Title
IRRADIATION HYPOPHYSECTOMY AND RELATED STUDIES USING 340-MEV PROTONS AND 190-MEV DEUTERONS

Permalink
https://escholarship.org/uc/item/5329g45f

Authors
Tobias, Cornelius A.
Roberts, J.E.
Lawrence, J.H.
et al.

Publication Date
1955-06-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
IRRADIATION HYPOPHYSECTOMY AND RELATED STUDIES
USING 340-MEV PROTONS AND 190-MEV DEUTERONS

By
Cornelius A. Tobias, J. E. Roberts, J. H. Lawrence
B. V. A. Low-Beer, H. O. Anger, J. L. Born
R. McCombs, and Charles Huggins

Radiation Laboratory
University of California
Berkeley, California

INTRODUCTION

There is considerable evidence that the human pituitary gland is implicated in the pathogenesis of various serious diseases. In some of these conditions partial or complete removal of the gland may be of benefit. For the past several decades, attempts have been made by radiation and surgery to achieve complete hypophysectomy. It is only very recently that the surgical procedures have met with at least partial success.

Most of the difficulties in hypophysectomy are due to the central location of the hypophysis at the base of the skull, and to the sensitive structures of nerve, brain, and blood vessels that are surrounding and protecting it.

An account is given below of the initial use of accelerated high-speed protons in human therapeutic investigations: the rationale for proton hypophysectomy, the technique employed, and the initial physiological changes after proton hypophysectomy are given in detail.

REVIEW OF THE AVAILABLE TECHNIQUES FOR HYPOPHYSECTOMY

A. Radiation

Irradiation of the human pituitary by x-rays was reported as early as 1909. It soon became clear that the hypophysis was fairly radioresistant. Because of limitations imposed by sensitivity of the skin and danger of injury to the brain, the doses by conventional x-radiation had to be limited. Nevertheless, attempts to suppress the physiological functions of the hypophysis by radiation has been a frequently used therapeutic approach in pituitary tumors, Cushing's syndrome, and acromegaly. Attempts have also been made to irradiate

The authors are indebted to the Donner Foundation for financial aid in the medical phases of this project.
the pituitary in various other conditions, for example hypertension7 and malignant exophthalmos.8, 9 Pituitary radiation by x-rays has also been attempted in malignancy in the human, particularly for prostatic carcinoma9 and mammary carcinoma.10 The highest doses were probably delivered by Kelly et al.11 However, in three mammary cancer patients even 15,000 r to the region of the hypophysis was not sufficient to cause noticeable depression in hormone production and histopathological damage, or remission of the disease. The technique of x-ray therapy is still being extended and improved, as exemplified by the recent work of Santos.12

Since the pioneer work of Lacassagne and his associates13 the implantation of radioactive seeds seemed to offer a method of delivering large local doses to the pituitary; indeed radon implantation did affect the pituitary in acromegaly and Cushing's syndrome.4 During the last few years, Brues and his associates14 have developed new methods for processing radioactive yttrium into seeds; this led to the therapeutic clinical investigations of Kennedy et al.,15 who implanted several yttrium seeds into the pituitary, and gave considerable doses of beta radiation in an attempt to stop hypophyseal function and to cause regressions in carcinomas. This study is still in progress at the University of Chicago and at McGill University.16

B. Surgery

Owing to great technical difficulties and associated severe trauma, it was only recently that complete surgical hypophysectomies were carried out with success, by Luft and Olivecrona in Sweden17, 18, 19 and by Perrault and associates in France.20 Luft and Olivecrona assembled 34 cases of metastatic carcinoma of the breast and 12 cases of diabetes mellitus for surgical hypophysectomy. A significant portion of the patients in whom hypophysectomy appeared complete showed objective remissions and subjective relief, which lasted for periods ranging to more than two years. Currently Ray, Pearson, and associates, and other groups, are vigorously attacking the problems of surgical hypophysectomy in cancer21, 22, 23 and in diabetes mellitus.24

PROTON IRRADIATION TECHNIQUE

A. General Properties of Particles

High-energy protons, deuterons, and alpha particles have great advantages over other radiations in producing localized radiation damage in a deep region in tissue as suggested by Wilson.25 The accelerated and properly focused particles propagate in a well-collimated and straight pencil of beam, which may be directed to any portion of the body. As the particles penetrate, their scattering is so small (compared to electrons) that for practical purposes negligibly small amounts of radiation fall outside the main beam to irradiate neighboring tissue areas. Further, the approximately monoenergetic particles penetrate to a uniform and well-defined range, producing their maximum ionization just before they stop.

A suitable aperture, made of brass or other metal, is used to determine the shape of the radiation field, and the background ionization may be kept to less than 0.1% of the beam.
These properties were demonstrated in biological experiments by Tobias, Anger, and Lawrence. 26)

B. Biological Experimentation with 190-Mev Deuterons and 340-Mev Protons

Experience in the use of proton, deuteron, and alpha-particle beams was gained by investigating their biological effectiveness and mechanism of lethal action through localized irradiation of animal tissues.

The biological effectiveness of the high-energy portions of the deuteron and proton beam was found to be close to that of 200-kv x-rays. This could be predicted from physical data on the specific ionization and linear energy transfer of the particles. Experiments of this kind were done on mice, 26) yeast cells, 27) tradescantia microspores, 28) and fruit flies. 29)

The use of high-speed particles allows one to produce radiation-induced lesions in the animal body with microscopically sharp demarcation lines. 26) In small animals, cylindrical lesions of one mm diameter are easily produced. Since 1952, a sustained effort was made, in collaboration with the staff of the Institute of Experimental Biology, to study effects of the high-speed particles on the rat hypophysis. 30) Initial results were encouraging, and pituitary irradiation of young monkeys* and of normal mature dogs** has also been undertaken, with technique similar to that for humans (described below).

When large single doses of more than 5000 rad*** deuteron or protons are given to the pituitary gland of animals the end result appears to be similar irrespective of the size of radiation dose: progressive atrophy of the entire gland results, accompanied by reduction in physiological function. The higher the dose, the sooner the physiological effects seem to manifest themselves. Single doses of the order of 30,000 rad are necessary to approximate the immediate effects of surgical hypophysectomy. To illustrate these statements, Fig. 1 shows the apparent onset in time of profound physiological changes resembling complete hypophysectomy. Data on rat, dog, and monkey follow reasonably well the same general relationship. Criteria for evaluation are chiefly rate of growth, thyroid function, and sizes of target organs.

According to the above reasoning, when single doses are applied, hypophysectomy can be achieved with relatively moderate doses, although it may not be observed until a fairly long time after the initial radiation exposure. The delayed onset of the effects is a factor of great importance in deciding on the dose in humans.

The entire gland must be irradiated to achieve any lasting physiological changes in the target organs.

The effect of pituitary radiation on target organs does not progress simultaneously, but there is a definite pattern involved. In rats the first gland to show measurable functional changes is the thyroid. The ^{131}I uptake may decrease within a few weeks after even a moderate dose. Effects on growth and adrenal function follow, while regression of the sex glands, regulated by the

*In cooperation with Dr. Van Wagenen of Yale University.
**To be published.
***1 rad is equal to 100 ergs absorbed/g or 1.07 rep absorbed in tissue.
follicle-stimulating hormone (FSH), is usually chronologically last. The histopathology of the irradiated pituitary exhibits changes that indicate a pattern (in the rat), though differential effects are difficult to detect. The acidophiles seem to be first to regress, followed by basophils and, lastly, chromophobes.

Long-term studies with doses up to 10,000 rad given to the young Long-Evans rat indicate that onset and frequency of spontaneous tumors are reduced if the animals are irradiated in the first month of life. Life span of the animals that received large doses did not significantly differ from the life span of surgically hypophysectomized animals.

Nerve and brain tissue is more sensitive than pituitary tissue. Lethal effects from pituitary radiation, where the cause could be definitely ascertained, could be ascribed to nerve and brain lesions, particularly to necrosis and hemorrhage.

Lethal effects of this kind were usually preceded by damage to the third, fourth, and fifth cranial nerves, which in the dog lie very close to the pituitary. The lesions led to inability of the animals to move their eyelids, to permanently dilated pupils, and to loss of corneal sensitivity. A series of experiments was carried out to test the dose-time relationship in dog cranial nerve. A characteristic dose-time injury curve resulted, which resembled the data obtained with the pituitary. The lower the dose, the longer the time required for the symptoms to appear, and— in this case—they usually proved to be less severe in degree. Since the data on dogs are available only over a period of 16 months, additional information is needed, particularly for long postirradiation times. Figure 2 gives the data now available.

A temporary type of nerve damage was also observed in some of the animals; here the cranial nerves themselves had a low dose, but neighboring structures (pituitary and cavernous venous plexus) received heavy irradiation (in excess of 10,000 rad). The eye symptoms developed and increased in severity two to three weeks after irradiation, then partially or completely regressed six to eight weeks later. The symptoms were presumably due to pressure from edema of the nearby radiated structures.

When portions of the brain were given large doses along with the pituitary and cranial nerves (in dogs), in some cases coma and death followed the eye symptoms. At autopsy the heavily irradiated areas of the temporal lobes of the brain were found to be severely necrosed and liquified, with a remarkably sharp demarcation line between necrosed portion and healthy, normal-appearing tissue. The size of the necrosed area at time of death was about the same in different dogs; a typical brain is shown in Fig. 3, from a beagle dog that received 40,000 rad and died in two weeks. Necrosis begins in the portion receiving the highest dose, and progresses to areas with lower doses. The immediate cause of death in some cases appeared to be hemorrhage, with accumulation of fluid in the brain and high intracranial pressure. The relatively meager data indicate that brain damage is a function not only of dose and time but also of the volume of tissue irradiated. It is difficult to compare the literature on radiation damage to the brain with the results reported here; most data in the literature involve doses to massive areas of irradiated brain tissue. Perhaps most pertinent are recent observations by Arnold et al., 32) who observed delayed demyelination and radionecrosis in dose ranges of 1500 to 5000 r of high-energy x-rays, and in addition acute inflammation, hemorrhages, edema,
and necrosis in the range of 3000 to 14,000 r, with increasing severity at higher doses.

Further studies are being carried out on the relative effectiveness of fractionated and single doses on the central nervous system.

LOCALIZED HYPOTHALAMIC IRRADIATION

The technique described in this report has been employed over the past two years for irradiation of hypothalamic areas of rats. The main problem of interest is the mechanism of hypothalamic control of hypophyseal functions. Because of the low mortality and high aiming accuracy this technique appears to show promise as an investigational tool. The results of this work will be reported elsewhere in detail. Already proton or deuteron irradiation of hypothalamus has produced a range of effects in rats. Among these are retardation of growth, diabetes insipidus, glycosuria, hypothyroidism, and obesity.

DESCRIPTION OF IRRADIATION TECHNIQUE IN HUMAN PATIENTS

The radiosensitivity of the brain and skin is greater than that of the pituitary. For this reason the proton irradiation of the human pituitary was combined with the well-known rotational irradiation technique. The position of the proton beam was kept fixed in space and directed to cross the pituitary as well as the entire head with uniform ionization. During irradiation the head was rotated around its own pituitary body. The plane of rotation was chosen differently each day of the fractionated therapeutic irradiations. In this manner the cumulative dose to the pituitary gland was considerable, while surrounding blood vessels, cranial nerves, lobes of the brain, bone, and skin received progressively less irradiation in the order of enumeration.

A contemplated further improvement in technique would involve stopping the proton beam in the pituitary fossa by making use of the high dose peak of the Bragg ionization curve and thus eliminating irradiation of one hemisphere of the brain. As yet this modification has not been employed in our patients.

A. Treatment Room

With the generous help of the staff of the Berkeley 184-inch cyclotron, a new treatment room (shown in Fig. 4) was constructed for the human irradiation program. The collimated beam passes through two rooms suitable for irradiation: the one closer to the cyclotron is mainly for physics and chemistry use, while the farther room, carefully shielded to avoid stray radiation, is for medical use.

B. Control of Proton Beam

The deflected beam passes along on an optical bench, and by means of electrical and mechanical techniques, it is brought to pass (within about 0.2 mm) along a line eight inches over the center of the optical bench and parallel to

*We are particularly indebted to Professor Robert Thornton, Marvin Martin, Dr. Elmer Kelly, James Vale, and Lloyd Houser.
the tracks on the bench. The dose-monitoring ion chamber, main beam aperture, and focal spot of the diagnostic x-ray machine are all mounted so that the proton beam passes through their centers. The patient's head is held rigidly in an adjustable head rotator which is also mounted on the optical bench. Adjustment screws are provided to move the head holder in three directions X, Y, Z, with an index on each adjustment, so that on repeated treatments the index may be reset, and the head placed each time into a very closely correct position. This is checked by x-ray films before each treatment. Figure 5 gives the schematics of the alignment and Fig. 6 shows the actual treatment room.

The success of the multiple-plane rotational-irradiation technique depended on providing a firm mask to hold the patient's head during alignment and therapy on repeated occasions. Very satisfactory two-piece individual plastic masks have been developed for this purpose, utilizing fiberglass cloth and polyester resin. The mask is tightened on the head with thumbscrews, until it fits tightly enough so that the patient cannot move his head, (or sella turcica) more than about 0.5 mm in any direction. The masks are comfortable enough to wear for two hours at a time.

Figure 7a shows the sella turcica of one of the patients in alignment with the cross hairs, while Fig. 7b shows the autoradiograph of the shaped beam and its alignment with the sella. This latter picture was taken by first exposing the patient to the x-rays, then to a small dose of protons. One should bear in mind that the sella appears enlarged due to the finite distance of the focal spot of the x-ray machine, while the beam spot is actual size.

Figure 8 shows a typical vertical x-ray, taken along the Y axis. Here, the center of rotation in the sella was ascertained by obtaining symmetry, on both sides of the X cross hair, of the faint line representing the base of the sella and the walls of the sphenoid sinuses. The anterior clinoid processes and the ocular cavity are also checked for symmetry. On the vertical x-ray it was necessary to use a diagnostic x-ray machine with 0.3-mm focal spot to obtain the necessary resolution.

Spatial alignment of both views of the sella was usually within ± 0.5 mm. Occasionally check x-rays were made with the patient forcibly trying to move his head out of alignment. These were always correct within 1.0 mm.

During the first treatment usually 6 to 8 sets of diagnostic x-rays were needed to bring the patient's head in alignment. On subsequent repeat treatments adjustment screws on the supporting head holder were preset to the positions that had previously given proper alignment, and usually one or two sets of diagnostic x-rays sufficed.

CONSIDERATIONS OF ANATOMY AND RADIOSENSITIVITY
OF IMPORTANCE IN THE TREATMENT SCHEDULE

Relatively limited information is available concerning radiosensitivity of the brain and of the pituitary in the human. In addition to the animal data reported above, it is known that the brain is more sensitive to radiation than the pituitary and that 4800 roentgens of 50-kv x-rays given in a fractionated course over a large area may cause radionecrosis delayed by more than a year. (See, for example, References 31, 32, 33.)
In the course of the present preliminary investigations the therapy was
given in such a way as to minimize the dose received by radiosensitive tissues
in the head.

Figures 9a and 9b are scale drawings of sections through the sella turcica
in the XZ and YZ planes. It is apparent that the most sensitive structures are
right above the pituitary, particularly the optic nerve tract and the hypothalamus.
These should be avoided by the radiation as much as possible. Laterally, the
carotid arteries and the caveous venous plexus are closest to the hypophysis.
These structures are known to tolerate a higher dose. Of the cranial nerves
the third, fourth, fifth, and sixth are closest; beyond the cranial nerves extend
the temporal lobes of the brain; close to the hypophysis are the regions serv-
ing the sense of smell.

The limits of rotation of the head were chosen $\pm 30^\circ$ or $\pm 35^\circ$ from the y
axis. The limits of the angles were given by the require-
ment to completely avoid the eyes, so that cornea, retina, and lens are free
from radiation. There are 11 planes of irradiation, each of which
is about 7.5 degrees apart. On a given day rotation may be given in two of
the planes, preferably 30° apart. The choice of the treatment planes is such
that the brain stem and the pars optica, mamillary bodies, tuber cinereum,
and infundibulum get negligible doses, since the beam does not cr

DOSE SCHEDULE

At present 800 to 1000 rad is given in each of two to five treatment planes
daily, three times a week, with the dose figure referred to the center of the
pituitary. Owing to the rotation of the head, the daily dose at the cranial nerves
is about 260 rad, and at the skin about 40 rad. The whole course of treatment
takes 20 to 40 days, and doses of 14,000, 16,000, 18,000, 20,000, 22,000,
26,000, and 30,000 rad were given to the center of the pituitary.

ISODOSE CURVES

The elliptical beam apertures, multiple planes, and rotation make the evalu-
ation of isodose curves a complex procedure. Two methods were utilized:
measurement by photographic densitometry, and calculation from the known
beam ionization profile. An autoradiograph of the proton beam as it crosses
a solid piece of lucite is shown in Fig. 10.

A lucite phantom is used in place of the head and photographic film inside
this phantom is exposed, using the same rotations as in patients. One complete
set of rotations corresponding to the entire treatment schedule gave Fig. 11
(reproduced without retouching). The blackened area obviously corre-
sponds to the size of the pituitary gland.

Measured and calculated dose distributions are reproduced along the major
axis XYZ in Fig. 12. The dose falls relatively slowly in the lateral Z direction
where the hypophysis extends farther; towards the top of the head and to the
front and back, the fall is very abrupt, insuring considerable degree of protection
for the optic chiasm and hypothalamus. Figures 9a and 9b have a typical iso-
dose chart superimposed over the anatomical detail of structure.
Since the pathways of irradiation center in the hypophysis, it is useful to evaluate the average hypophyseal dose by integrating over the isodose surfaces. The average dose in the patients treated so far was between 55% and 75% of the peak dose at the center of the gland. The size and shape of the sella turcica varies considerably among patients, and several different apertures and rotations were used. Isodose curves for each of these are being accumulated.

DOSE RATE

Most patients received dose rates of 200 to 300 rad per minute; 800 rad is thus delivered in 4 to 2.7 minutes; in this length of time the head describes the 60-degree span of rotation 5.4 to 8 times. The beam is delivered in the form of microsecond pulses about 68 times per second; the instantaneous dose rate therefore is high.

BACKGROUND CONSIDERATIONS

Detailed measurements were carried out on the background dose distribution around the proton beam near the body of the patient and in the treatment room. The entire treatment room was shielded in such a manner that beyond a radius of 1.5 inches from the beam the whole body of the patient receives everywhere less than 0.1% of the peak dose. In a full course of therapy, the patient receives less than 20 rad total-body dose, most of which is radiation near minimum ionization. There is also a thermal neutron flux* of 4000 neutrons/cm² sec. Outside the shielded area, personnel delivering the dose and taking care of the patient receive a fast neutron dose of 420 Mev/cm² sec near the treatment room door and 50 Mev/cm² sec elsewhere while the beam is on, high-energy gamma rays of less than 1 mr/hour, and about 100 slow neutrons/cm² sec.

CRITERIA FOR SELECTING PATIENTS FOR PITUITARY PROTON-BEAM IRRADIATION

It was felt that for the present time only patients with cancer who have had all other available therapy should be exposed to protons. In addition, an attempt is being made to select patients who have a realistic chance of deriving benefit from pituitary ablation. Thus the criteria for acceptance at present are as follows:

a. The patient should have mammary carcinoma. She should have had conventional surgical and radiological treatment.

b. The patient should have received a trial of hormone therapy, or surgical or radiation oophorectomy and adrenalectomy.

c. There must be objective evidence showing the presence of progressing metastatic lesions for which none of the above-mentioned procedures holds out further hope.

*The authors are indebted to Dr. Burton J. Moyer and Boyd Thompson for these data.
d. The patient should be younger than 60 years of age and—apart from the carcinomatous process—in fair physical condition. Initially, desperate cases were selected who did not satisfy this criterion and were near terminal.

On the basis of experience with adrenalectomy by Huggins et al., it is felt that nondifferentiated carcinomas of the breast are controlled by the pituitary-adrenal-ovarian system to a lesser degree than the well-differentiated type.

CLINICAL STUDIES

Clinical studies and observations are being carried out in three separate fields in order to obtain as complete information as possible: (a) endocrinological tests, (b) neurological examinations, and (c) effect on tumor growth. Endocrinological tests include many phases:

Thyroid function tests are made by means of 131I uptake, protein-bound iodine determinations, and basal metabolism measurements.

Pituitary gonadotrophin activity is followed by urinary follicle-stimulating hormone determinations (FSH) and, where possible, urinary estrogen excretion studies.

Adrenal function tests are of no use since the patients thus far studied have been previously adrenalectomised and are receiving supporting steroids. Urinary ketosteroids are assayed, however, in most cases.

In view of the possible presence of a pituitary hemopoietic factor, blood-volume measurements and iron-turnover measurements are carried out as needed.

Water balance is studied by urine output and specific gravity measurements, as well as water-loading tests.

Sugar tolerance and blood sugar determinations are carried out routinely.

Neurological examination includes tests for cranial nerve damage, visual-field studies, and tests for acuity of the sense of smell and touch.

Unfortunately there are no conclusive tests available for obtaining information about the state of proliferation of tumor cells. The Huggins serum coagulation test is being done periodically. In addition diagnostic x-ray examinations give information about bone and lung metastases; skin metastases are observed directly; biopsies are obtained if advisable. Serum alkaline and acid phosphatase levels and calcium excretion have been measured routinely. In addition all conventional clinical laboratory observations are made.

TREATMENT SCHEDULE

Early treatment schedules followed the present clinical radiotherapeutic practice of dose fractionation by administration of several repeat irradiations. Three doses were given weekly, (Monday, Wednesday, Friday). This limitation was necessitated by the availability of the cyclotron. The dose at the center of the pituitary was 800 rad in a plane. Two or more planes were frequently
The dose schedule was conservative and probably inadequate in the earlier cases. With accumulated experience and in the absence of contraindications, the daily dose was raised to higher values, until at present as much as 5000 rad may be given in a single day, in five different plane orientations of the body with respect to the proton beam, and ± 35° rotation of the head in each orientation. The dose at the center of the pituitary gland at the end of the treatment (usually 20 to 40 days) was from 14,000 rad to 30,000 rad.

CLINICAL OBSERVATIONS IN THE COURSE OF THERAPY

None of the patients treated so far has shown objective or subjective clinical signs of immediate physiological effects from the radiation. In the course of 200 individual exposures, severe headache was reported in two instances during the day following exposure; however this could not be definitely associated with the treatments. Radiation invoked no sensation; blood pressure and temperature remained normal.

No obvious evidence was found for secretion or dumping of hormones from the pituitary in the first 24 hours after exposure to protons. This effect was observed in rats by Mateyko and Edelman. 33)

Undesirable skin effects, which may include erythema, epilation, and ulceration, were all completely absent during the first 5 to 9 months following exposure, no doubt because of the low doses delivered to the skin.

Neurological observations indicate likewise a complete absence of undesirable side effects on the cranial nerves, temporal lobes, or optic chiasm up to the date of preparation of this report. However, it will be necessary to continue these observations for a considerably longer time.

PHYSIOLOGICAL OBSERVATIONS IN THE POSTTREATMENT PERIOD

Significant depression of pituitary functions was observed in all patients during the postirradiation period.

A. Thyroid Function

Over a period of five months there is a decline of thyroid function, as evidenced by the 24-hour uptake of radioactive I131 administered orally. Two sets of data for individual patients are shown in Figs. 13 and 14. At the end of six months, iodine uptakes that had been in the normal and high range became as low as 3% and 5% respectively, in the same range (2% to 8%) as one obtains with surgically hypophysectomized patients. Values for protein-bound iodine, (shown also in Figs. 12, 13) decline, but in some patients show a curious and at present unexplained rise. Basal metabolic rates decrease, but less significantly. However, clinically, myxedema so far was absent or only mild.
There was indication that the iodine uptake decreased during the treatment period, increased again in the month following proton exposures, then slowly and progressively decreased again.

B. Urinary FSH

The initial FSH values were almost uniformly high, in the range of postmenopausal women. In each instance where measurement was possible, a decrease occurred; but great fluctuations are found in the FSH titer. After five months of posttreatment period, the FSH is too small to be measured, and (as far as our observations allow us to determine) stays at zero level. (See Figs. 12, 13.)

C. Urinary Estrogen

Only in one patient was measurable urinary estrogen level observed. This patient had incomplete adrenalectomy previously. In one month after completion of pituitary radiation the urinary estrogen fell to zero.

In order to obtain a general view of the endocrinological findings in the first 10 patients irradiated, Table I lists pre and post treatment iodine uptake and urinary FSH values. At 30,000 rad, the induced function changes begin to occur within the first 30 days and present a definite pattern. This is illustrated in patient M. S., Table II.

WATER TURNOVER

Because of the great fluctuation of water intake and urine output, cumulative curves were plotted, in which the total water turnover was graphically shown. In this fashion, one finds that water turnover of all patients is generally high. It is questionable whether a mild diabetes insipidus exists in the postirradiation period. Blood volume and serum protein, serum cholesterol, sugar tolerance, and water-loading tests have so far not significantly aided in evaluating pituitary effects; these fluctuated in the normal range, except where the values were off normal because of complications already present owing to the disease process.

ALKALINE AND ACID PHOSPHATASE

In the presence of bone metastases alkaline phosphatase and acid phosphatase measurements are of some value; in some as yet not precisely determined way these depend on pituitary function. While tumor growth is actively infiltrating the skeleton the alkaline phosphatase is frequently low, and the acid phosphatase high. While deposition of new bone occurs the alkaline phosphatase is usually high. Thus high alkaline phosphatase is indicative of bone recovery, unless complicating factors are present. In several patients the pattern of alkaline and acid phosphatase has changed after radiation (see, e.g., Figs. 15a and 15b). Complete evaluation of the significance of these findings will have to wait, however, until more data have been accumulated.

CALCIUM EXCRETION

Bone deposition sometimes depresses calcium excretion in the urine, and
DISCUSSION OF THE PHYSIOLOGICAL CHANGES

One observes a definite depression of the physiological function of the pituitary gland in a period of six months, in the absence of undesirable side effects. While this result is encouraging and has perhaps not been attained previously, the authors feel it desirable to try to accelerate atrophy of the pituitary gland further by the application of higher doses and by further improved technique, in order to obtain more profound effects in a shorter time.

CLINICAL MANAGEMENT OF PATIENTS FOLLOWING PITUITARY IRRADIATION

All the patients receiving pituitary irradiation have previously had bilateral adrenalectomies and oophorectomies and were on maintenance doses of cortisone ranging from 37.5 to 75 mg daily with NaCl supplement and DOCA where postural hypotension existed. Following pituitary irradiation no additional substitution therapy, including pituitary extracts, has been necessary although in several cases the dosage of cortisone has been increased with subjective improvement to the patient. It was believed desirable to place several of the patients on 2 grains of thyroid extract daily. This, however, was on an empirical basis.

THERAPEUTIC EFFECTIVENESS OF PITUITARY IRRADIATION PROCEDURE IN CANCER

At the time of this writing it is too early to give an objective evaluation of the therapeutic usefulness of this new method. Some evidence is already being obtained, however, that tumor proliferation and hormonal balance are intimately related. In order to obtain a reliable estimation of the value of this therapy much more time and experience will have to be accumulated to determine optimum dosage and timing. Report on this phase of the investigation is being deferred to a later date.

SUMMARY

1. Initial use of high-energy 340-Mev protons in a human therapeutic investigation is reported.

2. Localized irradiation of the human pituitary gland was achieved by a combination of multiple-port and rotational application of the high-energy particles. This procedure allows accurate delivery of high doses to the pituitary gland, with much lower doses to surrounding bone, brain, nerves, and skin.

3. The patients were advanced cases of metastatic carcinoma of the breast, who had previous mastectomy, x-ray therapy, hormone administration, oophorectomy, and adrenalectomy.

Figs. 15a and 15b show typical data obtained. This measurement is complicated by the fact that pituitary ablation and prolonged bed rest both cause decalcification of bone.
4. Definite evidence of depression in pituitary hormone output and control of target organs was achieved with peak doses of 14,000 to 30,000 rad at the center of the pituitary. The effects were delayed and gradual in their onset. Undesirable side effects were absent.

5. So far only 9 months' experience on 12 patients is available. Full evaluation of the pituitary-abilation and cancer-therapeutic effectiveness will have to be made at a later time.

REFERENCES

-14-

29. Carson, Gwenneth et al., In preparation.

Fig. 1. The time of onset of marked changes due to radiation hypophysectomy is plotted against dose. Data for rats, dogs, and a few monkeys are included.
Fig. 2. The occurrence of cranial nerve damage in dogs as a function of time after various single doses of deuterons.
Fig. 3. Photograph of the unstained brain of a fully grown male beagle dog after a single dose of 40,000 rad to the pituitary. Rotation of the head occurred in a single plane, so that the beam swept an arc of 90°. Dose at the necrotic areas (black) is estimated to be about 30,000 rad. The animal died of brain hemorrhage two weeks after irradiation.
Fig. 4. General layout of the 184-inch cyclotron and treatment rooms (not to scale). The deflected beam passes through a room for physics experimentation and arrives at the treatment room beyond.
Fig. 5. Schematic of the positioning, alignment, and rotation of the human head. The optical treatment bench is aligned with the beam, while the patient lies on an adjustable table at some predetermined treatment angle. This angle is changed in 7.5° intervals on different treatment days. The head of the patient is held rigidly by a mask. Position of the head is checked by a lateral, horizontal diagnostic x-ray, taken by an x-ray machine rigidly mounted on the treatment bench. The sella turcica is aligned by moving set screws in the X (longitudinal) and Y (vertical) directions, until the center of the sella and the cross hairs marking the beam position are coincident.

With the vertical x-ray machine, mounted above the treatment plane, one obtains a frontal diagnostic picture. The patient's head is moved by set screws in the Z direction until the center of his sella coincides with the center of rotation of the head rotator, as marked by cross hairs.

Rotation of the head occurs around the longitudinal axis of the body (X); rotational limits of ± 30° or ± 35° are easily tolerated.
Fig. 6. Photograph of the treatment room. The treatment bench occupies the upper part of the picture; the beam enters on the upper right side in a steel tube. The patient is lying in position ready for treatment, her head rigidly supported by a plastic mask. The plastic mask is fastened on the head positioner and rotator. Diagnostic x-ray machines used in the alignment are on the left side and at the top of the picture.
Fig. 7. (a) Diagnostic x-ray of a patient's head in position for treatment. The cross hairs mark the center of the beam. The outlines of the sella turcica are clearly shown. The anterior clinoid processes nearly overlap.

(b) Autoradiograph of the beam may be obtained on any of the diagnostic x-ray films by briefly turning the proton beam on prior to developing the film. The black spot shows the shape of the beam, adjusted to fit each individual patient. The beam spot is actual size, while the x-ray picture of the sella is enlarged by 20% due to the finite focal distance of the x-ray machine.
Fig. 8. Vertical diagnostic x-ray of the skull (anterio-posterior projection).

The symmetry of the sella turcica with respect to the cross hairs is checked chiefly from the location of the base of the sella (Grange's line). The anterior clinoid processes and positions of the ocular cavities and of the cryptogale also are helpful.
Fig. 9. (a) Schematic drawing of a section through the sella turcica in the XY treatment plane, with isodose curves superimposed over the anatomical structures. Locations of the optic nerves, cranial nerves, and blood vessels are shown.

(b) Schematic drawing of a section through the sella turcica in the YZ treatment plane indicating locations of the pituitary stalk and optic chiasm.
Fig. 10. Autoradiograph of the 340-Mev proton beam as it crosses a 6-inch-wide piece of solid lucite. The beam enters from the left. Part of the loss of definition on the right comes from the slightly divergent nature of the beam and part of it from multiple elastic scattering.
Fig. 11. Autoradiograph of the proton beam on films placed in the lucite head phantom, exposed to a full set of rotations and position angles corresponding to the entire treatment schedule in human. The blackened area is the region of high dose. Note that the shape and size of this area closely correspond to the shape and size of the human hypophysis. (Rotation limits $\pm 30^\circ$, treatment plane orientation angles $\pm 30^\circ$, $\pm 22.5^\circ$, $\pm 15^\circ$, $\pm 7.5^\circ$, 0°. Beam aperture an ellipse with 8.5 mm major axis and 5.5 mm minor axis.)
Fig. 12. Dose distribution along the three major axes of the head, X (longitudinal), Y (A-P), and Z (lateral). Note that the dose level is 10% to 20% of the peak dose at the cranial nerves and temporal brain lobes. Parts of the optic nerves receive 20% to 30% of peak dose, while most of the optic chiasm and hypothalamus are essentially free from dose.
Fig. 13. 131 uptake, protein-bound iodine (PBI), and urinary FSH values in patient Mrs. M. W. (multiple skeletal and liver metastases), who received 13,850 rad in 63 days. Note the gradual decrease of 131 uptake and FSH until in about 6 months they are in the hypophysectomy range. The PBI values somewhat unaccountably increased for a considerable period of time.
Fig. 14. 131 uptake, PBI, and FSH values in patient Mrs. A. S. (extensive carcinoma metastases in cuirass and pulmonary metastases).
Fig. 15 a, b. Alkaline and acid phosphatase, fasting blood sugar, and urinary calcium secretion for patients Mrs. M. W. (a) and Mrs. A. S. (b).
<table>
<thead>
<tr>
<th>Patient</th>
<th>Peak dose radiation</th>
<th>Days</th>
<th>131I Uptake</th>
<th>PBI</th>
<th>FSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.W.</td>
<td>13,280</td>
<td>245</td>
<td>66</td>
<td>5.4</td>
<td>>130 <5</td>
</tr>
<tr>
<td>A.R.</td>
<td>12,880</td>
<td>122</td>
<td>23</td>
<td>6.0</td>
<td>>80 >100</td>
</tr>
<tr>
<td>E.P.</td>
<td>13,200</td>
<td>28</td>
<td>30</td>
<td>4.3</td>
<td>>160 <80</td>
</tr>
<tr>
<td>C.D.</td>
<td>16,250</td>
<td>105</td>
<td>30.5</td>
<td>8.9</td>
<td>>160 >120</td>
</tr>
<tr>
<td>K.C.</td>
<td>-16,400</td>
<td>141</td>
<td>30</td>
<td>7.3</td>
<td>>140 10</td>
</tr>
<tr>
<td>A.S.</td>
<td>18,050</td>
<td>165</td>
<td>21</td>
<td>3.0</td>
<td>>50 <5</td>
</tr>
<tr>
<td>C.H.</td>
<td>17,940</td>
<td>81</td>
<td>27</td>
<td>4.2</td>
<td>- -</td>
</tr>
<tr>
<td>A.T.</td>
<td>19,900</td>
<td>44</td>
<td>35</td>
<td>5.7</td>
<td>>200 <80</td>
</tr>
<tr>
<td>B.G.</td>
<td>18,400</td>
<td>34</td>
<td>33</td>
<td>30</td>
<td><80 <5</td>
</tr>
<tr>
<td>E.H.</td>
<td>22,000</td>
<td>59</td>
<td>19</td>
<td>5.1</td>
<td><5 <5</td>
</tr>
<tr>
<td>R.H.</td>
<td>26,000</td>
<td>42</td>
<td>15</td>
<td>4.7</td>
<td>>250 >80</td>
</tr>
<tr>
<td>M.S.</td>
<td>30,000</td>
<td>26</td>
<td>6</td>
<td>4.7</td>
<td><80 >5</td>
</tr>
</tbody>
</table>

Table I
PITUITARY PROTON IRRADIATION - TYPICAL LABORATORY DATA

Patient M. S., Multiple Bone Metastases

<table>
<thead>
<tr>
<th>Time</th>
<th>Dose RAD</th>
<th>Total Blood Proteins</th>
<th>Acid Phosphatase</th>
<th>Alkaline Phosphatase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>1 day</td>
<td>0</td>
<td>5.8</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>After</td>
<td>30 days</td>
<td>30,000</td>
<td>6.9</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>Normal range</td>
<td></td>
<td>6-8</td>
<td>4.5-5.5</td>
<td>15-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-4</td>
<td>5-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Calcium Uptake</th>
<th>PBI</th>
<th>Gonadotropins</th>
<th>RBC</th>
<th>Hemoglobin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>1107 mg/24 hrs</td>
<td>10</td>
<td>4.5</td>
<td>>160</td>
<td>2.4</td>
</tr>
<tr>
<td>After</td>
<td>689 mg/24 hrs</td>
<td>6</td>
<td>1.2</td>
<td><80</td>
<td>>10</td>
</tr>
<tr>
<td>Normal range</td>
<td>50-300 mg/24 hrs</td>
<td>20-40</td>
<td>4-8</td>
<td>32-128</td>
<td>4-5</td>
</tr>
</tbody>
</table>

Table II