservation case relative to current California conditions requires tighter standards. Table 5 summarizes changes in revenues and production costs for the base case and the stricter standards case. This table shows net losses to PG&E from these two terms; however, it does not include the beneficial effects of capacity savings on EBIT for PG&E, presented in Table 7. Because PG&E has many climate zones for rate purposes, a large number of rate schedules must be examined to estimate revenue and revenue changes. We focus on the four largest climate zones, which account for 85% of all residential sales. Even these involve 16 sales frequency distributions: one for space heating and one for non-space heating in each zone, and a summer and winter differentiation for each schedule.

We tested another appliance standards case for PG&E which included a central air-conditioning standard that specified an SEER of 12. This is substantially more efficient than the current market, but is technically and economically feasible. The energy savings in this case are 30-40% greater than without this air-conditioning standard. Table 6 shows the changes in revenues and production costs associated with this case; like Table 5, it does not include the effects of capacity savings on EBIT.

The calculations in Tables 5 and 6 reflect impacts that would occur in the absence of the California ERAM procedure. ERAM is designed to immunize utility earnings from the kind of demand-side changes we have estimated. Therefore, the lost revenues net of avoided fuel costs would automatically be recovered by a rate increase, and there would be no change in EBIT. In any other regulatory environment (no other state has a ERAM), the utility would suffer the earnings loss estimated in Tables 5 and 6. We may think of these results as an estimate of the value of ERAM.

Table 7 shows results for the capacity changes between the hours of noon and 8 p.m. resulting from the impact of the standards. These are measured by looking at kW changes on the peak day of the twelve highest summer load weeks, and averaging. These hours are responsible for almost all of the annual LOLP. Therefore, reduced demand at this time has capacity value. There are dramatic differences in capacity impact between the two standards cases. Without the central air-conditioning (CAC) standard of SEER = 12, there is an essentially flat load impact.

The greater the reduction of kWh on-peak compared to base load, the more favorable the impact of the conservation program on a utility that needs to add peak capacity to meet projected demand growth. We define a ratio of peak load change to average load change to represent this effect. For the standard case without strict CAC standards, the reduction in peak demand in 1994 is 35 MW. If a similar reduction occurred every hour of the year, it would correspond to an annual energy reduction of 306 GWh. Table 5 shows actual energy reduction of 285 GWh. The ratio of these (peak/annual reductions) is 1.07, illustrating only slightly greater reductions on-peak than throughout the rest of the year. With strict CAC standards only, the peak demand
reduction is 204 MW in 1994. If a similar demand reduction occurred each hour of the year, then energy use would decline 1787 GWh. Actual energy use declines 376 GWh (Table 6). The ratio of peak to annual reductions is 4.75, showing the high capacity of strict air conditioner standards to reduce peak power needs.

Table 7 also shows the value of these savings. This is based on an assumed 15-year duration of benefits. The 1988 value is derived starting with a $124/kW annual value of capacity in 1984 dollars. This 15-year stream is discounted at an 8% real rate to reflect the utility’s cost of capital. The present value of this stream is multiplied by the incremental change in capacity requirement to get a total capacity value. To translate load changes into capacity changes, we account for transmission loss and reserve margin effects. The cumulative present value of capacity changes is $124 million for the standards case without the strict CAC standards, and $632 million with them.

Table 9 sums the operating margin losses. As in the DE case we examine 4- and 8-year lags and 4% and 8% real discount rates. When these losses are added to the capacity values from Table 8, it is clear that the net impact is always favorable.

Conclusions

There are several lessons to be learned from the two case studies about the financial effects of conservation programs on utilities. The full financial analysis is complex, because sales changes must be estimated by rate schedules and load shape changes associated with production cost changes. Sales forecasts by rate class, use of sales frequency distributions to estimate revenue impacts, assessment of load shape impacts of conservation programs, details of production costing, and uncertainty regarding how regulatory commissions will incorporate impacts of programs into rate decisions all contribute to a complex and data intensive analysis. Financial impacts of conservation programs will vary significantly among utilities, depending on the financial circumstances of the utility, existing generating capacity and supply mix, likely demand growth, and regulatory environment.

Nonetheless, the case studies permit a qualitative understanding of the effects of conservation programs. Three terms are most important in impacting EBIT. Reduced sales from conservation programs (1) reduce revenue, (2) reduce production costs, and (3) reduce the need for new capacity.

For the two utilities studied, the net of the first two terms -- which we call changes in operating margin -- is negative. This is likely to generally be the case for utilities with inverted rate structures, as conservation programs will reduce sales of relatively higher priced electricity. For utilities with declining block rates, the changes in operating margins may be positive;
however, declining block rates themselves are a strong disincentive to consumers' engaging in conservation practices or investments.

The third term -- reductions in new capacity costs -- represents a positive effect of conservation programs.

We observe that for Detroit Edison -- a utility with much more capacity than is required to meet demand for many years -- the third term is zero: new demand does not cause any new investment in new capacity.

For Pacific Gas and Electric Company, for which expected demand growth (in the absence of conservation programs being evaluated) will necessitate capacity additions, the third term is significant. For a conservation program that has very little impact on the load shape of PG&E, the reduced cost of new capacity is sufficiently greater than the losses in operating margin to justify expenditure of utility funds in support of the conservation program, probably without harming the non-participating ratepayer. (The amount of such support depends on the nature of the program and other variables not treated in this paper.) However, for a conservation program that impacts peak load much more than base load, the financial benefits to the utility are greatly increased. The strict air conditioner standard, which reduces peak five times as much as base, produces substantial financial advantages. One way to see this is to note that the net present benefit of strict air conditioner standards per kilowatt hour of energy savings is over twenty times greater than the net benefit of appliance standards per kilowatt hour of reduced demand. Nonetheless, even the appliance standards are beneficial to a utility such as PG&E.

The particular method used to value capacity savings in this case overstates the benefits if future rate-making fully values the investments. The current environment in which utilities, including PG&E, have adopted the capital minimization strategy suggest considerable skepticism about the likelihood of this occurring.

Because of the significance of the third term in the equation for EBIT -- cost of new capacity -- we conclude that the relationship between existing capacity (as well as capacity under construction and certain to be completed) and present and forecasted demand is the most critical determinant of the near-term financial effects of conservation programs. Utilities that need more capacity and are likely to benefit from conservation programs in the near term. If the conservation reduces peak power more than baseload, then the financial benefits are increased considerably. (We note that these benefits will flow either to the utility or the taxpayer, depending on rate decisions of the regulatory commission.) Utilities with more capacity than required to meet demand are not likely to benefit from conservation programs until such time as additional capacity is required.
REFERENCES

11. See notes 4 and 5.

Table 1.
DECO Appliance Standards Summary$

<table>
<thead>
<tr>
<th>Year</th>
<th>(1) Base Sales (GWh)</th>
<th>(2) Base Rev. (Millions 1984 dollars)</th>
<th>(3) AS Sales</th>
<th>(4) AS Rev.</th>
<th>(5) $/kWh</th>
<th>(7) Production Cost (1984$/kWh)</th>
<th>(8) Δ Total Cost (5)*(7)*f</th>
<th>(9) Cost Loss (6)-(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>9566</td>
<td>702</td>
<td>9566</td>
<td>702</td>
<td>0</td>
<td>0.0265</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1988</td>
<td>9335</td>
<td>766</td>
<td>9247</td>
<td>756</td>
<td>88</td>
<td>0.0312</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>1992</td>
<td>9568</td>
<td>864</td>
<td>9317</td>
<td>837</td>
<td>251</td>
<td>0.0368</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>1996</td>
<td>10013</td>
<td>983</td>
<td>9613</td>
<td>937</td>
<td>400</td>
<td>0.0430</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>2000</td>
<td>10548</td>
<td>1121</td>
<td>10039</td>
<td>1058</td>
<td>509</td>
<td>0.0501</td>
<td>29</td>
<td>35</td>
</tr>
</tbody>
</table>

* $f = 1.12$, an allowance for transmission loss.

Table 2.
DECO Cooling Only Summary

<table>
<thead>
<tr>
<th>Year</th>
<th>(1) Δ Sales</th>
<th>(2) Δ Rev.</th>
<th>(3) Production Cost (1984 $/kWh) (1)x(3)</th>
<th>(4) Δ Total Cost (5)*(7)*f (2)-(4)</th>
<th>(5) Loss (6)-(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>0</td>
<td>0</td>
<td>0.0307*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1988</td>
<td>16</td>
<td>2</td>
<td>0.0345</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1992</td>
<td>33</td>
<td>4</td>
<td>0.0399</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1996</td>
<td>45</td>
<td>6</td>
<td>0.0468</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2000</td>
<td>42</td>
<td>6</td>
<td>0.0547</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

* Production costs here are defined as costs of purchased power.
Table 3.
Present Value Loss for DE Appliance Standards Case
(Millions)

<table>
<thead>
<tr>
<th>Year</th>
<th>4%</th>
<th>8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988-1991</td>
<td>33.0</td>
<td>25.6</td>
</tr>
<tr>
<td>1992-1995</td>
<td>87.7</td>
<td>62.3</td>
</tr>
</tbody>
</table>

Table 4.
PG&E Marginal Cost Assumptions

<table>
<thead>
<tr>
<th>Year</th>
<th>Non-Oil & Gas Fraction</th>
<th>Geothermal Price (1984 Mills/kWh)</th>
<th>Oil Price (1984 $/10^6 Btu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>.23</td>
<td>25.2</td>
<td>5.21</td>
</tr>
<tr>
<td>1988</td>
<td>.19</td>
<td>24.8</td>
<td>5.59</td>
</tr>
<tr>
<td>1990</td>
<td>.15</td>
<td>25.7</td>
<td>6.01</td>
</tr>
<tr>
<td>1992</td>
<td>.11</td>
<td>28.1</td>
<td>6.63</td>
</tr>
<tr>
<td>1994</td>
<td>.07</td>
<td>30.0</td>
<td>7.21</td>
</tr>
<tr>
<td>1996</td>
<td>.03</td>
<td>36.4</td>
<td>7.82</td>
</tr>
</tbody>
</table>

Table 5.
PG&E Four Regions: Appliance Standards Operating Margin

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>15466</td>
<td>1631</td>
<td>15466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>15612</td>
<td>1655</td>
<td>15443</td>
<td>1645</td>
<td>68</td>
<td>10</td>
<td>.0484</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1990</td>
<td>15999</td>
<td>1701</td>
<td>15863</td>
<td>1683</td>
<td>136</td>
<td>18</td>
<td>.0533</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1992</td>
<td>16486</td>
<td>1775</td>
<td>16275</td>
<td>1744</td>
<td>210</td>
<td>31</td>
<td>.0601</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>1994</td>
<td>16981</td>
<td>1857</td>
<td>16696</td>
<td>1822</td>
<td>285</td>
<td>35</td>
<td>.0678</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
Table 6.
PG&E Four Regions: AS + CAC: SEER = 12

<table>
<thead>
<tr>
<th>Year</th>
<th>Δ Sales</th>
<th>Δ Rev.</th>
<th>Production Cost</th>
<th>(εD Total Cost</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>97</td>
<td>13</td>
<td>.0505</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>1990</td>
<td>184</td>
<td>25</td>
<td>.0545</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>1992</td>
<td>279</td>
<td>39</td>
<td>.0612</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>1994</td>
<td>375</td>
<td>48</td>
<td>.0685</td>
<td>27</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 7.
PG&E Four Regions: Capacity Savings

<table>
<thead>
<tr>
<th>Year</th>
<th>Δ MW Load</th>
<th>Δ Capacity</th>
<th>Incremental MW</th>
<th>Capacity Payment (1984$/kW-yr.)</th>
<th>Capacity Savings (of 1984 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliance Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>124</td>
<td>12</td>
</tr>
<tr>
<td>1990</td>
<td>17</td>
<td>22</td>
<td>11</td>
<td>139</td>
<td>13</td>
</tr>
<tr>
<td>1992</td>
<td>26</td>
<td>33</td>
<td>11</td>
<td>164</td>
<td>16</td>
</tr>
<tr>
<td>1994</td>
<td>35</td>
<td>45</td>
<td>12</td>
<td>175</td>
<td>17</td>
</tr>
<tr>
<td>1996</td>
<td>44</td>
<td>57</td>
<td>12</td>
<td>196</td>
<td>20</td>
</tr>
<tr>
<td>2000</td>
<td>62</td>
<td>79</td>
<td>12</td>
<td>246</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AS + CAC: SEER = 12

<table>
<thead>
<tr>
<th>Year</th>
<th>Δ Load</th>
<th>Δ Capacity</th>
<th>Incremental MW</th>
<th>Capacity Payment (1984$/kW-yr.)</th>
<th>Capacity Savings (of 1984 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>60</td>
<td>76</td>
<td>76</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>105</td>
<td>134</td>
<td>58</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>153</td>
<td>195</td>
<td>61</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>204</td>
<td>260</td>
<td>65</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>254</td>
<td>324</td>
<td>64</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>325</td>
<td>415</td>
<td>91</td>
<td>192</td>
<td></td>
</tr>
</tbody>
</table>

a) Capacity = Δ Load x 1.11 x 1.15,
where 1.11 = transmission loss and 1.15 = reserve margin.
Table 8.
PG&E Summary Present-Value
(Millions of 1984 $)

<table>
<thead>
<tr>
<th>Operating Margin Losses</th>
<th>Capacity Benefit</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>4%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Appliance Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988-91</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>1988-95</td>
<td>75</td>
<td>56</td>
</tr>
<tr>
<td>AS + CAC: Seer = 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988-91</td>
<td>39</td>
<td>30</td>
</tr>
<tr>
<td>1988-95</td>
<td>96</td>
<td>71</td>
</tr>
</tbody>
</table>
Figure 1. Block adjustment of sales frequency distribution
Figure 2. Fully dispatched load duration curve for Detroit Edison - 1988
Figure 3. Pacific Gas and Electric monthly non-oil and gas fraction
Figure 4. Heat rate vs. annual non-oil and gas fraction
Figure 5. Pacific Gas and Electric Co. residential hourly load profile — peak summer day, 1996.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.