Title
Thermal Decompositions of the Lignin Model Compounds: Salicylaldehyde and Catechol

Permalink
https://escholarship.org/uc/item/52t6c0mz

Authors
Ormond, TK
Baraban, JH
Porterfield, JP
et al.

Publication Date
2018-04-04

DOI
10.1021/acs.jpca.8b03201

Peer reviewed
Thermal Decompositions of the Lignin Model Compounds: Salicylaldehyde and Catechol

Thomas K. Ormond,1,2 Joshua H. Baraban,2,3 Jessica P. Porterfield,2,4 Adam M. Scheer,5,6 Patrick Hemberger,7 Tyler P. Troy,8 Musahid Ahmed,8 Mark R. Nimlos,1 David J. Robichaud,1 John W. Daily,9 and G. Barney Ellison2

1. National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden CO, 80401, U.S.A.
2. Department of Chemistry and Biochemistry, University of Colorado, Boulder, 80309-0215, U.S.A.
3. Present address: Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel 84105
4. Present address: Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
5. Combustion Research Facility, Sandia National Laboratory, PO Box 969, Livermore, CA 94551-0969, U.S.A.
6. Present address: Pacific Gas and Electric Company, 245 Market St., San Francisco, CA 94111
7. Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute, CH-5234 Villigen-PSI, Switzerland
8. Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, U.S.A.
9. Center for Combustion and Environmental Research, Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427, U.S.A.

Abstract

The nascent steps in the pyrolysis of the lignin components, salicylaldehyde (o-HOC₆H₄CHO) and catechol (o-HOC₆H₄OH), have been studied in a set of heated micro-reactors. The micro-reactors are small (roughly 1 mm ID x 3 cm long); transit times through the reactors are about 100 μsec. Temperatures in the micro-reactors can be as high as 1600 K and pressures are typically a few hundred Torr. The products of pyrolysis are identified by a combination of photoionization mass spectrometry, photoelectron photoion coincidence mass spectrometry, and matrix isolation infrared spectroscopy. The main pathway by which salicylaldehyde decomposes is a concerted fragmentation: o-HOC₆H₄CHO (+ M) → H₂ + CO + C₅H₄=C=O (fulveneketene). At temperatures above 1300 K, fulveneketene loses CO to yield a mixture of (HC≡C≡C≡CH₃, HC≡C=CH₂=C≡CH, and HC≡C=CH=CH₂). These alkynes decompose to a mixture of radicals (HC≡C=C≡CH₂ and HC≡C=CH≡CH) and H-atoms. H-atom chain reactions convert salicylaldehyde to phenol: o-HOC₆H₄CHO + H → C₆H₅OH + CO + H. Catechol has similar chemistry to salicylaldehyde. Electroyclic fragmentation produces water and fulveneketene: o-HOC₆H₄OH (+ M) → H₂O + C₅H₄=C=O. These findings have implications for the pyrolysis of lignin itself.

(Revised to J. Phys. Chem. A, June 2018)
I. Introduction

Lignocellulosic biomass, an abundant and renewable resource,\(^1\) is a complex amalgam of three classes of biopolymers: cellulose, hemicelluloses, and lignin. This paper examines the pyrolysis of two common lignin components, salicylaldehyde (\(\text{\(\alpha\)}-\text{\(\text{HOC}_6\text{H}_4\text{CHO}\)})\) and catechol (\(\text{\(\alpha\)}-\text{\(\text{HOC}_6\text{H}_4\text{OH}\)})\). Both of these species are important thermal decomposition products\(^2\) in the conversion of lignins to biofuels. The development of biomass derived fuels\(^3,4\) as an alternative to petroleum-based fuels has become a topic of interest due to climate change\(^5\) and availability of this raw biomass. Biomass is the only renewable source of carbon-based fuels and platform organic chemicals.

After cellulose, lignin\(^6\) is the second most abundant terrestrial biopolymer, accounting for roughly one third of the organic carbon in the biosphere.\(^7\) Lignin is a complex, water-insoluble aromatic polymer and a representative structure is shown in Scheme 1 (adapted from Fig. 2 of ref. \(^8\)). Lignin is essential for the structural integrity of the cell wall and the stiffness and strength of the stem. Besides waterproofing the cell wall, lignin enables the transport of water and solutes through the vascular system and plays a role in protecting plants against pathogens. Because lignin protects the cell wall polysaccharides from microbial degradation, it is also one of the most important limiting factors in the conversion of plant biomass to pulp or biofuels. The removal of lignin from the plant biomass is a difficult process.\(^1,8\) A glance at the structures in Scheme 1 suggests how difficult it is to extract and to process these aromatic polymers into fuels and...
platform chemicals.

A promising method for converting raw biomass to usable fuel is gasification via pyrolysis of biomass feedstocks.2,9-14 Scheme 2 shows some of the common aromatics that are released in the processing of lignin.2 The production of syngas (H\textsubscript{2} + CO) from biomass gasification can be used to synthesize butanol, ethanol, and other liquid fuels. The major advantage of biomass gasification via pyrolysis is that lignin, cellulose, and hemicellulose can all be processed. However, in the pyrolysis vapor, growth of stabilized polycyclic aromatic hydrocarbons and soot places an effective limit on the usable hydrocarbon yield of the gasification process.15

In an effort to understand and improve the biomass conversion yield, the unimolecular pyrolyses of lignin model compounds have been studied in many groups. These studies identify the initial pyrolysis intermediates, products, and mechanisms.16-18 There is potential to study catalysis19-21 or other means of chemical manipulation and engineering for the streamlining of biomass pyrolysis. A recent review1 provides a "beginning-to-end" analysis of recent advances reported in the utilization of lignin.

To describe the pyrolysis and oxidation of the lignin components, several research groups have reported the pyrolysis of the simpler aromatics: phenol (C\textsubscript{6}H\textsubscript{5}OH),22-25 anisole (C\textsubscript{6}H\textsubscript{5}OCH\textsubscript{3}),26-31 and benzaldehyde (C\textsubscript{6}H\textsubscript{5}CHO).32,33 An understanding of the thermal decompositions of these singly functionalized aromatic systems has led to a predictive understanding of the more complicated
lignin model compounds such as methoxyphenol (guaiacol),34-36 dimethoxybenzene,37 syringol38,39 and vanillin40,41 (see Scheme 2). In earlier studies the pyrolysis of two of the simplest molecules, phenol25 and benzaldehyde,33 were studied in a hot micro-reactor. In this paper, we explore the thermal decomposition of the ortho isomers of hydroxybenzaldehyde (salicylaldehyde, \(o\)-HOC\(_6\)H\(_4\)CHO) and dihydroxybenzene (catechol, \(o\)-HOC\(_6\)H\(_4\)OH). A peculiarity of salicylaldehyde and catechol is that the two substituents (-OH and -HCO) are adjacent to each other. The pyrolysis of salicylaldehyde and catechol might be more complicated than C\(_6\)H\(_5\)CHO and C\(_6\)H\(_5\)OH if the ortho substituents interact.

A proper set of mechanisms is ultimately required to model the pyrolysis and combustion of lignin and its components. As Pilling has succinctly stated,42 “chemical mechanisms must have a quantitative foundation. Mechanisms consist of explicit, coupled chemical reactions, together with rate coefficients and product yields.” Pilling’s definition of a mechanism is a tall order. Most of the aromatics in Scheme 2 are poorly characterized. We are lacking proper heats of formation, ionization energies, and decomposition rates for most of these species. To build Pilling’s mechanism for lignin pyrolysis, several steps are required. A) The separate pyrolysis pathways for the lignin components must be established. B) The branching ratios for each of the pathways must be quantified. C) Finally, the rate expressions for each of the decomposition reactions must be measured. The rate expressions in C) are needed over a wide range of temperatures and
pressures. The objective of this paper is the establishment of the initial gas-phase pyrolysis pathways for salicylaldehyde and catechol. In the following experiments, all of the decomposition products arising in the first 100 µsec of pyrolysis are identified by the complementary detection schemes of photoionization mass spectrometry (PIMS), photoelectron photoion coincidence mass spectroscopy (PEPICO), and matrix isolation infrared absorption spectroscopy (IR).

II. Experimental

Samples of o-hydroxybenzaldehyde (salicylaldehyde) and o-dihydroxybenzene (catechol) were obtained from Sigma Aldrich with a stated purity of >99%. No further purification was performed. The catechol-d₄ (HOC₆D₄OH) and salicylaldehyde-d₁ (DO-C₆H₄CHO) were prepared by dissolving approximately 300 mg of either salicylaldehyde-d₀ (99% CDN Isotopes) in 75 mL D₂O or catechol-d₆ (99% CDN Isotopes) in 75 mL of H₂O in a separatory funnel. About 100 mL of chloroform was then added and the mixture was shaken. The organic layer containing chloroform and the extracted isotopically labeled sample were then drained from the bottom of the funnel into a round bottomed flask. The chloroform shaking process was repeated several times. The chloroform was evaporated by a roto-evaporator and the conversion yield was approximately 80%. Since both salicylaldehyde (room temperature liquid) and catechol (room temperature solid) have low vapor pressures, the molecular beams were generated by passing the carrier gas (He, Ne, or Ar) over a heated sample (30-
Dilutions were approximated by taking the ratio of the sample vapor pressure to the backing pressure of the carrier gas. Typical dilutions were about 0.1% or less.

The products of the thermal decomposition reactions were generated inside a resistively heated (300-1800 K), microtubular (0.6 – 1.0 mm ID), SiC flow reactor with either pulsed or continuous gas injection as described below. The dilute pyrolysis products generated in the reactor were expanded into vacuum (< 10^{-6} Torr) and further chemistry was quenched. Multiplexed product detection and characterization was carried out with either IR spectroscopy of matrix isolated samples, (in Ne or Ar), or time-of-flight PIMS (in He or Ar).

The microtubular reactor has been described in detail. Recent computational fluid dynamics simulations have found that the micro-reactors are complex, non-linear devices. Chemical reactions in the micro-reactors vary exponentially with the gas temperature (which is rising) and quadratically with the pressure (which is falling). Consequently there is a small volume (“sweet-spot”) in which most chemical reactions occur. The size and location of the sweet-spot can vary strongly with changes in the mass flow-rate, reactor dimensions (diameter, length), material (SiC, quartz, or Al$_2$O$_3$), and the nature of the buffer gas (He, Ne, Ar). In this paper four different micro-reactors have been deployed: 1 mm ID SiC reactor with pulsed He, 0.66 mm ID SiC reactor with continuous flow of He, 1 mm ID SiC reactor with pulsed Ar, and 1 mm ID SiC reactor with continuous flow of Ar.
Matrix isolation infrared spectroscopy

Roughly 200—400 Torr of carrier gas is passed over the heated sample and through a pulsed valve (30 Hz, 300 μs open time), resulting in a cryogenic matrix deposition rate of 1-3 Torr min⁻¹. The heated microtubular reactor is separated from the cryogenic CsI collection window by a copper radiation shield with 5 mm aperture for passage of the molecular beam. The reactor output expands into the vacuum and deposits onto the CsI window (10⁻⁸ Torr and 4 K for Ne, or 10⁻⁶ Torr and 20 K for Ar). FTIR (Nicolet Magna) spectra are collected with 0.125 – 0.25 cm⁻¹ resolution and are composite averages of 1000 scans. Infrared spectroscopy is quite sensitive for the identification of dilute reaction products, and vibrational bands with IR intensities as weak as 0.1 km mol⁻¹ are readily detected.⁴⁵,⁴⁸

Fixed frequency 118.2 nm photoionization mass spectrometry

The molecular beam is generated with a pulsed valve, in the same way as described above for matrix isolation, except that the reactor output is sent through a skimmer. However, for the fixed energy PIMS, He carrier gas is used for both its high transmission in the VUV and its high efficiency for heating. Photoionization is accomplished at 30 Hz with 118.2 nm (10.487 eV) radiation generated from the 9th harmonic of a Nd:YAG laser (Spectra Physics). This method is convenient in that the VUV generation is laser based and relatively intense.⁴⁹ A reflectron time-of-flight mass spectrometer (Jordan) with a multi-channel ion detection plate detector (MCP) is used with a mass resolution of
about 0.08 amu.

Dissociative ionization is a common problem in fixed energy PIMS detection and refers to the subsequent fragmentation of the parent ion: \(AB + h\omega \rightarrow [AB]^+ + e^- \rightarrow A^+ + B \). Because PIMS is used as a means to detect pyrolysis products emerging from the hot micro-reactor, dissociative ionization is a potential source of confusion. The daughter ions will obscure the parent ions characteristic of the thermal fragmentation. Dissociative ionization is commonly observed\(^{50}\) in the electron impact (EI) ionization mass spectrometry of aldehydes; the resulting spectra typically contain a large peak (P-1) in addition to the parent ion peak (P). Photoionization is a more gentle ionization method than EI. The 118.2 nm PIMS of benzaldehyde\(^{33}\) only contains the parent peak at \(m/z \) 106 when examined at 300 K. The \(IE(C_6H_5CHO) \) is reported\(^{51}\) as \(9.50 \pm 0.08 \) eV and heating benzaldehyde to 1300 K shows only small signs of dissociative ionization (see Fig. 7 of ref.\(^{33}\)). The ionization energies for both salicylaldehyde and catechol are poorly known. The \(IE(o-HOC_6H_4OH) \) was reported\(^{52}\) to be 8.6 eV while that of \(o-HOC_6H_4CHO \) has not been measured. The para isomer has been studied\(^{53}\) and \(IE(p-HOC_6H_4CHO) \) was measured (9.32 \(\pm \) 0.02 eV) by electron impact ionization; the \(IE(salicylaldehyde) \) is likely to be about 9.3 \(\pm \) 0.1 eV. The thermochemistry and ionization energies of salicylaldehyde, catechol, and related species are collected in Table 1.

Photoionization with Tunable VUV Radiation

Synchrotrons provide intense (better than \(10^{12} \) photons s\(^{-1}\)),
monochromated (50 meV resolution), tunable VUV radiation for molecular diagnostics. Coupled with time-of-flight mass spectrometry, this is an effective detection method. Photoionization efficiency (PIE) spectra were collected at the Advanced Light Source (ALS) Chemical Dynamics Beamline (9.0.2). PIE spectra are generated by tuning through a photon energy range, typically with 25 meV steps, and monitoring the ion counts at a particular value of m/z in the mass spectrum. This provides the identification of species based on ionization energies (IEs), and differentiation of isomers at a particular m/z based on characteristics of the PIE spectrum. The Chemical Dynamics Beamline54,55 and the PIMS experiment56-58 have been described in detail elsewhere. Molecular beams generated for PIMS studies at the ALS were continuous He flow for two reasons. The synchrotron light is quasi-continuous (500 MHz) and use of a continuous flow molecular beam gives signal increases of about two orders of magnitude. Equally important, the use of a continuous flow in the micro-reactor and the computational fluid dynamics is much easier to characterize.47 A mass flow controller was used to deliver about 300 standard cm3 min-1 (sccm) of He through a heated sample compartment and into a 0.66 mm i.d x 2.5 cm long SiC tube. The beam was skimmed in a 2 mm aperture and expanded into the interaction region (10-6 Torr). The flow rate and reactor geometry were chosen based on extensive modeling and characterization. For a more complete description of the gas flow characteristics (temperature, pressure, and residence time profiles) in this reactor, see ref.47.

The molecular beam emerging from the pyrolysis source was intersected with synchrotron VUV radiation in a pulsed electric field (17 kHz), and ions were accelerated into a field free region where they were separated by mass and detected on a time sensitive MCP detector. Typical mass spectra were composite averages of more than 10^6 sweeps of the pulsed field at each photon energy, typically with 0.05 amu mass resolution and 20-50 meV stepsize.

The pyrolysis of salicylaldehyde and catechol with photoelectron photoion coincidence (PEPICO) detection was carried out at the Swiss Light Source (SLS) VUV Beamline. The experiment at the SLS has been described in detail elsewhere,59-62 and will be briefly summarized here. The interaction chamber is evacuated by cryopumping (roughly 5000 L s$^{-1}$), therefore Ar was used as the buffer gas. A backing pressure of about 750 Torr of Ar is passed over the sample and through a 100 μm pinhole, providing continuous, effusive gas injection into a 1 mm i.d. x 2.5 cm long SiC microtubular reactor. The products emerge from the reactor and are expanded into the interaction region where they are ionized in a constant electric field (120 V cm$^{-1}$). Photoelectrons are imaged within a few tens of ns on a position sensitive delay line anode detector and are used as time zero for time-of-flight detection of photoions in a coincidence setup.59-62

\textbf{IV. Results and Discussion}

\textbf{Salicylaldehyde}

Based on the decomposition pathway for phenol,25 Scheme 3 shows the anticipated decomposition pathway for salicylaldehyde. The initial step in the
pyrolysis of C$_6$H$_5$OH is a keto-enol isomerization to cyclohexadienone, followed by isomerization to a bicyclo [3.1.0] ketone. The ketone fragments to carbon monoxide and cyclopentadiene (see eq. (8) in ref. 25). Salicylaldehyde in Scheme 3 is asymmetric so there are two expected formyl-cyclohexadienones. Further decompositions lead to a single formyl-cyclopentadiene (C$_5$H$_5$CHO, m/z 94) followed by fragmentation to the formyl-cyclopentadienyl radical, (C$_5$H$_4$CHO, m/z 93). It is unlikely that the formyl-cyclopentadienyl radical will be stable in the hot micro-reactor and fulveneketene, C$_5$H$_4$=C=O (m/z 92), is the expected product. At higher temperatures, CO loss from C$_5$H$_4$=C=O leads to the unstable carbene, cyclopentadienyldiene (C$_5$H$_4$, m/z 64). The singlet carbene, C$_5$H$_4$, is anticipated to ring open to yield the alkynes, HC≡C≡C=CH$_3$ and HC≡C=CH$_2$-C≡CH, or the substituted allene, HC≡C-CH=CH=C=CH$_2$; all are m/z 64. Loss of H-atoms from these unsaturated alkynes will form the conjugated radicals, HC≡C≡C=CH$_2$ and HC≡C-CH-C≡CH, m/z 63.

Fig. 1 shows the 118.2 nm PIMS resulting from a dilute sample of o-HOC$_6$H$_4$CHO pyrolyzed in a pulsed SiC reactor. As salicylaldehyde is heated from 300 — 1000 K in the micro-reactor, the PIMS in Fig. 1 shows only the expected parent peak at m/z 122 and the small (7 %) 13C isotope peak. Even though the 118.2 nm VUV laser (10.487 eV) is roughly 1 eV above the ionization threshold for o-HOC$_6$H$_4$CHO (see Table 1), there are no signals at m/z 121 characteristic of dissociative ionization. Heating o-HOC$_6$H$_4$CHO to 1100 K leads to the first appearance of a signal at m/z 92 (C$_5$H$_4$=C=O) as suggested by
Scheme 3. Further heating of salicylaldehyde to 1200 K shows additional fragmentation to both m/z 92 and m/z 64 (predicted in Scheme 3 to be a mixture of HC≡C≡C-CH₃, HC≡C-CH₂-C≡CH, and HC≡C-CH=CH₂). The PIMS at 1300 K reveals several new species, tentatively assigned as a mixture of the C₅H₃ radicals (m/z 63), either (HC≡C≡C-CH₂, HC≡C-CH-CH≡CH), the cyclopentadienyl radical (C₅H₅, m/z 65), o-benzyne (o-C₆H₄, m/z 76), and phenol (C₆H₅OH, m/z 94).

Fig. 2 is a scan of the 10.5 eV PIMS of salicylaldehyde pyrolyzed in a 0.66 mm ID, micro-reactor with He carrier gas at the ALS. In order to benefit from the quasi-continuous synchrotron light source, the reactor was operated continuously with the mass flow rate fixed at 280 sccm, generating the pyrolysis products in a He supersonic jet expansion. In contrast, Fig. S1 is the 10.5 eV PIMS of pyrolysis of salicylaldehyde in a 1 mm ID micro-reactor with Ar as the carrier gas at the SLS. In this case the gas mixture is regulated by a needle valve and a continuous, effusive jet of pyrolysis products is produced. In each of these experiments, PIMS signals at m/z 92 and then m/z 64 appear early as the first pyrolysis products. Pyrolysis in a pulsed reactor (Fig. 1) and a continuous reactor (Fig. 2) yield the same results.

At higher temperatures all PIMS spectra in Figs. 1 and 2 have a fragment at m/z 94 and (1 + 1) REMPI spectra identify this as C₆H₅OH (see below). In the earlier pyrolysis study of C₆H₅CHO, the presence of H-atom chain reactions was found at higher temperatures: C₆H₅CHO + H ⇌ [C₆H₅CHO]⁺ → C₆H₆ + H +
The decomposition of fulveneketene generates the radicals (HC≡C-C≡C-CH₂, HC≡C-CH-C≡CH) and H-atoms. If the H-atoms subsequently attack the o-HOC₆H₄CHO sample, two decomposition pathways become possible as shown in Scheme 4. Addition of H-atoms to the phenyl ring yields an activated complex, [HOC₆H₆CHO]*, which can collapse to phenol and the formyl radical (top of Scheme 4). Because the CH bond energy of HCO is only 16 kcal mol⁻¹, the formyl radicals will never survive in the hot micro-reactor. Dissociation of HCO to CO and H-atoms ensues and the H-atoms continue the chain reaction.

Instead of adding to the phenyl ring, the H-atoms could attack the carbonyl group of salicylaldehyde in two different manners; see the bottom of Scheme 4. The most stable adduct results from addition to the oxygen to form the hydroxybenzyl radical: o-HOC₆H₄CHO + H ⇋ [o-HOC₆H₄CHOH]*. This benzyl radical persists before reverting back to H-atoms and salicylaldehyde. In contrast, H-atom addition to produce the alkoxy radical, [o-HOC₆H₄-CH₂-O]*, triggers several fragmentations. From the earlier case of benzaldehyde, one anticipates that the o-HOC₆H₄-CH₂-O radical will fragment to CH₂=O and the o-hydroxy-phenyl radical, o-HOC₆H₄. Hydroxy-phenyl radicals have been scrutinized earlier and it was found that they easily rearrange to the phenoxy radical: o-HOC₆H₄ → C₆H₅O. Phenoxy radicals decarbonylate to cyclopentadienyl radicals, C₅H₅ (m/z 65), that further fragment to HC≡CH and HCCCH₂. Instead of isomerizing to phenoxy, the o-HOC₆H₄ radical could lose OH
to produce \(\alpha \)-benzyne, \(\alpha \)-C\(_6\)H\(_4\) (m/z 76). It is known\(^{66}\) that benzyne decomposes to HC\(\equiv\)C-C\(\equiv\)CH + HC\(\equiv\)CH.

At the highest reactor temperatures, all PIMS have salicylaldehyde pyrolysis products at m/z 76 (benzyne), 65 (cyclopentadienyl radical), 50 (diacetylene), and 39 (propargyl radical). The presence of both CH\(_2\)=O and HC\(\equiv\)CH (from \(\alpha \)-C\(_6\)H\(_4\) fragmentation) are detected by IR spectroscopy (see below). At first glance, it seems as if Schemes 3 and 4 properly describe the pyrolysis of \(\alpha \)-HOC\(_6\)H\(_4\)CHO.

As stated in the introduction, an interesting feature of salicylaldehyde is the ortho relationship of the –OH and –CHO groups. Because \(m \)-HOC\(_6\)H\(_4\)CHO is an isomer of salicylaldehyde, Fig. 3 is the control experiment. Salicylaldehyde and its two isomers have similar thermodynamic properties (see Table 1). The keto-enol fragmentation pathway outlined for salicylaldehyde in Scheme 1 will equally apply to both of the isomeric \(m \)-HOC\(_6\)H\(_4\)CHO and \(p \)-HOC\(_6\)H\(_4\)CHO. A glance at the thermal cracking of \(m \)-HOC\(_6\)H\(_4\)CHO in Fig. 3 shows that there is a problem with the keto-enol chemistry in Scheme 3. Instead of pyrolysis of \(m \)-HOC\(_6\)H\(_4\)CHO beginning about 1100 K to produce a single species, m/z 92, the decomposition of \(m \)-HOC\(_6\)H\(_4\)CHO produces fragments at m/z 94 (phenol), m/z 66 (cyclopentadiene), m/z 65 (cyclopentadienyl radical) and m/z 39 (propargyl radical) at 1300 K. The feature at m/z 94 is positively identified to be C\(_6\)H\(_5\)OH by its (1 + 1) REMPI spectrum (Fig. 3) recorded at NREL.\(^{40}\) At 1400 K, a new feature at m/z 78 grows in. This is certainly benzene. But there are no m/z 92
signals present in Fig. 3. Comparison of the PIMS spectra in Figs. 1 and 3 implies that the keto-enol pathway in Scheme 3 is not a low-energy path for salicylaldehyde decomposition. There must be another pathway for pyrolysis of o-HOC6H4CHO (m/z 122) to produce fulveneketene (m/z 92).

Catechol

Catechol has recently been subjected to catalytic pyrolysis with a zeolite catalyst, identifying fulvenone ketene using the PEPICO technique at the SLS.\(^{67}\) Earlier studies have subjected o-HOC\(_6\)H\(_4\)OH to pyrolysis in tubular reactors with residence times of a few seconds. The decomposition products were collected and were analyzed by gas chromatography (GC) with EI mass spectroscopy\(^ {68}\) or flame ionization detection.\(^ {69}\) Instead of GC analysis products have been trapped in on the cold finger of a Dewar mounted inside an EPR cavity.\(^ {70,71}\) EPR spectroscopy was then used to identify the product radicals. A set of DFT/RRKM calculations\(^ {72}\) have been used to interpret these results. Preliminary results for the pyrolysis of catechol and hydroquinone with a heated SiC micro-reactor have been presented.\(^ {25}\)

To anticipate the results of pyrolysis of o-HOC\(_6\)H\(_4\)OH, Scheme 5 applies the keto-enol chemistry\(^ {25}\) of phenol to catechol, o-HOC\(_6\)H\(_4\)OH (m/z 110). This predicts the loss of CO to generate the hydroxyl-cyclopentadiene, HOC\(_5\)H\(_5\) (m/z 82). The C-H bond energy of the parent cyclopentadiene\(^ {73}\) is 83 kcal mol\(^{-1}\); consequently we expect that loss of H from hydroxyl-cyclopentadiene to generate the hydroxyl-cyclopentadienyl radical (m/z 81) will require about 80 kcal mol\(^{-1}\).
Further decomposition of the C₅H₄OH radical leads to H-atom and to the well characterized⁴⁸,⁷⁴-⁷⁷ cyclopentadienone, C₅H₄=O (m/z 80).

Fig. 5 is the 118.2 nm PIMS that is observed when a sample of catechol is heated in a pulsed, 1 mm SiC micro-reactor. The 400 K spectrum shows the expected parent peak at m/z 110; there is no dissociative ionization observed at 10.487 eV (See Table 1). At 1300 K, features in the PIMS appear at m/z 82 and 92. Based on Scheme 5, m/z 82 is assigned as hydroxyl-cyclopentadiene but m/z 92 does not appear in this scheme. In the spectra of salicylaldehyde (Figs 1-2), the major product was m/z 92 and was assigned as fulveneketene. Like salicylaldehyde, it seems that o-HOC₆H₄OH is also cracking to C₅H₄=O. The catechol spectrum in Fig. 5 agree with earlier findings.⁴⁰ Fig. 5 shows that heating catechol to 1500 K produces several new products at m/z 94 (phenol), m/z 80 (C₅H₄=O), m/z 78 (C₆H₆), m/z 76 (o-C₆H₄), m/z 65 (C₅H₅), m/z 64 (possible mixture of HC≡C≡C-CH₃, HC≡C-CH₂-C≡CH, HC≡C-CH=CH₂), m/z 63 (either HC≡C-CH=CH₂ or HC≡C-CH-C≡CH), m/z 54 (CH₂=CH-CH=CH₂), m/z 52 (CH₂=CH-C=CH₂), m/z 50 (HC≡C-CH=CH), and m/z 39 (HCCCH₂). Separate (1 + 1) REMPI spectra⁴⁰ confirm the identity of the m/z 94 feature as phenol.

The pyrolysis of catechol-d₄ is consistent with that of catechol-d₀. Pyrolysis of o-HOC₆D₄OH (m/z 114) in Fig. 6 produces hydroxyl-cyclopentadiene-d₄ (m/z 86) and cyclopentadienone-d₄ (m/z 84). Decomposition of C₅D₄=O generates acetylene-d₂ and DC≡C-CD=CD₂ (m/z 58). However, just as in the case of catechol-d₀, fulveneketene-d₄ (m/z 96) is formed. Thermal cracking of C₅D₄=O
(m/z 96) produces a mixture of [CD₃C≡C≡CD, HC≡C-CD₂-C≡CD, and HC≡C-CD=C=CD] (m/z 68) as well as D atoms and the radicals at m/z 66 (CD₂C≡C≡CD and HC≡C-CD-C≡CD).

As discussed earlier for salicylaldehyde, the keto-enol pathway for catechol (Scheme 5) should equally apply to resorcinol or hydroquinone. Resorcinol is \(m\)-HO-C₆H₄-OH and is an isomer of \(o\)-HO-C₆H₄-OH. Fig. 7 is the PIMS of the pyrolysis of resorcinol and is presented as a control the thermal cracking of catechol. Catechol begins decomposition at 1300 K (Fig. 5) but \(m\)-HO-C₆H₄-OH starts fragmenting at 1400 K to m/z 66 (C₅H₆) and small amounts of m/z 81 (probably HC=CHC(O)CH₃) and m/z 82 (likely HC=CH₂C(O)CH₃). No signals at m/z 92 are ever observed for resorcinol. A detailed analysis of the pyrolysis of \(m\)-HO-C₆H₄-OH in Fig. 7 is beyond the scope of this paper.

Schemes 5 for the decomposition of catechol is now suspect because it does not have a pathway to generate fulveneketene-\(d₀ \) (m/z 92) or fulveneketene-\(d₄ \) (m/z 96). It does not seem that the keto-enol chemistry\(^{25} \) of phenol describes a low energy decomposition pathway for catechol.

How could the thermal cracking of \(o\)-HO₆C₆H₄OH produce the C₅H₄=C=O (m/z 92) in Figs. 5 and 6? A possible connection of the pyrolysis of catechol to that of salicylaldehyde is shown in Scheme 6. Loss of H₂O from catechol (m/z 110) could produce the keto-carbene at m/z 92; subsequent rearrangement of this carbene leads to fulveneketene. If catechol-\(d₄ \) is the substrate, C₅D₄=C=O (m/z 96), would be predicted. Scheme 6 also shows a pathway for pyrolysis of
salicylaldehyde (m/z 122) to result in loss of H\textsubscript{2} with the production of a reactive ketene, m/z 120. Loss of CO from the m/z 120 ketene, generates the same, m/z 92 keto-carbene which isomerizes to the observed fulveneketene, m/z 92. Notice that H\textsubscript{2} pathway for salicylaldehyde in Scheme 6 is distinct from the keto-enol route in Scheme 3.

The predictions of Scheme 6 offering a path to fulveneketene can be tested by infrared spectroscopy. The matrix IR spectra that result from heating either \(\alpha\)-HOC\textsubscript{6}H\textsubscript{4}OH (black trace) or \(\alpha\)-HOC\textsubscript{6}H\textsubscript{4}CHO (red scan) to 1300 K in a pulsed, Ar micro-reactor are shown in Fig. 8. The green spectrum is that of the Ar carrier gas heated to 1300 K. The IR spectra of Fig. 8 show the presence of known modes of C\textsubscript{5}H\textsubscript{4}=C=O (\(\nu\)\textsubscript{3}, \(\nu\)\textsubscript{5}, \(\nu\)\textsubscript{7}, and \(\nu\)\textsubscript{26}) resulting from the pyrolysis of either catechol or salicylaldehyde. Characteristic bands for methyl-diacetylene, \(\nu\)\textsubscript{1} and \(\nu\)\textsubscript{11}(HC≡C≡C-CH\textsubscript{3}), acetylene, \(\nu\)\textsubscript{3}(HC≡CH), and propargyl radical, \(\nu\)\textsubscript{1}(HCCCH\textsubscript{2}), are detected in Fig. 9. The IR spectra in Fig. 10 identify cyclopentadienone as a thermal decomposition product of catechol; the known bands (\(\nu\)\textsubscript{3}, \(\nu\)\textsubscript{14}, \(\nu\)\textsubscript{15}, \(\nu\)\textsubscript{21}) of C\textsubscript{5}H\textsubscript{4}=O are all clearly present. The IR spectra of Figs. 8 – 10 as well as the PIMS in Figs. 1, 2, 5, and 6 demonstrate that both C\textsubscript{5}H\textsubscript{4}=C=O and HC≡C=C-CH\textsubscript{3} result from the pyrolysis of either \(\alpha\)-HOC\textsubscript{6}H\textsubscript{4}OH or \(\alpha\)-HOC\textsubscript{6}H\textsubscript{4}CHO.

Fig. 11 is further confirmation of the H-atom/salicylaldehyde chain reactions at the bottom of Scheme 4. The IR spectra in Fig. 11 demonstrate that pyrolysis of \(\alpha\)-HOC\textsubscript{6}H\textsubscript{4}CHO produces HC≡CH and CH\textsubscript{2}=O. The 11.5 eV PIMS in
the bottom right hand panel also confirms the presence of \(\text{HC=CH} \) (m/z 26) and \(\text{CH}_2=\text{O} \) (m/z 30).

Because of the differences between the PIMS of \(\text{o-} \text{HOC}_6\text{H}_4\text{CHO} \) and \(\text{m-} \text{HOC}_6\text{H}_4\text{CHO} \) in Figs. 1 and 3, an alternative scheme for pyrolysis of salicylaldehyde was proposed at the top of Scheme 6. The detection of molecular hydrogen would be a “signature” for Scheme 6. Unfortunately the 118.2 nm PIMS cannot ionize \(\text{H}_2 \) (see Table 1) and homonuclear diatomic molecules do not absorb in the IR. Fig. 12 shows the results of a search with a synchrotron for \(\text{H}_2 \) following the pyrolysis of \(\text{o-} \text{HOC}_6\text{H}_4\text{CHO} \). Figure 12 is a set of PIMS scans of a mixture of (salicylaldehyde-\(d_0 \) and salicylaldehyde-\(d_1 \)) that were recorded by the synchrotron at the ALS. Heating (\(\text{o-} \text{HOC}_6\text{H}_4\text{CHO} \) and \(\text{o-DO-C}_6\text{H}_4\text{CHO} \)) to 1100 K leads to the production of both \(\text{H}_2 \) (m/z 2) and \(\text{HD} \) (m/z 3). The spectra in the left panel of Fig. 12 show that the synchrotron VUV energy of 15.5 eV is sufficient to ionize both \(\text{H}_2 \) and \(\text{HD} \) (see Table 1). Scheme 6 also provides an explanation for the feature at m/z 120 in the PIMS recorded by synchrotron at the SLS (Fig. S1). Entraining salicylaldehyde in Ar with a continuous 1 mm micro-reactor leads to an effusive beam of the dissociation products. At reactor temperatures of 900, 1000, and 1100 K, there is clearly a pyrolysis product at m/z 120. Scheme 6 assigns this product as the ketene, \(\text{O}=\text{C}_6\text{H}_4=\text{C}=\text{O} \).

The PIMS spectra of \(\text{H}_2 \) and \(\text{HD} \) in Fig. 12 show only the smallest traces of H-atoms. It is straightforward to show75 that the photoion signal, \(J^+\text{(H atom)} \), is proportional to the density of H-atoms (\(n_H \)) and the photoionization cross section,
The photoionization cross sections for H-atom78 and molecular79 H\textsubscript{2} have been reported. At the photoionization energy of Fig. 12, \(\sigma(\text{H}, 15.5 \text{ eV}) = 4.7 \times 10^{-18} \text{ cm}^2 \) while \(\sigma(\text{H}_2, 15.5 \text{ eV}) = 1.3 \times 10^{-18} \text{ cm}^2 \). So the ratio of ion signals at 15.5 eV in Fig. 12 can be written:

\[
\frac{J^+(\text{H-atom})}{J^+(\text{H}_2)} = \frac{n_\text{H} \sigma(\text{H-atom})}{n_\text{H}_2 \sigma(\text{H}_2)} = \frac{4n_\text{H}}{n_\text{H}_2} \quad (1)
\]

The observed \(J^+(\text{H-atom}) \) signals in Fig. 12 are small compared to either \(J^+(\text{H}_2) \) or \(J^+(\text{HD}) \) so we conclude that there are very few H-atoms in the beam relative to H\textsubscript{2} or HD.

V. Conclusion

The pyrolysis of (salicylaldehyde, catechol) is a complicated process. It is clear that for both species, the lowest decomposition pathways feature the interaction of the two ortho-substituents as described in Scheme 6. Pyrolysis of salicylaldehyde in Figs. 1 and 2 leads to initial production of fulveneketene (m/z 92) about 1100 K. Heating salicylaldehyde80 to 1200 K continues decomposition to fulveneketene and subsequent fragmentation of \(\text{C}_5\text{H}_4=\text{C}=\text{O} \) to the (HC≡C-C≡C-CH\textsubscript{3}, HC≡C-CH\textsubscript{2}-C≡CH, HC≡C-CH=C=CH\textsubscript{2}) mixture at m/z 64. By 1300 K this mixture of alkynes releases H-atoms and the set of radicals (HC≡C-C≡C-CH\textsubscript{2}, HC≡C-CH-CH=C≡CH,) at m/z 63. The H-atom chemistry, as outlined in Scheme 4, produces CH\textsubscript{2}=O (m/z 30), C\textsubscript{6}H\textsubscript{5}OH (m/z 94), \(\alpha \)-benzyne (m/z 76). Further fragmentation of phenol generates cyclopentadiene (m/z 66) that leads to C\textsubscript{5}H\textsubscript{5} (m/z 65). The cyclopentadienyl radicals further fragment to
HC≡CH (m/z 26) and HCCCH₂ (m/z 39). The keto-enol chemistry outlined in Scheme 3 is consistent with all of PIMS and IR spectra of salicylaldehyde pyrolysis products. But Scheme 3 can be applied to (m-HOC₆H₄CHO and p-HOC₆H₄CHO) where it fails. Consequently we are forced to Scheme 6 that is confirmed by the PIMS detection of (H₂ and HD) as decomposition products from the (α-HOC₆H₄CHO, α-DOC₆H₄CHO) mixture.

The pyrolysis of catechol is even more complex. Heating α-HOC₆H₄OH to 1300 K produces both hydroxyl-cyclohexadiene (m/z 82) and fulveneketene (m/z 92). It seems that both the catchol fragmentations in Scheme 5 and Scheme 6 are operational here. As the pyrolysis temperature is raised to 1500 K, the C₅H₄=O decomposes to the C₅H₄ alkynes (m/z 64) and H-atoms plus the C₅H₃ mixture of radicals (m/z 63). The H-atoms attack the starting catechol to produce phenol (m/z 94). Phenol further decomposes to CO and cyclopentadiene (m/z 66) that rapidly fragments to C₅H₅ (m/z 65) and on to HCCCH (m/z 26) plus HCCCH₂ (m/z 39). There is a minor fragmentation pathway for C₆H₅OH (see Figs. 1 and 7 in ref.²⁵) that leads to (α-benzyne, H₂O); this is the source of diacetylene (m/z 50). The hydroxyl-cyclopentadiene (m/z 82) decomposes to C₅H₄=O (m/z 80) that produces¹⁷⁵ HC≡C-CH=CH₂ (m/z 52) and HC≡CH.

The decomposition of salicylaldehyde to H₂ and [O=C₆H₄=C=O] → CO + C₅H₄=O (Scheme 6) is a striking result. We believe that the formation of H₂ is a concerted process rather than the result of step-wise H atom abstractions. We have already invoked H-atom chain reactions as being responsible for the
generation of CH$_2$=O, benzyne, and C$_6$H$_5$OH (Figs 1, 2, and 11). But the 15.5 eV PIMS in Fig. 12 demonstrate that density of H-atoms is much less that that of molecular hydrogen (H$_2$ and HD). As far as we know there have been no kinetic studies of H + HOC$_6$H$_4$CHO → products. Reactions of H-atoms with C$_6$H$_5$CHO have been investigated81 but the H-atoms always add to the aromatic ring and never lead to formation of H$_2$. Reactions of phenol with H-atoms82 was observed to produce H$_2$ and C$_6$H$_5$O. For the case of salicylaldehyde, such an H-atom abstraction would generate the OC$_6$H$_4$-CHO radical. It is known34 that phenoxy radicals easily lose CO to form cyclopentadienyl radicals; consequently one anticipates that the OC$_6$H$_4$-CHO radicals would produce formyl cyclopentadienyl radicals, C$_5$H$_4$-CHO (m/z 93). Scheme 3 predicts that C$_5$H$_4$-CHO will decompose to fulveneketene, C$_5$H$_4$=C=O (m/z 92) — which is observed. Such H-atom abstractions for m-HOC$_6$H$_4$CHO and o-HOC$_6$H$_4$CHO would predict formation of C$_5$H$_4$=C=O (m/z 92) for these isomers but this is not observed. However because only trace amounts of H-atoms are observed in the PIMS of Fig. 12, we believe that most of the observed H$_2$ is the result of electrocyclic processes in Scheme 6.

The only other report83 of H$_2$ formation by a concerted elimination is that of the pyrolysis of 1,4-cyclohexadiene at (500 K — 900 K) to hydrogen and benzene. Gas chromatographic detection of benzene was accomplished but the lost of H$_2$ had to be inferred. A reviewer has made the point that “significant amounts of H$_2$ from the pyrolysis of the salicylaldehyde, could trigger a phenomenon called dihydrogen catalysis.”84 Dihydrogen assisted
dehydrogenation of salicylaldehyde could form the m/z 120-product, similar to what occurs with tetralin and other compounds interacting with H₂ which significantly lowers the activation energy." The concerted loss of H₂ is an interesting process and warrants further detailed examination.

Early theoretical studies⁷⁰-⁷² of the pyrolysis of catechol predicted a concerted elimination of water to a singlet carbene. This is described in Scheme 6 and accounts for the formation of the observed fulveneketene, C₅H₄=C=O (m/z 92) from catechol but not resorcinol.

We return to the lignin structure itself in Scheme 1. Do these findings of the pyrolysis pathways for o-HOC₆H₄CHO and o-HOC₆H₄OH, or those of the lignin components in Scheme 2, provide any insight to the pyrolysis of lignin itself? We believe so. The weak bonds in Scheme 1 are the aryl ether linkages. Because of the aromatic stabilization of the phenoxy radical, the bond energy for anisole, C₆H₅O-CH₃, is 63 kcal mol⁻¹ (see footnote 63 in ref.³⁴). There are a large number of O-CH₃ bonds in all lignins. As the structure in Scheme 1 is heated, most of the peripheral –C₆H₄O-CH₃ bonds will rupture over a narrow temperature range to release CH₃ radicals.³⁷ At slightly lower temperatures the aryl ether linkages along the backbone of the lignin in Scheme 1 will disintegrate; such a breakage is shown in Scheme 7. Cleavage along the backbone at the dotted line (top of Scheme 7) will require roughly 60 kcal mol⁻¹ and generates a (phenoxy, alkyl) radical pair. The resulting alkyl radical (bottom of Scheme 7) is subject to β-scission to produce H-atom and a substituted styrene. The sister phenoxy radical
has two pathways. As observed earlier, phenoxy radicals decarboxylate rapidly to release cyclopentadienyl radicals that fragment to substituted cyclopentadienones and CH₃ radicals. A more interesting fate of the phenoxy radicals is that they may suffer a Mulcahy rearrangement to produce salicylaldehyde derivatives and H-atoms. The salicylaldehydes follow the pathway of Scheme 6 to substituted fulveneketenes and more H-atoms.

These conjectures predict that heating lignin samples to a threshold temperature will release a shower of CO, H-atoms and CH₃ radicals. The radicals, particularly the H-atoms, trigger chain reactions (see Scheme 4) that will trigger the wholesale destruction of the aromatic lignin polymer.

VI. Acknowledgements

We would like to acknowledge support from U.S. National Science Foundation (CHE-1112466) for TKO, GBE, and JWD. M.A., T.P.T and the experiments at the chemical dynamics beamline at the ALS were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231, through the Gas Phase Chemical Physics Program, Chemical Sciences Division. MRN and DJR are supported by United States Department of Energy’s Bioenergy Technology Office, under Contract No. DE-AC36-99GO10337 with the Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some of the experiments were carried out at the VUV beamline of the Swiss Light Source located at the
Paul Scherrer Institute, Villigen Switzerland. PH was supported by the Swiss Federal Office for Energy (BFE Contract Number SI/501269-01). Finally we note that for many decades our work has benefited from the leadership and companionship of Prof. Dr. Hanna Reisler and we thank her.
<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔH_{298}° / kJ mol$^{-1}$</th>
<th>ΔH_{298}° / kcal mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_6$H$_5$OH (phenol)</td>
<td>-96.4 ± 0.9</td>
<td>-23.0 ± 0.2</td>
</tr>
<tr>
<td>o-HO-C$_6$H$_4$-OH (catechol)</td>
<td>-267.5 ± 1.9</td>
<td>-63.9 ± 0.5</td>
</tr>
<tr>
<td>m-HO-C$_6$H$_4$-OH (resorcinol)</td>
<td>-274.7 ± 2.2</td>
<td>-65.7 ± 0.5</td>
</tr>
<tr>
<td>p-HO-C$_6$H$_4$-OH (hydroquinone)</td>
<td>-265.3 ± 2.3</td>
<td>-63.4 ± 0.5</td>
</tr>
<tr>
<td>o-HO-C$_6$H$_4$-CHO (salicylaldehyde)</td>
<td>-245.6 ± 2.2</td>
<td>-58.7 ± 0.5</td>
</tr>
<tr>
<td>m-HO-C$_6$H$_4$-CHO</td>
<td>-213.7 ± 0.6</td>
<td>-51.1 ± 0.1</td>
</tr>
<tr>
<td>p-HO-C$_6$H$_4$-CHO</td>
<td>-217.8 ± 0.4</td>
<td>-52.1 ± 0.1</td>
</tr>
<tr>
<td>D_0(C$_6$H$_5$O-H)</td>
<td>3.721 ± 0.004 eV</td>
<td>85.8 ± 0.1 kcal mol$^{-1}$</td>
</tr>
<tr>
<td>D_0(o-HOC$_6$H$_4$O-H)</td>
<td>\leq 3.407 ± 0.006 eV</td>
<td>78.6 ± 0.1 kcal mol$^{-1}$</td>
</tr>
<tr>
<td>IE(H)</td>
<td>13.59843449402 ± 0.00000000001 eV</td>
<td></td>
</tr>
<tr>
<td>IE(H$_2$)</td>
<td>15.42580277 ± 0.0000005 eV</td>
<td></td>
</tr>
<tr>
<td>IE(HD)</td>
<td>15.44452374 ± 0.0000004 eV</td>
<td></td>
</tr>
<tr>
<td>IE(C$_6$H$_5$OH)</td>
<td>8.508 ± 0.001 eV</td>
<td></td>
</tr>
<tr>
<td>IE(o-HOC$_6$H$_4$-OH)</td>
<td>8.6 ± 0.1 eV</td>
<td></td>
</tr>
<tr>
<td>IE(m-HOC$_6$H$_4$-OH)</td>
<td>8.6 ± 0.1 eV</td>
<td></td>
</tr>
<tr>
<td>IE(p-HOC$_6$H$_4$-OH)</td>
<td>8.4 ± 0.1 eV</td>
<td></td>
</tr>
<tr>
<td>IE(o-HO-C$_6$H$_4$-CHO)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>IE(m-HO-C$_6$H$_4$-CHO)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>IE(p-HO-C$_6$H$_4$-CHO)</td>
<td>9.32 ± 0.02 eV</td>
<td></td>
</tr>
<tr>
<td>IE(HC≡CH)</td>
<td>11.4006 ± 0.0002 eV</td>
<td></td>
</tr>
<tr>
<td>IE(CH$_2$=O)</td>
<td>10.8850 ± 0.0002 eV</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Energy (eV)</td>
<td>Error (eV)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>EA(C₆H₅O)</td>
<td>2.2538</td>
<td>± 0.0008</td>
</tr>
<tr>
<td>EA(o-HOC₆H₄O)</td>
<td>2.3292</td>
<td>± 0.0004</td>
</tr>
<tr>
<td>EA(m-HOC₆H₄O)</td>
<td>2.3292</td>
<td>± 0.0004</td>
</tr>
</tbody>
</table>
Scheme 1. Partial lignin structure from poplar trees; adapted from Vanholme et al.8
Scheme 2. Some common components associated with lignins.
Scheme 3. Application of the phenolic keto-enol tautomerism pathway25 to the thermal decomposition of salicylaldehyde.
Scheme 4. Possible H-atom chain reactions33 in the thermal decomposition of salicylaldehyde.

Scheme 5. Application of the phenolic keto-enol tautomerism25 in the thermal decomposition of catechol.
Scheme 6. Interaction of the functional groups in the thermal decomposition of both salicylaldehyde and catechol are predicted to generate fulveneketene, m/z 92.
Scheme 7. The initial steps conjectured for the pyrolysis of lignin in Scheme 1.
Fig. 1. The 118.2 nm (10.487 eV) spectrum of salicylaldehyde diluted (0.1 % or less) in He and pulsed through a 1 mm ID SiC reactor. The onset of pyrolysis identifies first m/z 92 (C₅H₄=C=O) and then 64 (HC≡C=C≡C-CH₃, HC≡CCH₂C≡CH, HC≡C-CH=C=CH₂) as the initial thermal decomposition products. Further heating generates signals at m/z 63 (HC≡C-CH=C≡CH₂ or HC≡C-CH-C≡CH), m/z 65 (C₆H₅), m/z 76 (o-C₆H₄) and m/z 94 (C₆H₅OH).
Fig. 2. The ALS synchrotron VUV (10.5 eV) PIMS spectra of salicylaldehyde diluted (0.1 % or less) in He with continuous flow through a 0.66 mm ID reactor. The initial thermal decomposition product at m/z 92 is C₅H₄=O at 1300 K, followed by m/z 64 (HC≡C≡C-CH₃, HC≡CCH₂C≡CH, HC≡C-CH=CH₂) at 1400 K. Further heating generates products at m/z 65 (C₆H₆) 76 (o-C₆H₄), and 94 (C₆H₅OH).
Fig. 3. The 118.2 nm (10.487 eV) PIMS resulting from heating a mixture of roughly 1 Torr \(m \)-hydroxybenzaldehyde in 2000 Torr He (0.05\%) in a pulsed, 1 mm ID SiC reactor. The onset of pyrolysis identifies first m/z 94 (\(C_6H_5OH \)), 66 (\(C_6H_6 \)), and m/z 39 (HCCCH\(_2\)) as the initial thermal decomposition products. No signals at m/z 92 (\(C_6H_4=C=O \)) are found.
Fig. 4 The resonance-enhanced multiphoton ionization (REMPI) spectrum of the cracking products of meta-hydroxybenzaldehyde. The top trace is a REMPI scan of the pyrolysis of m-HO-C₆H₄-CHO at 1400 K. These spectra record the presence of the C₆H₅OH⁺ ion at m/z 94 resulting from a (1 + 1) REMPI process. The laser scanned over the known¹⁰⁴⁻¹⁰⁶ phenol resonance, Ā 'A'' ("B₂) ← ×'A' ("A₁), corresponding to T₀(C₆H₅OH) = 275.1 nm or 36 348.9 cm⁻¹ (4.507 eV). The I\(E\) (C₆H₅OH) is reported⁹⁷ to be 8.508 ± 0.001 eV so absorption of a 2nd 275 nm photon leads to ionization. The top trace is a 0.3 to 0.4% m-HO-C₆H₄-CHO/He mixture heated in the pulsed reactor to 1400 K. The bottom trace is an authentic sample of phenol and expanded
through the micro-tubular reactor at room temperature. The (0,0) transition for C₆H₅OH is observed at 275.1 nm. Figs 1 and 2 show small amounts of phenol (m/z 94) at the high temperature pyrolysis of salicylaldehyde. The (1 + 1) REMPI (similar to Fig. 3) verify that this m/z 94 feature is C₆H₅OH.
Fig. 5. The thermal decomposition of catechol (m/z 110) diluted in He pulsed into a 1 mm ID SiC reactor shows m/z 82 (C₆H₅OH) and m/z 92 (C₅H₄=C=O) as the initial decomposition products. Further heating generates products at m/z 39 (HCCCH₂), m/z 50 (HC≡C-C≡CH), m/z 52 (HC≡C-CH=CH₂), m/z 54 (CH₂=CH-CH=CH₂), m/z 63 (HCC-CC-CH₂ or HCC-CH-CCH), m/z 64
(HC≡C≡C-CH₃, HC≡C-CH₂-C≡C-CH₃, or HC≡C-CH=CH≡CH₂), m/z 65 (C₅H₅), and m/z 80 (C₅H₄=O).
Fig. 6. The thermal decomposition of catechol-d$_4$ (m/z 114) diluted in He and pulsed into a 1 mm ID SiC reactor. Assignments are m/z 96 (C$_5$D$_4$=C=O), m/z 68 (DC≡C-C=CCD$_3$, DC≡C-CD$_2$-C=CCD or DC≡C-CD=C=CD$_2$), m/z 66 (DC≡C-C=CCD$_2$ or DC≡C-CD-C≡CD); m/z 58 is not easily assigned.
Fig. 7. The 118.2 nm (10.487 eV) PIMS resulting from heating a mixture of approximately 1 Torr resorcinol (an isomer of catechol) in 2000 Torr He (0.05%) in a pulsed, 1 mm ID SiC reactor. The onset of pyrolysis of \(m\)-HOC\(_6\)H\(_4\)OH at 1400 K identifies only products at m/z 66 (C\(_5\)H\(_6\)). No signals at m/z 92 (C\(_5\)H\(_4\)=C=O) are observed.
Fig. 8. The pulsed Ar matrix isolation IR spectrum of the thermal decomposition products of both salicylaldehyde and catechol show identical peaks in good agreement with IR bands arising from C₅H₄=C=O.
Fig. 9. The Ar matrix isolation IR spectrum of the thermal decomposition products of both salicylaldehyde and catechol show identical peaks arising from the vibrations of methyl diacetylene (HC≡C≡C-CH₃), propargyl radical (HCCCH₂), fulveneketene (C₅H₄=C=O), and acetylene (HCCH). The bullet in the right panel is a known⁴⁸ vibration (ν₁₅) of C₅H₄=O generated from the thermal decomposition of catechol.
Fig. 10. The Ar matrix isolation IR spectrum of the thermal decomposition products of catechol have includes the known\[^{48}\] IR bands (\(\nu_3\), \(\nu_{14}\), \(\nu_{15}\), \(\nu_{21}\)) of \(C_5H_4=O\). The bullet (\(\bullet\)) marks \(\nu_{26}(C_5H_4=C=O)\).
Fig. 11. Heating α-HOC$_6$H$_4$CHO to 1500 K leads to the production of both HC≡CH and CH$_2$O. The three Ar matrix IR spectra have a background spectrum of salicylaldehyde deposited at 300 K (thin black line). The solid black lines at the top are authentic samples of acetylene. An authentic sample of formaldehyde is plotted as a solid black line in the bottom IR spectrum. The red traces are the IR spectra that result when salicylaldehyde is subjected to pyrolysis at 1500 K. The presence of HCCH is identified107 by the presence of the ν_3 DDR resonance and ν_5. Formaldehyde is detected108 by the observation of the intense ν_2(CH$_2$=O). The PIMS scan in bottom right results from pyrolysis of α-HOC$_6$H$_4$CHO at 1500 K with the ALS synchrotron tuned to 11.5 eV. The ionization energies of acetylene
and formaldehyde are known to be 11.4 eV and 10.9 eV (see Table 1). Both
HC≡CH and CH₂=O are observed at m/z 26 and m/z 30.
Fig. 12. Left panels: The 15.5 eV PIMS spectra of a mixture of salicylaldehyde-d$_1$ (m/z 123) and salicylaldehyde-d$_0$ (m/z 122) diluted in He and passed through a 0.66 mm ID SiC are direct evidence of the functional group interaction mechanism shown in Scheme 6. Intense signal is observed at m/z 2 and 3 from
the elimination of H₂ and HD. There appears to be only a minute amount of H-atoms (m/z 1). The presence of m/z 95 is assigned to phenol-d₁ confirmed by PIE, and m/z 92 is due to C₅H₄=O. Trace amounts of m/z 94 (C₆H₅OH) and m/z 93 (¹³C isotope peak of m/z 92) were identified via PIE scans.
Fig. S1. The SLS synchrotron VUV (10.0 eV) PIMS spectrum of salicylaldehyde diluted (0.1 % or less) in Ar with continuous flow through a 1 mm ID SiC reactor shows signals at m/z 120 (assigned as the keto-carbonyl $\text{o-O} = \text{C}_6\text{H}_4 = \text{C}=\text{O}$) and 121 along with m/z 92 ($\text{C}_5\text{H}_4 = \text{C}=\text{O}$) and m/z 64 ($\text{HC} = \text{C} \equiv \text{C} = \text{C} - \text{CH}_3$ or $\text{HC} \equiv \text{C} - \text{CH} = \text{C} = \text{CH}_2$). Further heating generates signals at m/z 39 (HCCCH_2), 63 (C_5H_3), 65 (C_5H_5), 76 ($\text{o-C}_6\text{H}_4$), and 94 ($\text{C}_6\text{H}_5\text{OH}$).
References

(5) IPCC. 5th Assessment Report (AR5). 2010. The Intergovernmental Panel on Climate Change makes a compelling case for the extent of climate triggered by CO₂ emissions. Their most recent report is AR5 and can be found at the iPCC website: http://www.ipcc.ch/

catechol is derived from catechin + ol denoting a phenol. Catechin is a colorless, crystalline compound present in catechu, an Indian/Burmese tree. **Salicylaldehyde** is the aldehyde of salicyl alcohol which is obtained from the bark of the willow tree. The name is derived from Latin salix, salic — willow.

(52) Palmer, M. H.; Moyes, W.; Speirs, M.; Ridyard, J. N. A. Electronic-Structure of Substituted Benzenes - *ab Initio* Calculations and Photoelectron Spectra for Phenol, the Methyl-Derivatives and Fluoro-Derivatives, and the Dihydroxybenzenes. *J. Mol. Struct.* **1979**, *52*, 293-307. (See Fig. 4)

(63) See Supplementary Material Document No._______ for . The SLS synchrotron VUV (10.0 eV) PIMS spectrum of salicylaldehyde.

(80) The salicylaldehyde decomposition temperatures vary with the properties of different micro-reactors. This is because the hydrodynamic state of the gases is different in a pulsed reactor (Fig. 1) or the continuous reactors (Fig. 2 and
Fig. S1). The thermal conductivity of He is dramatically different than that of Ar. We have employed four different reactors in this study; Fig. 1 is a pulsed, He reactor, Fig. 2 is a continuous He reactor, Fig. S1 is a continuous Ar reactor, and all the IR spectra result from pyrolysis in a pulsed Ar reactor. The IR spectra and PIMS in Figs. 1 and S1 are produced by a 1 mm i.d. SiC reactor; the PIMS in Fig. 2 uses a 0.66 mm i.d. SiC reactor. The proper modeling of these 4 different reactors will require the techniques of Guan, et al. (ref. 47) and is beyond the scope of this paper.

(107) Of the 5 modes of HC≡CH, only the asymmetric CH stretch, $\sigma_u \nu_3$, and the asymmetric HCCH bend, $\pi_u \nu_5$, are IR active. In the gas-phase ν_3 HCCH is observed at 3294.9 cm$^{-1}$ and 3281.9 cm$^{-1}$ and is split by a Darling-Dennison resonance (DDR) of 13 cm$^{-1}$. In an Ar matrix, ν_3 shifts to 3302 cm$^{-1}$ and 3288 cm$^{-1}$; the DDR is 14 cm$^{-1}$ in the cryogenic matrix. The gas phase value for ν_5 is 730.3 cm$^{-1}$ and shifts to 736.8 cm$^{-1}$ in an Ar matrix.

(108) The 6 modes of formaldehyde as observed in an Ar matrix are: ν_1 (a_1, CH$_2$ sym st) = 2798 cm$^{-1}$, ν_2 (a_1, CO st) = 1742 cm$^{-1}$, ν_3 (a_1, CH$_2$ scis) = 1499 cm$^{-1}$, ν_4 (b_1, CH$_2$ umbrella) = 1169 cm$^{-1}$, ν_5 (b_2, CH$_2$ a-st) = 2864 cm$^{-1}$, ν_6 (b_2, CH$_2$ rock) = 1245 cm$^{-1}$.