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Multidimensional characterization of stochastic dynamical systems based
on multiple perturbations and measurements
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(Received 1 February 2015; accepted 1 April 2015; published online 22 April 2015)

Generalized nonlinear response theory is presented for stochastic dynamical systems. Experiments
in which multiple measurements of dynamical quantities are used along with multiple perturba-
tions of parameters of dynamical systems are described by generalized response functions (GRFs).
These constitute a new type of multidimensional measures of stochastic dynamics either in the
time or the frequency domains. Closed expressions for GRFs in stochastic dynamical systems are
derived and compared with numerical non-equilibrium simulations. Several types of perturbations
are considered: impulsive and periodic perturbations of temperature and impulsive perturbations of
coordinates. The present approach can be used to study various types of stochastic processes ranging
from single-molecule conformational dynamics to chemical kinetics of finite-size reactors such as
biocells. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917527]

I. INTRODUCTION

Multidimensional spectroscopic techniques span a broad
range of frequencies from NMR to the UV and use numerous
types of pulse sequences and detection modes.1 They all
share one common thread: the molecule is excited by several
pulses followed by a single detection event. nD techniques
involve n perturbations followed by a single detection event
and are represented by causal response functions. Thinking
more broadly, one can envision other types of signals that
involve n perturbations and m measurements. These measure
both response and spontaneous fluctuations and are not causal.
In the linear regime, there are two possible signals (excitation
followed by measurement or two measurements) but they are
connected by the fluctuation dissipation (FD)2–4 relation and
carry the same information.5 This is not the case for the
nonlinear response since there is no universal FD theorem.
The basic ideas are not limited to optical pulses and hold
for any type of perturbation (electrical, mechanical, chemical
concentrations, etc.) In this paper, we discuss several examples
of such new types of multidimensional signals.

The idea of using multiple perturbations and measure-
ments has been discussed previously. Reference 6 considered
generalized response functions (GRFs) corresponding to a
series of perturbations of open quantum system followed
by a number of measurements. That formalism allowed
the calculation of van der Waals forces between molecules
subject to time-dependent coupling. GRFs corresponding to
impulsive perturbations of spin systems were considered in
Ref. 7 and used the derived generalized multi-point correlation
functions to study stochastic dynamics of disordered spin
models. The idea of mixing multiple perturbations with
measurements was extended in Ref. 8, to arbitrary type of
time-dependent perturbation, and applied to examine classical
dynamics of nonlinear Hamiltonian systems. That formalism

a)Electronic address: mkryvohu@uci.edu

was further extended to non-Hamiltonian systems, such as
chemical reactions, and was used to study nonlinear kinetics
and connectivity of species in chemical systems.9

In the present paper, we introduce a generalized response
theory of stochastic dynamical systems. The formalism is
based on a perturbative expansion of the Fokker-Planck
equation around steady state. The Fokker-Planck approach
can be used for equilibrium10 as well as non-equilibrium11

systems; thus, the developed formalism is applicable to
systems in thermal equilibrium as well as in non-equilibrium
steady-state.

The paper is organized as follows. Expressions for non-
linear response functions of a general stochastic process
are derived in Secs. II and III. Section IV considers the
special case of impulsive perturbations. The concept of GRF
is introduced in Sec. V. Section VI introduces generalized
susceptibilities for a harmonic perturbation. GRFs of exactly
solvable Ornstein-Uhlenbeck process (OUP) are calculated in
Sec. VII and compared with analytical expressions. 2D GRFs
corresponding to perturbations of temperature in bistable
and nonlinear stochastic systems at thermal equilibrium are
calculated in Sec. VIII, and the quantitative information
contained in GRFs is analyzed. GRFs of a stochastic chemical
network are calculated in Sec. IX and explored for signatures
of chemical connectivity. We conclude with a discussion in
Sec. X.

II. THE FOKKER-PLANCK EQUATION

A general time-dependent stochastic process in
N-dimensions, x(t), can be described either by stochastic
differential equations or, equivalently, its time-dependent
probability density W (x, t) which satisfies a Fokker-Planck
equation10

∂W (x, t)
∂t

= L̂(x, t)W (x, t), (1)

0021-9606/2015/142(21)/212430/13/$30.00 142, 212430-1 © 2015 AIP Publishing LLC

http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
http://dx.doi.org/10.1063/1.4917527
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
mailto:mkryvohu@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4917527&domain=pdf&date_stamp=2015-04-22


212430-2 M. Kryvohuz and S. Mukamel J. Chem. Phys. 142, 212430 (2015)

where L̂(x, t) is the Fokker-Planck operator,

L̂(x, t) = − ∂

∂xi
Di(x, t) + ∂2

∂xi∂x j
Di j(x, t), (2)

where Di(x, t) is a vector of drift coefficients and Di j(x, t) is a
matrix of diffusion coefficients.

Since the conditional probability P(x, t |x′, t ′) is the
probability distribution W (x, t) for particular initial condition
W (x,0) = δ(x − x′), then it should also obey Eq. (1),

∂P(x, t |x′, t ′)
∂t

= L̂(x, t)P(x, t |x′, t ′). (3)

A formal solution of Eq. (3) with the initial conditions
P(x, t |x′, t) = δ(x − x′) then reads10

P(x, t |x′, t ′) = T+ exp
 t

t′
L̂(x, τ)dτ


δ(x − x′), (4)

where T+ is the time ordering operation, which orders time
to increase from right to left in the products of L̂(x, τ) of
Taylor-expansion of the exponential.

As can be seen from Eqs. (3) and (4), the differential
operator L̂(x, t) acts on x, which is the value of the stochastic
variable at a later time t, rather than on x′ at earlier time t ′. This
representation is therefore known as the forward Kramers-
Moyal expansion. In a similar way, it is possible to derive
a backward representation of Eq. (3), with the operator L̂+

acting on x′ rather than x,

∂P(x, t |x′, t ′)
∂t

= L̂+(x′, t ′)P(x, t |x′, t ′). (5)

It has been shown10 that L̂+ is actually the adjoint of the
Fokker-Planck operator L̂ and has the following form:

L̂+(x′, t ′) = −Di(x′, t ′) ∂
∂x ′i
+ Di j(x′, t ′) ∂2

∂x ′i∂x ′j
. (6)

The solution of Eq. (6) will then be formally similar to Eq. (4),

P(x, t |x′, t ′) = T− exp
 t

t′
L̂+(x′, τ′)dτ′


δ(x − x′), (7)

the difference is that the time ordering T− is now reversed and
that the operator L̂+ acts on x′ instead of x. Dual representation
(4) and (7) of the same quantity P(x, t |x′, t ′) will be useful in
the following derivations since it allows to switch between the
old and new variables x′ and x.

It is also useful to define the propagators Û(x, t; t ′) and
Û+(x ′, t; t ′),

Û(x; t, t ′) = T+ exp
 t

t′
L̂(x, τ)dτ


, (8)

Û+(x′; t, t ′) = T− exp
 t

t′
L̂+(x′, τ′)dτ′


. (9)

The operator Û+ is the adjoint of Û.10 Yet, one should keep in
mind that unlike ordinary quantum or classical dynamics, the
operator Û is non-Hermitian and thus Û+ , Û.

Equations (4) and (7) can be recast in terms of these
propagators as

P(x, t |x′, t ′) = Û(x; t, t ′)δ(x − x′), (10)

P(x, t |x′, t ′) = Û+(x′; t, t ′)δ(x − x′). (11)

If we measure a dynamical variable A, we can calculate the
outcome either by propagating P forward with Û or by propa-
gating A backward with Û+. So, physically we are moving
forward in either case, but calculate a different intermediate
object.

A. Properties of the operator Û

The operator Û(x; t, t ′) satisfies the following property:

Û(x; t3, t1) = Û(x; t3, t2)Û(x; t2, t1). (12)

Indeed, since
P(x3, t3|x2, t2)P(x2, t2|x1, t1)dx2 = P(x3, t3|x1, t1), (13)

then, substituting Eqs. (10) and (11) into Eq. (13), one gets �
Û(x3; t3, t2)δ(x3 − x2)� �Û+(x1; t2, t1)δ(x2 − x1)� dx2

= Û(x3; t3, t1)δ(x3 − x1). (14)

Since in Eq. (14) Û(x3; t3, t2) acts only on x3 and Û+(x1; t2, t1)
acts only on x1, one can rearrange the order of operators,

Û(x3; t3, t2)

Û+(x1; t2, t1)


δ(x3 − x2)δ(x2 − x1)dx2

 

= Û(x3; t3, t1)δ(x3 − x1), (15)

which reduces to

Û(x3; t3, t2) �Û+(x1; t2, t1)δ(x3 − x1)� = Û(x3; t3, t1)δ(x3 − x1).
(16)

From Eqs. (10) and (11), we know that Eq. (16) is equivalent
to the following expression:

Û(x3; t3, t2) �Û(x3; t2, t1)δ(x3 − x1)� = Û(x3; t3, t1)δ(x3 − x1),
(17)

which proves Eq. (12).
By plugging Eq. (10) into Eq. (3), we find that the operator

Û(x; t, t ′) satisfies the following differential equation:

∂Û(x; t, t ′)
∂t

= L̂(x, t)Û(x; t, t ′). (18)

For further discussion, we also define an inverse operator
Û−1(x; t, t ′),

1 ≡ Û−1(x; t2, t1)Û(x; t2, t1), (19)

which stands for the backward propagator. Explicit form of
the inverse operator Û−1 is not needed for our purposes,
yet it can be found as a Taylor expansion of the operator
1/Û = 1/(1 +  L̂dτ + · · ·). Clearly, the operators Û−1 and Û
commute, i.e., Û−1Û = ÛÛ−1.

III. PERTURBATION IN THE INTERACTION PICTURE

Consider a stochastic process described with a Fokker-
Planck operator L̂0(x, t). We now impose a perturbation
δL̂(x, t) on our stochastic process (small, time-dependent
perturbation of control parameter, such as, for instance,
variations of external temperature, or perturbation of kinetic
rate coefficients), setting
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L̂(x, t) = L̂0(x, t) + δL̂(x, t). (20)

We wish to represent time evolution of the probability density
of perturbed stochastic process in terms of the unperturbed
operator L̂0(x, t) and the perturbation operator δL̂(x, t). To that
end, we introduce interaction operator ÛI defined as

Û(x; t, t ′) ≡ Û0(x; t, t ′)ÛI(x; t, t ′), (21)

where Û0 describes unperturbed stochastic process,

Û0(x; t, t ′) = T+ exp
 t

t′
L̂0(x, τ)dτ


. (22)

Substituting Eqs. (20) and (21) into Eq. (18), we obtain(
∂Û0(x; t, t ′)

∂t

)
ÛI(x; t, t ′) + Û0(x; t, t ′)

(
∂ÛI(x; t, t ′)

∂t

)
=
�
L̂0(x, t) + δL̂(x, t)� Û0(x; t, t ′)ÛI(x; t, t ′). (23)

Since Û0 satisfies Eq. (18) for the unperturbed stochastic
process, the first terms on each side of Eq. (23) cancel out,
leading to

Û0(x; t, t ′)∂ÛI(x; t, t ′)
∂t

= δL̂(x, t)Û0(x; t, t ′)ÛI(x; t, t ′), (24)

which can be rewritten as

∂ÛI(x; t, t ′)
∂t

= Û−1
0 (x; t, t ′)δL̂(x, t)Û0(x; t, t ′)ÛI(x; t, t ′), (25)

using the inverse operator Û−1 defined in Eq. (19). Equation
(25) can be solved recursively for ÛI in exactly the same way
as Eq. (4). Introducing compact notation

δL̂ I(x; t, t ′) ≡ Û−1
0 (x; t, t ′)δL̂(x, t)Û0(x; t, t ′), (26)

which stands for the representation of operator δL̂(x, t) in the
interaction picture, the solution of Eq. (25) takes the following
form:

ÛI(x; t, t ′) = 1 +
 t

t′
L̂ I(x; τ, t ′)dτ

+

 t

t′
dτ2

 τ2

t′
dτ1L̂ I(x; τ2, t ′)L̂ I(x; τ1, t ′) + · · ·.

(27)

The final step is to plug Eq. (27) back to Eq. (21), which
provides the desired expansion of the perturbed operator Û
in terms of the unperturbed operator Û0 and perturbation δL̂.
Substituting Eqs. (27) and (26) into Eq. (21), we obtain

Û(x; t, t ′) = Û0(x; t, t ′) +
 t

t′
Û0(x; t, t ′)Û−1

0 (x; τ, t ′)δL̂(x, τ)Û0(x; τ, t ′)dτ

+

 t

t′
dτ2

 τ2

t′
dτ1Û0(x; t, t ′)Û−1

0 (x; τ2, t ′)δL̂(x, τ2)Û0(x; τ2, t ′)Û−1
0 (x; τ1, t ′)δL̂(x, τ1)Û0(x; τ1, t ′) + · · ·. (28)

Using the properties of the operator Û, given by Eqs. (12) and (19), one can further simplify Eq. (28),

Û(x; t, t ′) = Û0(x; t, t ′) +
 t

t′
Û0(x; t, τ)δL̂(x, τ)Û0(x; τ, t ′)dτ

+

 t

t′
dτ2

 τ2

t′
dτ1Û0(x; t, τ2)δL̂(x, τ2)Û0(x; τ2, τ1)δL̂(x, τ1)Û0(x; τ1, t ′) + · · ·. (29)

Equation (29) can be written in the final compact form

Û(x; t, t ′) = Û0(x; t, t ′) +
∞
n=1

 t

t′
dτn

 τn

t′
dτn−1 . . .

 τ2

t′
dτ1

× Û0(x; t, τn)δL̂(x, τn)Û0(x; τn, τn−1)
× δL̂(x, τn−1) . . . Û0(x; τ1, t ′). (30)

IV. RESPONSE TO IMPULSIVE PERTURBATIONS

We wish to express the system’s response to external
perturbations. First, we consider the linear response of
a stochastic process x(t) described by the Fokker-Planck
operator L̂0(x, t) and which, at time t = 0, is prepared in a
steady state characterized by distribution function ρss(x). One
can consider an experiment, in which the above stochastic
system is subjected to a small perturbation at time t1: δL̂(x, t)
= ϵV̂ (x, t)δ(t − t1) (where ϵ ≪ 1 and operator V̂ (x, t) depends
on the problem of interest), and the value of some observable

f (x), which is a function of stochastic variable x, is then
measured at a later time t2. If such perturbation, measurement
process is repeated several times, one can calculate the value
of f (x(t2)) averaged over several realizations of the perturbed
stochastic trajectories. The average value ⟨ f (x(t2))⟩ reads

⟨ f (x(t2))⟩ =


dx2


dx1 f (x2)P(x2, t2|x1,0)ρss(x1), (31)

where P(x2, t2|x1,0) is the perturbed transition probability.
Substituting Eq. (10) into Eq. (31) results in

⟨ f (x(t2))⟩ =


dx2


dx1 f (x2)

×
�
Û(x2; t2,0)δ(x2 − x1)� ρss(x1)

=


f (x2)Û(x2; t2,0)ρss(x2)dx2. (32)

By inserting Eq. (30) into Eq. (32), we then express the
perturbed operator Û in Eq. (32) using the properties of the
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unperturbed stochastic process,

⟨ f (x(t2))⟩ = ⟨ f (x(t2))⟩0 + ϵ


f (x2)Û0(x2; t2, t1)

× V̂ (x2, t1)ρss(x2)dx2 +O(ϵ2), (33)

where we have used steady-state property Û0(x2; t1,0)ρss(x2)
= ρss(x2).

We next define the impulsive linear response function

R(1)(t) = ∂

∂ϵ
⟨ f (x(t))⟩|ϵ=0, (34)

and making use of Eq. (33), we obtain

R(1)(t) =


f (x)Û0(x; t,0)V̂ (x,0)ρss(x)dx

≡



f (x)Û0(t,0)V̂ (0)�0, (35)

where we have defined the average of operator over unper-
turbed trajectories



Â
�

0 ≡


Â(x)ρss(x)dx and for brevity
omitted x in the arguments of the operators Û0 and V̂ .

In a similar way, one can calculate the non-linear
response functions of a stochastic process. The non-linear
response function can be defined as the second derivative
of response with respect to the perturbation. In case of
impulsive perturbations, the second order term in δL̂ in
Eq. (30) survives only if we perturb the stochastic process
twice (since impulsive perturbation cannot interact with
itself and thus time-ordered integrals τn > τn−1 > · · · > τ1
vanish). We thus consider an experiment with two impulsive
perturbations: δL̂(x, t) = ϵ1V̂ (x, t)δ(t − t1) + ϵ2V̂ (x, t)δ(t − t2),
t2 > t1. By substituting the latter into Eq. (30), we obtain the
perturbative expansion of the operator Û,

Û(x; t, t ′) = Û0(x; t, t ′) + ϵ1Û0(x; t, t1)V̂ (x, t1)Û0(x; t1, t ′)
+ ϵ2Û0(x; t, t2)V̂ (x, t2)Û0(x; t2, t ′)
+ ϵ1ϵ2Û0(x; t, t2)V̂ (x, t2)Û0(x; t2, t1)
× V̂ (x, t1)Û0(x; t1, t ′) + · · ·. (36)

Defining the second-order response function as

R(2)(t − t2, t2 − t1) = ∂2

∂ϵ1∂ϵ2
⟨ f (x(t))⟩|ϵ1=ϵ2=0, (37)

and substituting Eq. (36) into Eq. (32), we obtain the compact
final expression

R(2)(τ2, τ1) =


f (x)Û0(x; t, t2)V̂ (x, t2)Û0(x; t2, t1)
× V̂ (x, t1)Û0(x; t1,0)ρss(x)dx
≡



f (x)Û0(t, t2)V̂ (t2)Û0(t2, t1)V̂ (t1)�0, (38)

where τ2 = t − t2 and τ1 = t2 − t1.
Expressions (35) and (38) are very similar to the response

functions in classical or quantum dynamics and have a clear
physical meaning. For instance, from Eq. (38), it follows that
the second-order response function is an average of the product
of operators which act in the following sequence: perturbation
operator V̂ at time t1, evolution operator Û0 from time t1 to
time t2, perturbation operator V̂ at time t2, evolution operator
Û0 from time t2 to time t, and a measurement of x at time
t. The perturbation operator V̂ is known and often can be

controlled externally, while the evolution operator Û0 depends
entirely on the unperturbed Fokker-Planck operator L̂0, and
therefore, various (measurable) correlation functions which
contain different occurrences of Û0 operators should contain
valuable information on the dynamics of the unperturbed
stochastic process governed by the Fokker-Planck operator
L̂0. The linear and second-order response functions, given by
Eqs. (35) and (38), respectively, thus serve as time-dependent
experimentally accessible measures of the unperturbed sto-
chastic process x(t).

In the same way, one can obtain the nth order nonlinear
response functions which represents experiments with n
impulsive perturbations δL̂(x, t) = n

j=1 ϵ jV̂ (x, t)δ(t − t j),

R(n)(τn, τn−1, . . . , τ1) = 

f (x)Û0(t, tn)V̂ (tn)
× Û0(tn, tn−1) . . . V̂ (t1)�0, (39)

where τj = t − t j for j = n and τj = t j+1 − t j for
j = n − 1, . . . ,1.

V. GENERALIZED RESPONSE FUNCTIONS

In Sec. IV, we have derived expressions for nonlinear
response functions, which can serve as multi-dimensional
(i.e., multi-time) measures of the stochastic process x(t). These
measures correspond to the standard protocol involving n
perturbations followed by a single measurement. We now
generalize these experiments to include m perturbations and
k measurements. Consider, for instance, an experiment, in
which we measure the value of an observable f (x) at time t1,
then perturb our stochastic system with δL = ϵV̂ (x, t)δ(t − t2)
at time t2, and finally measure the value of observable
g(x) at time t3. Having the values f (x(t1)) and g(x(t3)) of
the stochastic variable x, one can construct the correlation
function ⟨g(x(t3)) f (x(t1))⟩, in which the average is taken
over various stochastic realizations of the same perturbation
protocol (i.e., measurement at t1, perturbation at t2, and another
measurement at t3). This correlation function should depend
on the type of perturbation and the time t2 of the perturbation.
Such an experiment should thus provide non-vanishing (two-
dimensional) quantities

R+−+(t3 − t2, t2 − t1) ≡ ∂

∂ϵ
⟨g(x(t3)) f (x(t1))⟩|ϵ=0. (40)

The “+” index denotes measurement and “−” denotes pertur-
bation. We shall now calculate the new measure R+−+. The
correlation function ⟨g(x(t3)) f (x(t1))⟩ reads

⟨g(x(t3)) f (x(t1))⟩

=


dx3dx1g(x3)P(x3, t3|x1, t1) f (x1)ρss(x1)

=


dx3dx1g(x3) �Û(x3; t3, t1)δ(x3 − x1)� f (x1)ρss(x1)

=


dx3g(x3) �Û(x3; t3, t1) f (x3)ρss(x3)� . (41)

Substituting Eq. (29) into Eq. (41), we get
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⟨g(x(t3)) f (x(t1))⟩ = ⟨g(x(t3)) f (x(t1))⟩0

+ ϵ


dxg(x)Û0(x; t3, t2)V̂ (x, t2)

× Û0(x; t2, t1) f (x)ρss(x) +O(ϵ2). (42)

Inserting Eq. (42) into Eq. (40), we finally obtain

R+−+(t3 − t2, t2 − t1) =


dxg(x)Û0(x; t3, t2)V̂ (x, t2)
× Û0(x; t2, t1) f (x)ρss(x)
=


g(x)Û0(t3, t2)V̂ (t2)Û0(t2, t1) f (x)�0.

(43)

Equation (43) contains the following sequence of operations:
measurement of f (x) at time t1, time evolution Û0(t2, t1) of
unperturbed stochastic system from t1 to t2, perturbation V̂ at
t2, time evolution of Û0(t3, t2) of unperturbed stochastic system
from t2 to t3, and a measurement g(x) at t3. This is a completely
new (experimentally accessible) correlation function, which
depends on two time intervals t3 − t2 and t2 − t1, and thus
should carry additional information about the unperturbed
stochastic process.

In a similar way, we can consider various experiments
with k perturbations and m = n − k − 1 measurements which
are described by a new class of multidimensional measures,

R{+· · ·+,−···−}(τn, . . . , τ1)
=

∂k

∂ϵ1 . . . ∂ϵk
⟨ fm(x(tm)) . . . f1(x(t1))⟩|ϵi=0, (44)

in which {+ · · ·+,− · · · −} denote various permutations of m
“+” (measurements) and k “−” (perturbations). Note that the
leftmost symbol being always “+” due to causality. We call
these new quantities GRFs.8,9 GRFs simply extend the class
of correlation and response functions. For instance, in the
notation of Eq. (44), an ordinary two-time correlation function
corresponds to R++, while the second-order nonlinear response
function corresponds to R+−−.

The GRF expression has a simple form and is a correlation
function of appropriate ordering of measurements f (x) and
perturbations V̂ with time evolution operators Û0(t j, t j−1) in
between. It is also useful to recast the expressions for GRFs
using Eq. (10) in terms of unperturbed transition probabilities
P0(x, t |x′, t ′). We demonstrate this for two-dimensional GRFs:

(a) 3-point correlation function

R+++(τ2, τ1) =


dx1dx2dx3

× f3(x3)P0(x3, τ2 + τ1|x2, τ1) f2(x2)
× P0(x2, τ1|x1,0) f1(x1).ρss(x1), (45)

(b) second-order response function

R+−−(τ2, τ1) =


dx1dx2dx3

× f3(x3)P0(x3, τ2 + τ1|x2, τ1)V̂ (x2)
× P0(x2, τ1|x1,0)V̂ (x1)ρss(x1), (46)

(c) GRF corresponding to 1 perturbation followed by 2
measurements,

R++−(τ2, τ1) =


dx1dx2dx3

× f3(x3)P0(x3, τ2 + τ1|x2, τ1) f2(x2)
× P0(x2, τ1|x1,0)V̂ (x1)ρss(x1), (47)

(d) GRF corresponding to a measurement followed by 1
perturbation and then 1 measurement,

R+−+(τ2, τ1) =


dx1dx2dx3

× f3(x3)P0(x3, τ2 + τ1|x2, τ1)V̂ (x2)
× P0(x2, τ1|x1,0) f1(x1)ρss(x1). (48)

In (45)–(48), V̂ (x) is perturbation operator specific to the
type of perturbation used to disturb the stochastic system.
Examples will be given in Secs. VII–IX.

VI. RESPONSE TO PERIODIC PERTURBATIONS;
FREQUENCY-DOMAIN SIGNALS

Periodic perturbations are an alternative to impulsive
perturbations that can be imposed on a stochastic system12

via an oscillatory variation of one of its parameters, such as
temperature, see also Sec. VII B. Rather than varying time-
ordered interactions, we now scan frequencies with no control
over time ordering.

We consider the perturbed Fokker-Planck operator
L̂(x, t) = L̂0(x, t) + δL̂(x, t), where

δL̂(x, t) = 1
2π


n=1

ϵne−ıωntV̂ (x). (49)

We first consider the linear response, n = 1. By substitut-
ing Eq. (49) into Eq. (30) and then into Eq. (32), we obtain
the mean of observable f (x(t)),

⟨ f (x(t))⟩ = ⟨ f (x(t))⟩0 +
ϵ1

2π

 t

0
dτ


f (x)Û0(x; t, τ)

× V̂ (x)e−ıω1τρss(x)dx. (50)

In case of a time-independent Fokker-Planck operator L0(x),
the operator Û0(x; t2, t1) = Û0(x; t2 − t1) solely depends on the
time difference t2 − t1, so that this leads to a simple form of
the Fourier transform of Eq. (50),f (ω) = f (ω)

0
+ ϵ1



f (x)Û0(x;ω)V̂ (x)� δ(ω − ω1). (51)

The coefficient in front of the delta-function in Eq. (51), which
we denote the susceptibility χ(1)(ω), is simply given by the
Fourier transform of the time-domain linear response function
in Eq. (35),

χ
(1)(ω) = R(1)(ω). (52)

From Eq. (51), one sees that the susceptibility can be measured
as the spectral amplitude of the derivative ∂

f (ω) /∂ϵ1 at
frequency ω1, i.e.,

χ
(1)(ω1) = ∂

∂ϵ1

 ω1+∆ω

ω1−∆ω

f (ω)���ϵ1=0
dω. (53)

In case of the second-order response, n = 2, one considers
two simultaneous perturbations with two different frequencies
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δL̂(x, t) = [ϵ1e−ıω1tV̂ (x) + ϵ2e−ıω2tV̂ (x)]/2π. Again, substitut-
ing it to Eq. (30), we obtain

∂2

∂ϵ1∂ϵ2

f (ω) = δ(ω1 + ω2 − ω)
×
�


f (x)Û0(x;ω1 + ω2)V̂ (x)Û0(x;ω1)V̂ (x)�
+



f (x)Û0(x;ω1 + ω2)V̂ (x)Û0(x;ω2)V̂ (x)�� .
(54)

The second-order susceptibility can then be defined as

χ
(2)(ω2,ω1)
=

1
2


p



f (x)Û0(x;ω1 + ω2)V̂ (x)Û0(x;ω1)V̂ (x)� , (55)

where the summation p is over the two permutations of
frequencies ω1 and ω2.

The higher-order nonlinear susceptibilities can be ob-
tained similarly,

χ
(n)(ωn,ωn−1, . . . ,ω1) = 1

p


p



f (x)Û0(x;ωn + ωn−1

+ · · · + ω1)V̂ . . . (x)Û0(x;ω1)V̂ (x)⟩. (56)

In analogy to Sec. V, one can also extend the class
of nonlinear susceptibilities χ(m,k) to a general class of
experiments in which a stochastic system is perturbed on
k frequencies ω′1, . . . , ω′

k
, and m-point correlation function

⟨ f1(ω1) . . . fm(ωm)⟩ is measured as a response to these
perturbations,

fm(ωm) . . . f1(ω1)

=

fm(ωm) . . . f1(ω1)


0
+


n


dω′1 . . .


dω′kδ(ω1 + · · · + ωm − ω′1 − · · · − ω

′
k)

× χ(m,k)(ω1, . . . ,ωm,ω
′
1, . . . ,ω

′
k)F̃(ω′1) . . . F̃(ω′k). (57)

It follows from Eq. (57) that the m + k frequencies ω′i,ω j

are constrained via a delta-function, such that only m + k − 1
of them are independent. We therefore omit one frequency
ωm from the arguments of χ(m,k) and consider (k + m − 1)-th
order generalized susceptibility as a function of k + m − 1
frequencies χ(m,k)(ωm, . . . ,ω2,ω

′
k
, . . . ,ω′1).

The generalized nonlinear susceptibility can be expressed
as a linear combination of Fourier transforms of the nth
order (n = k + m − 1) GRFs R+· · ·,−··· of Sec. V. Below, we
present the frequency-domain versions of Eqs. (45)–(48),
i.e., generalized 2D susceptibilities corresponding to various
combinations of three perturbations and measurements:

(a) 3-point correlation function

χ
(3,0)(ω2,ω1) = 1

2


p


dx1dx2dx3

× f3(x3)P0(x3,ω2|x2) f2(x2)
× P0(x2,ω2 + ω1|x1) f1(x1)ρss(x1), (58)

(b) second-order susceptibility for periodic perturbations on
frequencies ω′1 and ω′2,

χ
(1,2)(ω′2,ω′1) =

1
2


p


dx1dx2dx3

× f3(x3)P0(x3,ω
′
2 + ω

′
1|x2)V̂ (x2)

× P0(x2,ω
′
1|x1)V̂ (x1)ρss(x1), (59)

(c) generalized susceptibility corresponding to perturbation
on one frequency ω′1 and measurements on 2 frequencies

ω1 and ω2 such that ω′1 = ω1 + ω2,

χ
(2,1)(ω2,ω1) = 1

2


p


dx1dx2dx3 (60)

×


f3(x3)P0(x3,ω2|x2) f2(x2)P0(x2,ω2 + ω1|x1)
× V̂ (x1)ρss(x1) + f3(x3)P0(x3,ω2|x2)
× V̂ (x2)P0(x2,−ω1|x1) f1(x1)ρss(x1)


. (61)

Note that while in the time domain we had 4 two-time
GRFs (Eqs. (45) and (46)), in the frequency domain we
have only 3 two-frequency generalized susceptibilities (Eqs.
(58)–(60)). This is because we are losing time ordering when
switching to the frequency domain, i.e., in the frequency
domain, there is no difference between the + + − and + − +
techniques since all processes involving of 1 perturbation and
2 measurements are occurring simultaneously.

VII. EXAMPLE 1: THE ORNSTEIN-UHLENBECK
PROCESS

The OUP represents stochastic diffusion in a harmonic
potential. It is frequently used as a simplified model of
diffusion in external force fields, since it can be solved
analytically. Its dynamics is governed by the stochastic
Langevin equation

dx
dt
= −k x +

√
Dξ(t), (62)
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where ξ(t) is a delta-correlated noise ⟨ξ(t)ξ(s)⟩ = δ(t − s). The
corresponding Fokker-Planck equation reads13

∂

∂t
ρ(x, t) = ∂

∂x
(k xρ(x, t)) + D

2
∂2

∂x2 ρ(x, t), (63)

with the Fokker-Planck operator

L̂0(x) = ∂

∂x
k x +

D
2
∂2

∂x2 . (64)

The transition probability of this model reads10

P0(x, t |x ′, t ′) =


k
πD

�
1 − e−2k(t−t′)�

× exp

− k(x − e−k(t−t′)x ′)2

D
�
1 − e−2k(t−t′)�


, (65)

which in the long time t − t ′ → ∞ limit leads to the stationary
distribution

ρs(x) =


k
πD

exp(−k x2/D). (66)

A. Impulsive perturbation of the coordinate

We now subject the OUP to some external perturbation
and examine its response. We consider perturbation in a form
of sudden displacement of the coordinate x by small ϵ at
time t1. This perturbation can be described by an additional
δ-function term in stochastic differential equation (62),

dx
dt
= −k x +

√
Dξ(t) + ϵδ(t − t1). (67)

Indeed, if we integrate both parts of equation (67) in the
vicinity of t1, we get

x(t1 + ∆t) − x(t1) = −k x(t1)∆t +
√

D∆W + ϵ

= ϵ, ∆t → 0, (68)

where
 t1+∆t/2
t1−∆t/2 ξ(t)dt = ∆W ∼

√
∆t → 0 for∆t → 0. This also

implies that in discrete stochastic simulations of Eq. (68), one
needs to take such intermediate mesoscopic23 values of ϵ so
that ϵ is small compared to the macroscopic variation of x and
at the same time ϵ ≫

√
D∆t.

The Fokker-Planck equation with the perturbation in
Eq. (68) reads

∂

∂t
ρ(x, t) = ∂

∂x
(k xρ(x, t)) + D

2
∂2

∂x2 ρ(x, t)

− ϵδ(t − t1) ∂
∂x

ρ. (69)

This implies that the perturbation operator is

δL̂(x, t) = −ϵδ(t − t1) ∂
∂x

. (70)

Correspondingly, the infinitesimal perturbation operator V̂ (x)
(defined in the beginning of section V as δL̂ = ϵV̂ (x)δ(t − t1))

appearing in Eqs. (45)–(48) reads

V̂ (x) = − ∂

∂x
. (71)

Using Eqs. (65), (66), and (71), it is now possible to
calculate the generalized response functions in Eqs. (45)–(48)
analytically for the OUP. 2D generalized response functions
in harmonic potential will vanish for perturbations of the
type in Eq. (71) in case of f1(x) = f2(x) = f3(x) = x. We
therefore consider the following simple observables f1(x1)
= x1, f2(x2) = x2, and f3(x3) = x2

3. We note, however, that
other types of perturbations, like the temperature perturbation
discussed in Sec. VII B, can result in non-zero 2D measures
for any kind of observable. The exact results for 2D measures
R+++(τ2, τ1) and R++−(τ2, τ1) and R+−+(τ2, τ1) and R+−−(τ2, τ1)
calculated with Eqs. (65), (66), and (71) are shown in Fig. 1.
They compare well with the numerical results of Fig. 2,
which were calculated using the non-equilibrium approach,
Eq. (44). Both approaches are equivalent. We note that some
signals look similar. This is to be expected for Gaussian
processes, where these measures are related to each other via
the generalized fluctuation-dissipation relations.9

B. Periodic temperature modulation of the OUP

Harmonic perturbations can be realized by periodically
modulating the strength of stochastic noise ξ(t) in Eq. (62), for
instance, by changing the temperature. For a general stochastic
process,

dx
dt
= −dU(x)

dx
+
√

Dξ(t), (72)

of diffusion in potential U(x), periodic temperature modula-
tion will result in periodic modulation of diffusion constant
D = D0 + ϵ cos(ωt), which depends linearly on temperature.
The perturbation operator then reads

δL̂(x, t) = ϵ

4
�
eıωt + e−ıωt

� ∂2

∂x2 . (73)

The operator of infinitesimal perturbation appearing in Eqs.
(58)–(60) is then given by

V̂ (x) = π

2
∂2

∂x2 . (74)

By substituting Eq. (74) in Eqs. (70)–(60), one can
calculate the exact 2D susceptibilities. Alternatively, these can
be calculated using the non-equilibrium approach, Eq. (57),
by taking derivatives of correlation functions with respect
to the amplitudes of oscillatory perturbations. This mimics
the experimental protocol. Results of both calculations are
shown in Fig. 3. Since temperature perturbations correspond
to the second-order (even) derivative, then χ(3,0) and χ(1,2) must
vanish for symmetric potentials since they effectively involve
averaging over the product of odd number of random variables.
This can be one of the merits of the generalized 2D measures
as compared to the regular 2D correlation and response
functions for studying stochastic processes by temperature
perturbations.
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FIG. 1. Exact generalized response
functions of the OU process Eq. (63):
(a) R+++(τ2,τ1), (b) R++−(τ2,τ1), (c)
R+−+(τ2,τ1), and (d) R+−−(τ2,τ1).

FIG. 2. Generalized response func-
tions of the OU process calculated
numerically: (a) R+++(τ2,τ1), (b)
R++−(τ2,τ1), (c) R+−+(τ2,τ1), and (d)
R+−−(τ2,τ1).
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FIG. 3. Generalized susceptibility
χ(2,1)(ω2,ω1) of the OU process:
(a) exact result and (b) numerically
calculated result.

VIII. EXAMPLE 2: IMPULSIVE TEMPERATURE
PERTURBATIONS OF DIFFUSION PROCESS
IN ANHARMONIC AND DOUBLE-WELL POTENTIALS

Diffusion in anharmonic, such as double-well, potentials
is an important process, which is often used to model
biological processes.14 For instance, conformational dynamics
of proteins is often described as a diffusion in double well
potential along a reaction coordinate.15 One can study such
stochastic processes using temperature perturbations since it
is hard to control perturbations of stochastic variables and
often the relevant stochastic variable (reaction coordinate) is
not known. By applying temperature perturbations at different
times, one can measure various multidimensional GRFs as
described in Secs. IV–VII and obtain, e.g., information on
conformational dynamics of single proteins. It is interesting
to examine the GRFs for different potentials and what infor-
mation they can provide. Such experiment can be done, for
instance, by measuring the electron-transfer (ET) rate between
donor and acceptor on different ends of a protein at different
times.16 The ET rate constant depends exponentially on the
distance between donor and acceptor k(t) = k0 exp(−βx(t));
thus, the stochastic variable X(t) ≡ − log[k(t)] can be a
measure of conformational dynamics of the protein.

Temperature perturbations can be either impulsive ∆T
δ(t − τ) (such as pulsed heating17,18) or a step T-jump
perturbation ∆Tθ(t − τ), which in some cases may be easier
to implement experimentally. For the purpose of consistency
with the discussion in Secs. IV and V, here we consider impul-
sive temperature perturbations. Since δ(t − τ) = −dθ(t − τ)/
dτ, GRFs of T-jump perturbations can be easily obtained
from impulsive GRFs by integration over the corresponding
perturbation times.

In Fig. 4, we compare 2D generalized response functions
obtained from numerical simulations of an overdamped
diffusion process x(t) in non-equilibrium experiments with
impulsive perturbations of temperature. We consider sym-
metric double well U(x) = x2 + 3e−x

2
and asymmetric double

well U(x) = x2 + 3e−x
2 − 0.5x potentials and also harmonic

U(x) = x2/2 and Morse U(x) = 10(1 − exp(−0.3x))2 poten-
tials for comparison. The observable in the GRFs was taken to
be the stochastic variable itself f1 = f2 = f3 = x − ⟨x⟩. First,
Fig. 4 shows that 2D GRFs are qualitatively different for

harmonic, Morse, and double-well potentials. In particular,
the harmonic system only has a single non-vanishing GRF,
R++−(τ2, τ1). In fact, R+++(τ2, τ1) and R+−−(τ2, τ1) vanish for
both the harmonic and symmetric double-well potentials
which is the consequence of symmetry. Second, Fig. 4 shows
that both Morse and double well potentials have a strong signal
R+−+(τ2, τ1), which should be an indicator of anharmonicity.
Third, the decay of R+−+(τ2, τ1) along τ1 in the symmetric
and asymmetric double-well potential is significantly slower
than the decay of R++−(τ2, τ1). This is related to the fact that
the lowest non-zero eigenvalue of the Fokker-Planck operator
(proportional to the Kramers over-the-barrier escape rate) is
significantly smaller than the second non-zero eigenvalue in
double-well potentials (see also Sec. VIII A). Fourth, 2D
R+−+(τ2, τ1) of a symmetric potential at long times decays
with τ1 + τ2, while in asymmetric double-well potentials, the
symmetry along the τ1 = τ2 direction is broken. This should
provide an experimental measure of the asymmetry of the
potential. In Sec. VIII A, we discuss quantitative aspects of
these observations.

A. Quantitative information contained in 2D GRFs

The impulsive 2D GRFs given in Eqs. (45)–(48) have the
common form

R+,α,γ(τ2, τ1) =


dx1dx2dx3

× f (x3)P0(x3, τ2 + τ1|x2, τ1)
×Vα(x2)P0(x2, τ1|x1,0)Vγ(x1)ρss(x1), (75)

where α,γ = +,−, V+(x) = f (x), and V−(x) = V̂ (x). The tran-
sition probabilities P0(x, t |x ′, t ′) can be expressed in terms of
eigenvalues λn and eigenfunctions ϕn(x) of the Fokker-Planck
operator,10

P0(x, t |x ′, t ′) = eU (x′)/D 
n

ϕn(x)ϕn(x ′)e−λn(t−t′)

=

n

ϕn(x)ψn(x ′)e−λn(t−t′), (76)

where ψn(x ′) ≡ eU(x′)/Dϕn(x ′). It should be noted that for
symmetric potentials U(x), eigenfunctions ϕn(x) are either
symmetric or antisymmetric, thus functions ϕ2n(x), ψ2n(x)
are even, while ϕ2n+1(x), ψ2n+1(x) are odd.
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We simplify Eq. (76) by keeping the three slowest-decaying terms (with the lowest eigenvalues λ0,λ1, and λ2),

P0(x, t |x ′, t ′) = ϕ0(x)ψ0(x ′) + ϕ1(x)ψ1(x ′)e−λ1(t−t′)

+ ϕ2(x)ψ2(x ′)e−λ2(t−t′), (77)

since the diffusion process eventually reaches equilibrium, then λ0 = 0. Substituting Eq. (77) into Eq. (75), we obtain

R+,α,γ(τ2, τ1) =


f (x3)ϕ0(x3)dx3


ψ0(x2)Vα(x2)ϕ0(x2)dx2


ψ0(x1)Vγ(x1)ρss(x1)dx1

+ e−λ1τ1


f (x3)ϕ0(x3)dx3


ψ0(x2)Vα(x2)ϕ1(x2)dx2


ψ1(x1)Vγ(x1)ρss(x1)dx1

+ e−λ2τ1


f (x3)ϕ0(x3)dx3


ψ0(x2)Vα(x2)ϕ2(x2)dx2


ψ2(x1)Vγ(x1)ρss(x1)dx1

+ e−λ1τ2


f (x3)ϕ1(x3)dx3


ψ1(x2)Vα(x2)ϕ0(x2)dx2


ψ0(x1)Vγ(x1)ρss(x1)dx1

+ e−λ1(τ1+τ2)


f (x3)ϕ1(x3)dx3


ψ1(x2)Vα(x2)ϕ1(x2)dx2


ψ1(x1)Vγ(x1)ρss(x1)dx1

+ e−λ1τ2−λ2τ1


f (x3)ϕ1(x3)dx3


ψ1(x2)Vα(x2)ϕ2(x2)dx2


ψ2(x1)Vγ(x1)ρss(x1)dx1

+ e−λ2τ2


f (x3)ϕ2(x3)dx3


ψ2(x2)Vα(x2)ϕ0(x2)dx2


ψ0(x1)Vγ(x1)ρss(x1)dx1

+ e−λ2τ2+λ1τ1


f (x3)ϕ2(x3)dx3


ψ2(x2)Vα(x2)ϕ1(x2)dx2


ψ1(x1)Vγ(x1)ρss(x1)dx1

+ e−λ2(τ2+τ1)


f (x3)ϕ2(x3)dx3


ψ2(x2)Vα(x2)ϕ2(x2)dx2


ψ2(x1)Vγ(x1)ρss(x1)dx1. (78)

We first show how Eq. (78) simplifies for symmetric potentials. For an odd observable f = x, only the integrals
f (x3)ϕ1(x3)dx3 will survive. Integrals over x1 and x2 will be non-zero depending on whether Vγ(x) is symmetric or

antisymmetric. For temperature perturbations, V̂ (x) = ∂2/∂x2 and is therefore symmetric. These considerations reduce Eq. (78)
to the following expressions:

R+++(τ2, τ1) = 0,

R++−(τ2, τ1) = e−λ1τ2


x3ϕ1(x3)dx3


x2ψ1(x2)ϕ0(x2)dx2


ψ0(x1) ∂

2

∂x2
1

ρss(x1)dx1

+ e−λ1τ2−λ2τ1


x3ϕ1(x3)dx3


x2ψ1(x2)ϕ2(x2)dx2


ψ2(x1) ∂

2

∂x2
1

ρss(x1)dx1,

R+−+(τ2, τ1) = e−λ1(τ1+τ2)


x3ϕ1(x3)dx3


ψ1(x2) ∂

2

∂x2
2

ϕ1(x2)dx2


x1ψ1(x1)ρss(x1)dx1,

R+−−(τ2, τ1) = 0,

(79)

We can now discuss Eqs. (79). First, we have proven
that R+++(τ2, τ1) and R+−−(τ2, τ1) indeed vanish in symmet-
ric potentials. Second, in harmonic potentials, the inte-
gral over x2 in R+−+(τ2, τ1) reads


ψ1(x2) ∂2

∂x2
2
ϕ1(x2)dx2

=


H1(x2) ∂2

∂x2
2
H1(x2) exp(−x2

2/2), where H1(x) is the first-

order Hermite polynomial, and therefore, the whole integral
is exactly 0. Thus, R+−+(τ2, τ1) indeed serves as indicator of
anharmonicity, as it was observed in Sec. VIII.

Third, from Eqs. (79), one can see that R++−(τ2, τ1)
decays along τ1 as exp(−λ2τ1), while R+−+(τ2, τ1) decays as
exp(−λ1τ1). In double-well potentials, especially with high
barriers, the first non-zero eigenvalue λ1 is much smaller
than the second non-zero eigenvalue λ2, which explains the
difference in decays of R++−(τ2, τ1) and R+−+(τ2, τ1) observed
numerically in Sec. VIII. λ1 is due to the barrier interaction
(or possibly “tunneling”) splitting of the ground state in

symmetric double well potential (see Ref. 10 on similarity of
Schrödinger and Fokker-Planck equations) and is proportional
to the barrier height, while the second non-zero eigenvalue
λ2 is the second “energy” level in the local well and is
proportional to the width of the well. Thus, in double-well
potentials with high energy barriers, λ1 ≪ λ2. Numerically,
λ1 = B exp(−Eb/κT) (when multiplied by probability to stay
in the well it is exactly the Kramers thermally activated
escape rate14,19) and one can determine the barrier height
Eb by measuring the decay rate λ1. We also note that the
different decay of R++−(τ2, τ1) and R+−+(τ2, τ1) is due to the
fact that different GRFs preserve different terms in expression
(76). Selectivity property of GRFs was also observed in non-
dissipative systems.8

In weakly asymmetric potentials, we expect the long-
time behavior of R++−(τ2, τ1) and R+−+(τ2, τ1) to be dominated
by the terms in Eqs. (79). Thus, for instance, by measuring
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FIG. 4. Numerical 2D GRFs of the overdamped diffusion process x(t) in various typical 1D potentials subjected to impulsive perturbations of temperature.

the eigenvalues λ1 and λ2 from the τ1-decays of R++−(τ2, τ1)
and R+−+(τ2, τ1) in Morse-like potentials, one can estimate its
anharmonicity.

Fourth, as can be seen from Eq. (79), the GRF R+−+(τ2, τ1)
in symmetric potentials decays as exp(−λ1(τ1 + τ2)); however,
in asymmetric potentials, other terms of Eq. (78) will survive
leading to the symmetry breaking along the τ1 = τ2 direction.
This was also observed in the numerical results of Sec. VIII.

IX. EXAMPLE 3: CONNECTIVITY OF STOCHASTIC
CHEMICAL NETWORKS

GRFs may also be used to deduce the connectivity
of stochastic chemical reaction networks in macroscopic
chemical kinetics. This can be determined by the arrival time of
a perturbation of concentration along the network.20 However,
in microscopic systems, such as biological cells, the number of
molecules is small and can fluctuate significantly. In this case,
the description of reacting species in terms of concentrations
is not adequate, and the propagation of chemical perturbation
may be obscured by stochastic fluctuations of the number
of molecules. Time dependent concentrations are no longer a
good measure of chemical dynamics, and other measures, such
as GRFs, may help. In Ref. 9, we proposed to use R++−(τ2, τ1) to

check the order of chemical species in the chemical reaction
network described by macroscopic rate equations. We now
consider the same example but for microscopic kinetics of the
model reaction network,

A
k1
�
k−1

X1

k2
�
k−2

X2

k3
�
k−3

X3

k4
�
k−4

X4

k5
�
k−5

B. (80)

The concentrations of species A and B are held constant by
buffering, and each elementary reaction step can be either
of linear (first order) or nonlinear (e.g., Michaelis-Menten)
kinetics. Suppose that system (80) is initially in a steady state.
We then impulsively change the number of molecules of spe-
cies Xi by ∆Ni at time t1 and measure the number of mole-
cules Nj, Nl of species X j and Xl, respectively, at times t2
and t3. In this way, we can construct 2D GRF R++−(τ2, τ1)
= ∂

∂∆Ni



Nl(t3)Nj(t2)�, where t1 = 0, t2 = τ1, and t3 = τ1 + τ2,

and averaging is done over repetitions of the experiment.
One can numerically simulate the latter experiment by

using the chemical Langevin equations (CLEs), which are
often used to simulate microscopic chemical kinetics.21,22 The
major difference of the CLE approach as compared to the
macroscopic chemical kinetics is the appearance of stochastic
noise terms in kinetic equations. The CLEs corresponding to
reaction network in Eq. (80) have the following form:
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dX1

dt
= k1A − (k−1 + k2)X1 + k−2X2 −

(k−1 + k2)X1ξ1(t) +


k−2X2ξ2(t),
dX2

dt
= k2X1 − (k−2 + k3)X2 + k−3X3 +


k2X1ξ1(t) −

(k−2 + k3)X2ξ2(t) +


k−3X3ξ3(t),
dX3

dt
= k3X2 − (k−3 + k4)X3 + k−4X4 +


k3X2ξ2(t) −

(k−3 + k4)X3ξ3(t) +


k−4X4ξ4(t),
dX4

dt
= k4X3 − (k−4 + k5)X4 + k−5B +


k4X3ξ3(t) −

(k−4 + k5)X4ξ4(t),

(81)

where


ξi(t)ξ j(t ′)� = σδi jδ(t − t ′), and numerical values of

parameters are given in Ref. 9. We numerically solve Eqs.
(81) and calculate Rl+, j+, i−(τ2, τ1) = ∂

∂∆Ni



Nl(t3)Nj(t2)� via

the non-equilibrium approach for different i, j, l. The typical
behavior of X1(t),X2(t),X3(t), and X4(t) is shown in Fig. 5(a),
while the calculated GRFs Rl+, j+, i−(τ2, τ1) are shown in Fig.
5(b). The 2D plots in Fig. 5(b) look the same as in Fig. 2
of Ref. 9. As discussed in that reference, these 2D plots can
suggest the order of Xi,Xl, and X j species in the chemical
network, i.e., out of two permutations Xi − Xl − X j and
Xi − X j − Xl, the one with longer correlation tail along the τ2
axis corresponds to the correct order of species Xi,Xl, and X j.
In particular, from Fig. 5(b), it follows that species X1,X2,X3,
and X4 are ordered as X1 − X2 − X3 − X4.

GRFs provide constraints with characteristic signatures
that may allow to distinguish between possible reaction
paths. An open question for future studies is the possibility
to invert data to get the reaction topology. The same
problem arises in multidimensional NMR (inverting distances
between protons obtained from 2D data to get molecular
structure), multidimensional IR to get secondary structure of
proteins, and multidimensional electronic spectroscopy to get
energy transfer paths in chromophore aggregates. Research on
relation of GRFs to reaction topology is currently underway.
Our preliminary results suggest that GRFs can be used to
distinguish kinetic orders of chemical reactions, to determine
kinetic parameters of elementary steps in complex chemical
reactions, to identify feedback loops in reaction networks, etc.

X. DISCUSSION

Multidimensional techniques have now become standard
tools in spectroscopy. However, these are not limited to optical
pulses and electronic or vibrational transitions. One can use
similar multidimensional ideas with different types of pertur-
bations, to study arbitrary dynamical systems. In this paper,
we considered stochastic dynamical systems and showed
that their dynamics can be studied via perturbations of their
coordinates or parameters, such as temperature. Moreover,
perturbations and measurements can be mixed leading to new
types of multidimensional measures of stochastic dynamics,
which we call generalized response functions. Generalized
response functions can be measured experimentally either in
time or the frequency domains. Information contained in GRFs
can provide additional insights on stochastic microscopic
processes. In particular, the examples given in this paper
showed that GRFs can reveal the symmetry or bistability of

FIG. 5. Simulations for the stochastic chemical reaction network of Eq. (80).
(a) Stochastic concentrations, i.e., solutions of Eq. (81). (b) Generalized
response functions Rl+, j+, i−(τ2,τ1).
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the mean field potential of stochastic process and can
provide information on its anharmonicity and internal barrier
height.

We also propose to use multiple impulsive perturbations
of temperature to study conformational dynamics of single
proteins. Conformational dynamics of proteins plays an
important role in regulating their biological functions, but
is not well understood. Temperature perturbations pro-
vide an accurate and controllable way to probe confor-
mational dynamics. Multiple perturbations and measure-
ments provide a wide range of new tools—experimentally
measured GRFs, which entirely depend on equilibrium
fluctuations of protein, and thus serve as multidimen-
sional measures of its stochastic conformational dynamics.

GRFs may be also used to study chemical dynamics of
small chemical systems such as biocells. Such finite chemical
systems contain a small number of molecules of reacting
species and thus cannot be described via macroscopic chem-
ical kinetics. A stochastic description is more appropriate.
Because of the small number of molecules, fluctuations
will be significant and could hide any response to external
perturbations. Time-dependent averaged quantities, such as
correlation and response functions, are thus required to extract
information about the underlying microscopic chemical dy-
namics. The proposed GRF approach of mixed perturbations
and measurements provides a wide range of new multi-point
correlation functions, or measures, characterizing microscopic
chemical dynamics. Information contained in these new mea-
sures should be explored for specific systems. In particular,
in Sec. IX, we showed how 2D GRFs R++−(τ2, τ1) can be
used to study connectivity of stochastic reaction networks.
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