Title
Major translocation of calcium upon barrier insult: calcium dynamics visualized by fluorescence lifetime imaging

Permalink
https://escholarship.org/uc/item/52q2s0cn

Journal
EXPERIMENTAL DERMATOLOGY, 16(3)

ISSN
0906-6705

Authors
Behne, Mj
Sanchez, S
Moll, I
et al.

Publication Date
2007-03-01

License
CC BY 4.0

Peer reviewed
Major translocation of calcium upon barrier insult: calcium dynamics visualized by fluorescence lifetime imaging

M. J. Behne¹, S. Sanchez², I. Moll¹ and E. Gratton²

¹Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; ²University of California, LFD, Irvine, USA

Calcium controls an array of key events in keratinocytes and epidermis: localized changes in Ca²⁺ concentrations and their regulation are therefore especially important to assess in epidermal barrier homeostasis and repair, neonatal barrier establishment, in differentiation, signaling, cell adhesion, and in various pathologic states. Yet, tissue- and cellular Ca²⁺ concentrations in physiologic and diseased states are only partially known, and difficult to measure. Here we report a method using Calcium Green as the calcium sensor and the phasor-plot approach to separate raw lifetime components. This enables us to quantitatively assess and visualize dynamic changes of Ca²⁺ in ex-vivo biopsies of unfixed epidermis, exploiting fluorescence lifetime imaging. Our first results comparing undisturbed epidermis with epidermis following a barrier insult revealed major shifts from intra- to extracellular, and, more importantly, a mobilization of high amounts of Ca²⁺ shortly following barrier disruption, presumably from intracellular stores. These results partially contradict the conventional view, where barrier insults abrogate a Ca²⁺ -gradient towards the SG. Methodologically, the latter is based on Ca²⁺-precipitation followed by electron microscopy, or proton-induced x-ray emission. Both techniques require fixed tissue, for electron microscopy also a chemical precipitation and are limited in that they can determine Ca²⁺ in only very small sample volumes, at or below light microscopic resolution levels, or, in the case of PIXE, determine only total calcium, irrespective of ionization or binding. So far, neither cellular and/or subcellular localization can be determined through these approaches. We believe that our approach will overcome these limitations in the observation of epidermal Ca²⁺ dynamics, and contribute to elucidating basic physiology as well as various pathologic situations in epidermis.