Title
Comment on "Inflation and Flat Directions in Modular Invariant Superstring Effective Theories"

Permalink
https://escholarship.org/uc/item/52p9z63d

Author
Cai, M.J.

Publication Date
2011-03-08

Peer reviewed
Comment on "Inflation and Flat Directions in Modular Invariant Superstring Effective Theories"

Mike J. Cai and Mary K. Gaillard

Physics Division

October 1999

Submitted to

Physical Review D
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.
Comment on "Inflation and Flat Directions in Modular Invariant Superstring Effective Theories"

Mike J. Cai and Mary K. Gaillard

Department of Physics
University of California, Berkeley

and

Physics Division
Ernest Orlando Lawrence Berkeley National Laboratory
University of California
Berkeley, California 94720

October 1999

This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and in part by the National Science Foundation under Grant No. PHY-95-14797.
Comment on “Inflation and flat directions in modular invariant superstring effective theories”.

Mike J. Cai and Mary K. Gaillard

Department of Physics, University of California, and
Theoretical Physics Group, 50A-5101, Lawrence Berkeley National Laboratory,
Berkeley, California 94720

Abstract

The inflation model of Gaillard, Lyth and Murayama is revisited, with a systematic scan of the parameter space for dilaton stabilization during inflation.

*This work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foundation under grant PHY-95-14797.
I. INTRODUCTION

The inflation model has proven to be a promising candidate for describing the early universe. It offers a very natural and elegant solution to the horizon and flatness problems in Big Bang cosmology. Unfortunately, its success generally relies on fine tuning some small parameters, and requires one or more scalar fields (inflatons) to roll slowly down a nearly flat potential.

In principle, a flat potential is not realistic in quantum field theory. Any flat potential at tree level will most likely be destroyed by radiative correction. However, with the aid of supersymmetry, such a flat direction may be protected by a nonrenormalization theorem. In [1] a model with the required flatness was constructed, based on the superstring-derived effective theory of [2], which utilizes nonperturbative string effects to stabilize the dilaton in the true vacuum. For inflation to be viable, the dilaton must also be stabilized during inflation. The analytic solution to the stabilization conditions used in [1] contains an algebraic error. In this article, we solve the equations numerically, which permits a systematic scan of the parameter space for viable solutions.

II. THE MODEL

The effective potential from orbifold compactification was presented in [1]. The Kähler potential \(K \) and the Green-Schwarz counter term \(V_{\text{GS}} \) were taken to be

\[
K = G + \ln V + g(V), \quad G = \tilde{G} + \sum_A X_A, \quad V_{\text{GS}} = b\tilde{G} + \sum A p_A X_A, \\
\tilde{G} = \sum_I \tilde{G}_I, \quad \tilde{G}_I = -\ln(T_I + \tilde{T}_I - \sum A |\Phi_{AI}|^2), \quad X_A = \exp \left(\sum_I q_A^i \tilde{G}_I \right) |\Phi_A|^2, \tag{1}
\]

where \(g(V) \) parameterizes nonperturbative string effects, \(V \) is a vector superfield whose scalar component \(V_{\theta=\bar{\theta}=0} = \ell \) is the dilaton, and \(b = 30/8\pi^2 \) governs the beta function for \(E_8 \). The \(T_I \) are the chiral multiplets containing the moduli. The \(\Phi_{AI} \) are untwisted sector chiral multiplets, and the \(\Phi_A \) are twisted sector chiral multiplets. The component Lagrangian was computed in [2]. Specifically, the scalar potential is given by

\[
V = \frac{1}{16\ell^2}(\ell \epsilon' + 1) \left[u(1 + b_a \ell) - 4\ell W e^K/2 \right]^2 - \frac{3}{16} \left| b_a u - 4W e^K/2 \right|^2 \\
+ \sum_A \left(\prod_I x_I^{q_A^i} \right) \frac{|Y_A|^2}{1 + p_A \ell} + \sum_I \frac{1}{1 + b\ell + \sum_B (1 + p_B \ell) q_B^B X_B} \times \\
\left[A_I(2\xi(t_I)x_I + 1) - e^K/2 \sum_A \phi_{AI} W_{AI} \right]^2 + x_I \sum_A \left| W_{AI} e^K/2 + 2\xi(t_I)A_I \phi_{AI} \right|^2 \tag{2}
\]

where \(b_a \) governs the \(\beta \)-function for the condensing gauge sector,

\[
A_I = e^K/2 \left(\sum_{\alpha} q_A^i \phi_{\alpha} W_{\alpha} - W \right) - \frac{u}{4}(b - b_a), \tag{3}
\]
and

\[Y_A = e^{K/2}[W_A + K_A W] + \frac{u}{4}(p_A - b_a)K_A. \]

(4)

A. Vacuum conditions

In the true vacuum, all matter fields vanish. Hence \(W = W_a = 0 \). Recall that \(K_a = (\prod_I x_I^{-q_I}) \tilde{\phi}_a \), which vanishes in the vacuum as well. This means

\[Y_A = 0, \quad A_I = -\frac{u}{4}(b - b_a), \quad x_I = t_I + \tilde{t}_I = 2\text{Re}t_I, \]

(5)

and the scalar potential reduces to

\[V_0 = \frac{1}{16\ell^2}(\ell g' + 1)|u(1 + b_a \ell)|^2 - \frac{3}{16}|b_a u|^2 + \sum_I \frac{1}{1 + b \ell} \left| \frac{u}{4}(b - b_a)(2x(t_I)x_I + 1) \right|^2. \]

(6)

Minimizing with respect to \(t_I \), we obtain \(2x(t_I)x_I + 1 = 0 \). Therefore, in the vacuum \(^1\)

\[V_0 \propto \frac{1}{b_a^2\ell^2}(\ell g' + 1)(1 + b_a \ell)^2 - 3 = \frac{1}{b_a^2\ell^2}(f - f'\ell + 1)(1 + b_a \ell)^2 - 3. \]

(7)

Now we need to find \(f \) such that

1. The dilaton is stabilized \((\partial V_0/\partial \ell = 0, \partial^2 V_0/\partial \ell^2 > 0)\), and

2. the cosmological constant vanishes \((V_0 = 0)\).

From these two conditions, we arrive at the following constraints:

\[2(f - f'\ell + 1) + \ell^2 f''(1 + b_a \ell) = 0, \quad f'''\ell^2(1 + b_a \ell) + 3b_a f''\ell^2 < 0, \]

\[(f - f'\ell + 1)(1 + b_a \ell)^2 - 3b_a^2\ell^2 = 0, \]

(8)

where \(\ell = \langle \ell \rangle_0 \) is the vev of the dilaton in the vacuum.

\(^1\)The nonperturbative string effects are parameterized by two functions \(f \) and \(g \), which are related by

\[\ell g' = f - \ell f', \quad g(\ell = 0) = f(\ell = 0) = 0 \]
B. Inflation

To construct a model of inflation, we make the following assumptions [1].

1. \(V^{1/4} \gg \sqrt{u} \).

2. \(W \sim 0 \).

3. \(W_\alpha = 0 \), except for \(\alpha = C3 \), which is in the untwisted sector.

4. All matter field vev’s are negligible.

Then the scalar potential during inflation is

\[
V_i = \frac{\ell e^g}{(1 + b\ell)^2} |W_{C3}|^2. \tag{9}
\]

It is expected that \(W_{C3} \) has a power law dependence on the dilaton, which will be discussed later. The dilaton dependence of \(V_i \) can be written as

\[
V_i = \frac{\ell e^g}{(1 + b\ell)}. \tag{10}
\]

Once again, we need to stabilize the dilaton. This time, there is an extra constraint. That is, the dilaton vev during inflation is located in the domain of attraction of the true vacuum. Dilaton stabilization equations are

\[
f - f'\ell + d - \frac{b\ell}{1 + b\ell} = 0, \quad f'' + \frac{1}{b\ell(1 + b\ell)^2} < 0. \tag{11}
\]

C. Summary of the equations for dilaton stabilization

The stabilization equations are most simply expressed in terms of the rescaled dilaton field \(\zeta = b\ell \). In terms of this variable they take the following form.

1. Vacuum: \(\zeta = b(\ell)_0 \)

\[
f'' + \frac{6\gamma^2}{(1 + \gamma\zeta)^3} = 0, \quad f - f'\zeta + 1 - \frac{3\gamma^2\zeta^2}{(1 + \gamma\zeta)^2} = 0, \quad f''' - \frac{18\gamma^3}{(1 + \gamma\zeta)^4} < 0, \tag{12}
\]

where

\[
b = \frac{30}{8\pi^2}, \quad \gamma = b\alpha/b. \tag{13}
\]
2. Inflation: \(\zeta = b (\ell)_i \)

\[
f - f' \zeta + d - \frac{\zeta}{\zeta + 1} = 0, \quad f'' + \frac{1}{\zeta (1 + \zeta)^2} < 0. \tag{14}
\]

For simplicity, we will use only the two leading terms for the nonperturbative parameters [3].

\[
f(\zeta) = B \left(1 + A \sqrt{\frac{a}{\zeta}} \right) e^{-\sqrt{a/\zeta}}, \tag{15}
\]

where \(A, B \) and \(a \) are adjustable parameters. As opposed to the previous equations, all derivatives that appear in these equations are with respect to the rescaled dilaton \(\zeta \).

III. PHENOMENOLOGICAL CONSTRAINTS ON THE PARAMETERS

A. The parameter \(\gamma \)

The effective gauge coupling at the string scale is \(g^{-2} = (f + 1)/2 \ell \). Recall that the gravitino mass is given by

\[
M_G = \frac{1}{4} b_a \left| \langle \lambda \lambda \rangle \right|, \quad M_p = 1, \tag{16}
\]

where \(M_p \) is the reduced Planck mass: \(M_p = (8\pi G_N)^{-1} \). To establish the observed hierarchy, we want \(M_G \sim 1 \text{TeV} \). This determines the supersymmetry (SUSY) breaking scale:

\[
M_G = \frac{1}{4} b_a \Lambda^3 / M_p^2 \sim 10^{34} \text{GeV}, \quad \Lambda \sim 10^{14} \text{GeV}, \tag{17}
\]

assuming \(b_a \sim O(0.1) \). If SUSY is broken by a condensate, the renormalization group equation (RGE) tells us the scale \(\Lambda \) at which the gauge interaction becomes strong; in the leading log approximation

\[
\mu \frac{\partial g}{\partial \mu} = 3 b_a g^3, \quad \Lambda = M_p \exp \left(-1/3 b_a g^2 \right). \tag{18}
\]

For \(\mu = \Lambda \sim 10^{14} \text{GeV}, 3 b_a g^2 \sim 0.1 \). This relates \(\gamma \) to \(g^2 \):

\[
\gamma = \frac{b_a}{b} \sim .03 \frac{f + 1}{2 \zeta}. \tag{19}
\]

B. The parameter \(d \)

The D-term in the scalar potential contains a Fayet-Illiopoulos term:

\[
V_D = \frac{g^2}{2} \left(\sum q_n K_n \phi_n + \xi_D \right)^2 \tag{20}
\]

where \(K_n \propto \phi_n \), and \(\xi_D \propto \ell \). This leads to a new \(\langle \phi_n \rangle \propto \ell^{1/2} \). This will in turn induce other vev's of the form \(\langle \phi_n \rangle \propto \ell^{-1} \) [1]. The superpotential in general has a power series expansion in all the matter fields. Since \(V_i \propto |W_{C3}|^2 \), we conclude that \(d \) is an integer, which may take on negative values.
IV. RESULTS

The equations (12)-(14) are solved self-consistently based on two input parameters: d and the gauge coupling g. The upper bound of d is determined by the inflation equation. In this case, there is no solution for $d \geq 2$. The lower bound of d is determined by the requirement that the dilaton remains in its domain of attraction. In the following table, the variables are defined as follows:

1. g_{max}^2: the maximum value of g^2 such that the equations have solutions.
2. ℓ_0: vev of the dilaton in vacuum.
3. ℓ_i: vev of the dilaton during inflation.

The RGE extrapolation of low energy couplings in the context of the Minimal Supersymmetric Standard Model (MSSM) gives $g^2 \sim .5$ at a scale of about $10^{16} GeV$. Unification at the string scale, $\mu_s = g$ in reduced Planck mass units, can be achieved [4] by adding additional matter fields. This increases g^2, in some cases to a value as high as $g^2 \approx 1$. Hence we conclude that $d = 1$, $d = 0$ and $d = -1$ are candidates for a realistic model.

A typical solution is plotted here. Notice that in the scalar potential, an overall normalization proportional to the gaugino condensate is not included.
FIGURES

\[V_0 \]
scalar potential in the vacuum

\[b \langle \ell \rangle_0 \]

FIG. 1. Input parameters: \(d = 1, g_{\text{string}}^2 = 1.46 \)

\[V_i \]
scalar potential during inflation

\[b \langle \ell \rangle_i \]

FIG. 2. Input parameters: \(d = 1, g_{\text{string}}^2 = 1.46 \)
REFERENCES

TABLE I. Parameters for different values of d

<table>
<thead>
<tr>
<th>d</th>
<th>g_{max}</th>
<th>ℓ_0</th>
<th>ℓ_i</th>
<th>A</th>
<th>B</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>1.16</td>
<td>2.76</td>
<td>-0.66</td>
<td>9.07</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.73</td>
<td>0.69</td>
<td>2.10</td>
<td>-0.36</td>
<td>20.6</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>0.68</td>
<td>1.01</td>
<td>3.51</td>
<td>-0.063</td>
<td>39.2</td>
<td>3</td>
</tr>
<tr>
<td>-2</td>
<td>0.15</td>
<td>0.22</td>
<td>0.89</td>
<td>-0.069</td>
<td>39.0</td>
<td>0.65</td>
</tr>
</tbody>
</table>