EXPERIMENTAL STUDY OF THE THREE-BODY LEPTONIC DECAY MODES OF THE K+ MESON

Authors
Brown, John L.
Kadyk, John A.
Trilling, George H.
et al.

Publication Date
1962-06-05
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

EXPERIMENTAL STUDY OF THE THREE-BODY LEPTONIC DECAY MODES OF THE K^+ MESON

John L. Brown, John A. Kadyk, George H. Trilling,
Remy T. Van de Walle,† Byron P. Roe, and Daniel Sinclair

June 5, 1962
EXPERIMENTAL STUDY OF THE THREE-BODY LEPTONIC DECAY MODES OF THE K^+ MESON

John L. Brown, John A. Kadyk, George H. Trilling,
Perry T. Van de Walle, Byron P. Roe, and Daniel Sinclair

June 5, 1962

to be delivered by R. T. Van de Walle at the CERN Conference. On Page 4, Equation (2a) now reads:

$$G_Y(P, E_\mu) dP dE_\mu = \frac{2P}{E} \left\{ f_Y^2 \left[4 s_\mu (W - E_\mu) - \left(W^2 - P^2 - m_L^2 \right)^2 \right] \right. \left. + 4 f_Y^2 s_Y (W - E_\mu) \frac{m^2}{M_K^2} + \frac{m_L^2}{M_K^2} s_Y^2 \left(W^2 - P^2 - m_L^2 \right) \right\} dP dE_\mu.$$

This equation should read:

$$G_Y(P, E_\mu) dP dE_\mu = \frac{2P}{E} \left\{ f_Y^2 \left[4 s_\mu (W - E_\mu) - \left(W^2 - P^2 - m_L^2 \right)^2 \right] \right. \left. + 4 f_Y^2 s_Y (W - E_\mu) \frac{m^2}{M_K^2} + \frac{m_L^2}{M_K^2} s_Y^2 \left(W^2 - P^2 - m_L^2 \right) \right\} dP dE_\mu.$$

On Page 3, the last line of the third paragraph now reads:

216 events, we have obtained from a maximum-likelihood analysis $\lambda = 0.4 \pm 0.4$.

This sentence should read:

216 events, we have obtained from a maximum-likelihood analysis $\lambda = 0.04 \pm 0.04$.

Page 6, last line now reads: that $f_Y^e/f_Y^\mu = \ldots$

equation should read: that $f_Y^\mu/f_Y^e = \ldots$
EXPERIMENTAL STUDY OF THE THREE-BODY
LEPTONIC DECAY MODES OF THE K+ MESON

John L. Brown, John A. Kadyk,
George H. Trilling, and Remy T. Van de Walle

Lawrence Radiation Laboratory and Department of Physics
University of California, Berkeley, California

and

Byron P. Roe and Daniel Sinclair

Department of Physics
University of Michigan, Ann Arbor, Michigan

June 5, 1962

I. INTRODUCTION

We report in this paper the results of an experimental study of the
three-body leptonic decay modes (KL3) of the K+ mesons (K+ \rightarrow e^+ + \pi^0 + \nu,
K+ \rightarrow \mu^+ + \pi^0 + \nu).

It is obvious from the conservation laws that all momenta and angles
in a KL3 decay at rest are determined by the specification of any two inde-
dependent variables. Pais and Treiman have pointed out that the pion momen-
tum and the angle between pion and neutrino directions are convenient vari-
ables and have obtained the following expressions for the distribution func-
tions in these variables (assuming pure couplings):
Vector coupling

\[F_V(P, \Theta) dP \, d\cos \Theta = \frac{P^2}{E} \left(\frac{W^2 - P^2 - m_L^2}{(W + P \cos \Theta)^4} \right) \left(\frac{P^2 \sin^2 \Theta}{f_V^2} + \frac{m_L^2}{M_K^2} \left[M_K f_V + (W + P \cos \Theta) \varepsilon_V \right] \right)^2 dP \, d\cos \Theta \]

Scalar coupling

\[F_S(P, \Theta) dP \, d\cos \Theta = \frac{P^2}{E} \left(\frac{W^2 - P^2 - m_L^2}{(W + P \cos \Theta)^2} \right) f_S^2 dP \, d\cos \Theta \]

Tensor coupling

\[F_T(P, \Theta) dP \, d\cos \Theta = \frac{P^4}{M_K^2 E} \left(\frac{W^2 - P^2 - m_L^2}{(W + P \cos \Theta)^4} \right) f_T^2 \left[(W \cos \Theta + P)^2 + m_L^2 \sin^2 \Theta \right] + \frac{m_L^2}{M_K^2} \left[M_K f_V + (W + P \cos \Theta) \varepsilon_V \right] \right)^2 dP \, d\cos \Theta \]

(1a)

(1b)

(1c)

Here \(P \) is the pion momentum and \(E \) is the total pion energy; \(\Theta \) is the angle between the pion and the neutrino; \(M_K \) is the \(K^- \) mass; \(W = M_K - E \); \(m_\pi \) and \(m_L \) are the pion and lepton masses respectively; and \(f_V, \varepsilon_V, f_S \), and \(f_T \) are functions ("form factors") of \(q^2 = M_K^2 + m_\pi^2 - 2M_K E \), the square of the invariant four-momentum transfer. We assume time-reversal invariance and take \(f_V, \varepsilon_V, f_S \), and \(f_T \) to be real.

In the present investigation we have attempted to study the following questions:

1. What couplings are responsible for \(K_{e3}^- \) and \(K_{\mu3}^- \) decay?
2. Are the muon and electron couplings identical, i.e., are the form factors the same?
3. What can be said about the \(q^2 \) dependence of the form factors?
The experiment was run by exposing a xenon bubble chamber to a separated \(K^+ \) beam of such momentum that the \(K^+ \) mesons were stopped near the center of the chamber. Details of the experiment, identification of the various modes, sample selection, etc. have been published elsewhere.\(^2\)-\(^5\)

II. \(K^+_{e3} \) DECAYS

A. Nature of the Coupling

We have already shown that the vector coupling seems to be the only one that agrees well with our \(K^+_{e3} \) data.\(^3\) This conclusion has one qualification: to rule out the scalar hypothesis, we have assumed a "gentle" \(q^2 \) dependence of the form factor \(I^e_V \) (we use superscripts, \(e, \mu \), to separate the form factors in \(K^+_{e3} \) and \(K^+_{\mu3} \) decay in those analyses where we are not specifically assuming the universality of the muon and electron couplings).

B. The \(q^2 \) Dependence of \(I^e_V \)

We have represented the \(q^2 \) dependence of \(I^e_V \) by the first two terms in a series expansion \(I^e_V(q^2) = A(1 + \lambda q^2/m^2_\pi) \). By comparison with data from 216 events, we have obtained from a maximum-likelihood analysis \(\lambda = 0.4 \pm 0.4 \).

III. \(K^+_{\mu3} \) DECAYS

A. Nature of the Coupling

To introduce the corrections due to chamber geometry, we can conveniently rewrite the various distribution functions in terms of the variables \(P \) and \(E_\mu \), where \(E_\mu \) is the muon total energy:
Vector coupling

\[q_V(p, E_\mu) d\mathbf{p} \ d E_\mu = \frac{2p}{E} f_V^2 \left[\frac{m_L^2}{M_K} \left(W - E_\mu \right) - \left(W^2 - p^2 - m_L^2 \right) \right] \]

\[+ 4 f_V g_V (W - E_\mu) \left(\frac{m_L^2}{M_K} \right) + \frac{m_L^2}{M_K} g_V^2 \left(W^2 - p^2 - m_L^2 \right) \] \ d\mathbf{p} \ d E_\mu \] \hspace{1cm} (2a)

Scalar coupling

\[g_S(p, E_\mu) d\mathbf{p} \ d E_\mu = \frac{2p}{E} f_S^2 \left(W^2 - p^2 - m_L^2 \right) d\mathbf{p} \ d E_\mu \] \hspace{1cm} (2b)

Tensor coupling

\[g_T(p, E_\mu) d\mathbf{p} \ d E_\mu = \frac{2p}{M_K^2 E} f_T^2 \left[\frac{p^2 (W^2 - p^2 - m_L^2) - 4 p^2 \left(W - E_\mu \right)^2}{M_K^2} \right] \ d\mathbf{p} \ d E_\mu \] \hspace{1cm} (2c)

We have calculated expected pion-energy distributions by integrating Eqs. (2) over \(E_\mu \), taking due account of chamber geometry, with the following further assumptions:

1. All form factors are taken to be constant.

2. The ratio \(g_V^+/f_V^+ \) is chosen, on the assumption of the identity of muon and electron coupling strengths, from the measured ratio of \(K_\mu^+ \) and \(K_\nu^+ \) decay rates, \(0.96 \pm 0.16 \). Because the rates are quadratically related to the \(f_V^+ \) and \(g_V^+ \), this ratio is satisfied by two values of \(g_V^+/f_V^+ \), namely \(0.5 \pm 0.4 \) and \(4.8 \pm 0.4 \).
In Fig. 1 we show the experimental pion momentum spectrum and compare it with the scalar, tensor, and both vector distributions calculated as described above. If one makes a χ^2 test (see Table I) of the experimental data with these various theoretical distributions based on constant form factors, one finds that the most likely coupling is vector (with $g_V/f_V = 0.53$), although tensor is not ruled out. The scalar coupling, as well as the vector coupling with $g_V/f_V = -4.85$, does not fit the data at all.

Table I. Comparison of experimental $K^+\pi^0$ momentum distribution with various couplings having constant form factors

<table>
<thead>
<tr>
<th>Coupling</th>
<th>χ^2 Probability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector, $g_V/f_V = 0.53$</td>
<td>45</td>
</tr>
<tr>
<td>vector, $g_V/f_V = -4.85$</td>
<td>< 0.1</td>
</tr>
<tr>
<td>scalar</td>
<td>< 0.1</td>
</tr>
<tr>
<td>tensor</td>
<td>9</td>
</tr>
</tbody>
</table>

E. Energy Dependence of r_V^μ and g_V^μ

Our data are insufficient to permit significant conclusions on the energy dependence of r_V^μ and g_V^μ. We have, however, compared our results with the predictions of the conserved current theory:

$$\frac{g_V}{f_V} = -\frac{M_K^\nu}{W^2 - P^2} = -\frac{M_K}{q^2}.$$
In this theory the ratio g_v/f_v has a very strong energy dependence due to the pole at $q = 0$, which causes a marked peak in the pion spectrum at high energy. There is less than a 2% chance that the observed $K^{+}_{\mu 3}$ spectra are correctly described by this theory. Moreover, if $\mu-e$ universality is assumed, the ratio of $K^{+}_{\mu 3}$ and $K^{+}_{e 3}$ decay rates is predicted to be

$$\frac{R(K^{+}_{\mu 3})}{R(K^{+}_{e 3})} = 0.38.$$

This is to be compared with the observed ratio: 2.96 ± 0.15.

We conclude that our experiment is in substantial disagreement with this prediction. On the other hand, more sophisticated models based on assumptions about partially conserved currents lead to much less violent energy dependences which are compatible with our data.

IV. IDENTITY OF THE MUON AND ELECTRON COUPLING STRENGTHS

Since we have shown above that the experimental evidence favors vector coupling for both $K^{+}_{e 3}$ and $K^{+}_{\mu 3}$ decay, we are now ready to test the actual identity of the coupling by comparing f^μ_V and f^e_V (remembering that g^e_V cannot be observed, and hence no comparison of g^μ_V and g^e_V is possible). Again we assume the constancy of the f^μ_V's, noting that this assumption is compatible with our measurement of λ discussed in Section II. We then note that:

(a) the $K^{+}_{e 3}$ rate determines f^e_V

(b) the $K^{+}_{\mu 3}$ rate determines a relation between f^μ_V and f^e_V

(c) the study of the $K^{+}_{\mu 3}$ decay (P, E, μ) distribution provides another relation between f^μ_V and g^μ_V.

Thus from (b) and (c), f^μ_V can be determined and compared to f^e_V obtained from (a). The result is that $f^e_V/f^\mu_V = 1.09 \pm 0.15$, in good agreement with the expectations.
V. FURTHER DISCUSSION

We have already noted in Sec. III that if universality of the muon and the electron is assumed, the measured K_{e3}^+ and $K_{\mu3}^+$ rates lead to two values of g_γ/f_γ, namely +0.53 and −4.83. On the other hand, the study of the (P,E_μ) distribution in $K_{\mu3}^+$ decay leads to

$$\frac{g_\gamma}{f_\gamma} = +0.3 \pm 0.5,$$

thus ruling out the large negative g_γ/f_γ possibility. This result, already clear from Fig. 1, disagrees with the published results of Dobbs et al.\(^8\)

Various theoretical models predict values of g_γ/f_γ from 0.2 to 0.9.\(^7\) These are in reasonable agreement with the conclusion from the $K_{\mu3}^+$ (P,E_μ) distribution and a little lower (i.e., more negative) than the result from the ratio of $K_{\mu3}^+$ and K_{e3}^+ rates. However, in view of the quoted statistical errors, as well as conceivable systematic biases in determining the $K_{\mu3}^+$ rate, we interpret our data as being fully compatible with the predictions of these models.

To make the line of reasoning more apparent, we have assumed throughout our discussion that f_γ and g_γ are constant, which is in agreement with our data. A more complete (but more complicated) analysis, allowing additional parameters to describe the energy dependence of f_γ and g_γ has been published elsewhere.\(^4,5\) The conclusions drawn in this case are substantially the same as those of the present paper, except that one can no longer rigorously exclude the possibility of scalar and tensor couplings for $K_{\mu3}^+$ decay.
FOOTNOTES AND REFERENCES

* This work was done under the auspices of the U. S. Atomic Energy Commission.

/ Present Address: Inter-University Institute for Nuclear Science,
 Brussels, Belgium.

2. E. P. Roe, D. Sinclair, J. L. Brown, D. A. Glaser, J. A. Kadyk, and
3. J. L. Brown, J. A. Kadyk, G. H. Trilling, R. T. Van de Walle, B. P. Roe,
4. J. L. Brown, J. A. Kadyk, G. H. Trilling, R. T. Van de Walle, B. P. Roe,
5. J. L. Brown, J. A. Kadyk, G. H. Trilling, R. T. Van de Walle, B. P. Roe,
 and D. Sinclair, Experimental Analysis of K_e3 and K_{\mu 3} Decays, UCRL-10205,
 June, 1962.
7. J. Bernstein and S. Weinberg, Phys. Rev. Letters 5, 481 (1960);
 S. W. MacDowell, Phys. Rev. 116, 1047 (1959); N. Brene, L. Bagard, and
Fig. 1. Expected $K^+ \pi^0$ momentum distributions for (a) vector coupling with $g_\nu/f_\nu = +0.53$ (solid curve) and $g_\nu/f_\nu = -1.03$ (dashed curve), and (b) scalar (solid curve) and tensor (dashed curve) couplings, with constant form factors. The histogram represents experimental data (76 events). Irregularities in the curves result from modifications folded into the theoretical distributions to correct for criteria used in the selection of data.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.