Observational constraints on upper tropospheric NO$_x$ emissions, lifetime, and oxidative products

By

Benjamin Albert Nault

A dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Earth and Planetary Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ronald C. Cohen, Chair
Professor Inez Y. Fung
Professor Allen H. Goldstein

Fall 2015
Observational constraints on upper tropospheric NO\textsubscript{x} emissions, lifetime, and oxidation products

Copyright 2015

by

Benjamin Albert Nault
Abstract

Observational constraints on upper tropospheric NOx emissions, lifetime, and oxidation products

by

Benjamin Albert Nault

Doctor of Philosophy in Earth and Planetary Sciences

University of California, Berkeley

Professor Ronald C. Cohen, Chair

Nitrogen oxides (NOx ≡ NO + NO2) regulate tropospheric ozone (O3) production rates. In the upper troposphere (~8 – 15 km above ground level), where O3 is an important greenhouse gas, there are few detailed measurements of NOx and its oxidation products. As a result, the chemical reactions that involve NOx are poorly characterized under the low temperature conditions in this region of the atmosphere. For the reactions that have been studied under these conditions (e.g., daytime nitric acid, or HNO3, and pernitric acid, or HO2NO2, production), the results from various experiments indicate a 20 – 50% disagreement for the rate constants, and the other important NOx oxidation reactions (production of acyl peroxy nitrate, like PAN and PPN, and alkyl and multifunctional nitrates) have not been well characterized for the conditions characteristic of the upper troposphere. Besides the poorly understood NOx oxidation rates, recent calculations have indicated there is an important upper tropospheric NOx oxidation product (methyl peroxy nitrate, or CH3O2NO2) that has not been measured in the atmosphere. These uncertainties in the products and oxidation rate constants affect the characterization of the input of NOx from lightning.

In this dissertation, I report observations obtained during two airborne field campaigns, the Deep Convective Clouds and Chemistry (DC3, May – June, 2012) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS, August – September, 2013) experiments, and use these observations to investigate the reaction products and rate constants for the oxidation of NOx to less reactive reservoirs. The observations focused on fresh lightning emissions in deep convective outflow, and the subsequent chemical aging of the outflow downwind.

First, I present the first ambient observations of CH3O2NO2, and recommendations on how to measure upper tropospheric in situ NO2 with minimal interferences from the thermal decomposition of CH3O2NO2 during sampling. I show that CH3O2NO2 is ubiquitous in the upper troposphere and is as important NOx oxidative product as HNO3. Then, using observations from one quasi-Lagrangian flight during DC3, I derive constraints on the daytime NOx oxidative rate constants for the reactions that remove upper tropospheric NOx. The reactions include the production of CH3O2NO2, HO2NO2, PAN, PPN, alkyl and multifunctional nitrates, and HNO3.
These constraints indicate that NOx lifetime is longer than currently believe due to the daytime HNO3 and HO2NO2 production rate constants being 30 – 50% slower than currently assumed. Finally, the implications of the longer lifetime are used to show that lightning NOx emission rates are at least 33% larger than current estimates. As a consequence, model predictions indicate O3 in the upper troposphere increase by 5 – 10% with a resulting increase in radiative forcing.
Table of Contents

List of Tables .. iv

List of Figures .. v

Acknowledgements ... xi

Chapter 1. Introduction ... 1
 1.1 Sources of upper tropospheric NOx .. 1
 1.2 Production of upper tropospheric O3 .. 2
 1.3 Sinks of upper tropospheric NOx ... 3
 1.4 Analysis of upper tropospheric NOx chemistry ... 4

Chapter 2. Measurements of CH$_3$O$_2$NO$_2$ in the Upper Troposphere 6
 2.1 Introduction .. 6
 2.2 Thermal-dissociation laser-induced fluorescence detection of CH$_3$O$_2$NO$_2$ 7
 2.2.1 Thermal-dissociation laser-induced fluorescence ... 7
 2.2.2 NO$_2$ measurements free of non-acyl peroxy nitrate interference 8
 2.2.3 Inlet configurations and effects on NO$_2$ and CH$_3$O$_2$NO$_2$ measurements 9
 2.2.4 Accuracy, uncertainty and limit of detection for CH$_3$O$_2$NO$_2$ 9
 2.3 Ambient measurements of CH$_3$O$_2$NO$_2$.. 10
 2.3.1 Characterization of the measurements of ambient CH$_3$O$_2$NO$_2$ 10
 2.3.2 Examples of measurements of CH$_3$O$_2$NO$_2$... 11
 2.4 Discussion .. 13
 2.5 Conclusion .. 14

Chapter 3. Observational Constraints on the Oxidation of NO$_x$ in the Upper Troposphere 29
 3.1 Introduction ... 29
 3.2 Instrumentation .. 31
 3.3 Results .. 32
Chapter 4. Impacts of Updated Upper Tropospheric NOx Chemistry on Lightning NOx Emission Rates

4.1 Introduction .. 51
4.2 Methods .. 52
4.2.1 Model Description .. 52
4.2.2 Airborne Observations ... 53
4.2.3 Satellite Observations ... 54
4.3 Sensitivity in modeled NO2 and HNO3 from lightning emissions 54
4.3.1 Changes in NO2 column densities ... 54
4.3.2 Changes in upper tropospheric HNO3 mixing ratios 55
4.3.3 Changes in other regions of the world .. 55
4.4 Implications for lightning NOx emission rates ... 56
4.4.1 Comparison to upper tropospheric observations during DC3 56
4.4.2 Comparisons to satellite observations .. 58
4.4.3 Impacts of shorter NOx lifetime on direct lightning NOx observations 58
4.4.4 Impacts on O3 .. 59
4.5 Conclusions .. 59

Chapter 5. Conclusions .. 72

References ... 75

Appendix A. Observational Constraints on the Oxidation of NOx in the Upper Troposphere

A.1 Measurement Intercomparisons ... 90
A.2 Calculation of Alkyl and Multifunctional Nitrate .. 90
A.3 Calculation of Alkyl and Multifunctional Nitrate in Aerosol-Phase 91
A.4 Description of GEOS-Chem Model ... 91
List of Tables

Table 2.1. Lengths for tubing in the corresponding sections for Figure 2.3. 15

Table 2.2. Reactions and rates used in calculating dissociations in instrument and photostationary steady state calculations for CH$_3$O$_2$NO$_2$. 16

Table 2.3. Measurements used in this analysis and calculations of the lifetimes in Figure 2.1. 17

Table 3.1. Measurements used in this analysis to calculate rate constants, peroxy radical concentrations, average α, and ΣANs production rate. 38

Table 3.2. Calculated and recommended rate constants (±2σ uncertainty) for speciated peroxy nitrates at T = 225 K and P = 230 hPa. 39

Table 4.1. Description of the different chemical sensitivity cases used in this study. 61

Table 4.2. Coordinates of the different regions used in this study. 62

Table 4.3. Percent biases of the NO$_2$ column density from the averaged OMNO2d and DOMINO product over South America, Northern Africa, Southern Africa, and Southeast Asia during their respective summer months (June – August for Northern Africa and Southeast Asia and December – February for South America and Southern Africa). The Cases are defined in Table 4.1. The percent mean bias is calculated as (observations – Case 5)/observations × 100. 63

Table A1. Reactions and rate constants at T = 225 K and P = 230 hPa used to calculate PAN production rate and CH$_3$C(O)O$_2$ concentrations. 92

Table A2 Reactions and rate constants used to calculate PPN production rate and C$_2$H$_5$C(O)O$_2$ concentrations. 93

Table A3. Reactions and rate constants used to calculate CH$_3$O$_2$NO$_2$ production rate and CH$_3$O$_2$ concentrations. 94

Table A4. Species, rate constants, average α, and classification used to calculate alkyl nitrate production (E2 in Chapter 3 and Fig. 3.8b) at T = 225 K and P = 230 hPa. 95

Table A5. Species, corrected vapor pressure (atm), percent of gas–phase condensing onto the aerosol particle, and percent contribution of each species to the total calculated ΣANs$_{(p)}$. The vapor pressure is calculated using SIMPOL.1 (Pankow and Asher, 2008) and divided by 3 (Leungsakul et al., 2005; Fry et al., 2009; Fry et al., 2011). 97
List of Figures

Figure 2.1. Calculated mean total lifetime profile of CH$_3$O$_2$NO$_2$ (blue) and HO$_2$NO$_2$ (green) for typical conditions observed during DC3 in the daytime. The total lifetime is calculated using observed OH, photolysis rates, and temperatures along with the rate constants listed in Table 2.2. The black line marks the region where the non-acyl peroxy nitrates have a lifetime longer than 1 hour.

Figure 2.2. Calculated fraction of (a) CH$_3$O$_2$NO$_2$ and (b) HO$_2$NO$_2$ dissociated at residence times of 2.0 s (blue), 0.5 s (red) and 0.1 s (black) and cabin temperatures ranging from 275-310K. The calculations are for ambient pressures of 230 hPa and ambient temperatures of ~225 K. (c) XNO$_2$ (XNO$_2$ = NO$_2$ + fraction dissociated CH$_3$O$_2$NO$_2$ and fraction dissociated HO$_2$NO$_2$) as a function of the residence times and cabin temperatures used in (a) and (b). We use the median mixing ratios of NO$_2$ (200 pptv), CH$_3$O$_2$NO$_2$ (90 pptv), and HO$_2$NO$_2$ (40 pptv) observed between 220 and 230 K during DC3.

Figure 2.3. Schematic of the TD-LIF inlet sampling manifold. Arrows and letters refer to lengths referenced in Table 2.1. The species measured in each channel is shown at the right, where ΣPNs ≡ PAN + PPN + CH$_3$O$_2$NO$_2$ + HO$_2$NO$_2$ + … and ΣANs ≡ the sum of gas and aerosol alkyl and multifunctional nitrates.

Figure 2.4. The calculated fractional decomposition of CH$_3$O$_2$NO$_2$ (blue) and HO$_2$NO$_2$ (green) as a function of CH$_3$O$_2$NO$_2$ oven temperatures at a pressure of 230 hPa and a residence time of 0.08 s. The black line marks the target temperature (~60°C) for optimal separation of CH$_3$O$_2$NO$_2$ and HO$_2$NO$_2$. Rates used to calculate the fraction decomposition are shown in Table 2.2.

Figure 2.5. Schematic of the species measured in the TD-LIF channels and the temperature set points (temperatures the species dissociate) for those channels. ΣPNs ≡ PAN + PPN + CH$_3$O$_2$NO$_2$ + HO$_2$NO$_2$ + … and ΣANs ≡ alkyl and multifunctional nitrates. The channel subtracted to calculate the measured species (e.g., CH$_3$O$_2$NO$_2$) is shown before the equals sign in the third column.

Figure 2.6. Five minute averaged time series of (a) NO$_2$ (blue) and CH$_3$O$_2$NO$_2$ (black) channel and (b) temperature from a flight on 17 June 2012 during DC3. The local time was approximately midafternoon during this time segment.

Figure 2.7. Five minute averaged time series of (a) uncorrected (black) and corrected (magenta) CH$_3$O$_2$NO$_2$ for HO$_2$NO$_2$ thermal decomposition, (b) HO$_2$NO$_2$, and (c) pressure altitude (blue) and temperature (green) from a flight on 30 May 2012 during DC3. Local sunset is approximately 00:00 UTC.

Figure 2.8. CH$_3$O$_2$NO$_2$ inferred (∆CH$_3$O$_2$NO$_2$) as the difference of the total peroxy nitrates minus PAN, PPN, and HO$_2$NO$_2$ compared to CH$_3$O$_2$NO$_2$ observed by TD-LIF at temperatures between 220 and 230 K. The red line is a weighted fit to the data: slope of 0.93 (±0.07) and intercept of −33.0(±5.9) pptv. The uncertainties used in the calculations are ±40% + 20 pptv for...
CH$_3$O$_2$NO$_2$, ±15% + 20 pptv for ΣPNs, ±15% + 2 pptv for PAN, ±20% + 1 pptv for PPN, and ±30% + 1 pptv for HO$_2$NO$_2$. The R^2 of the fit is 0.3.

Figure 2.9. Five minute averaged time series of the chemical evolution of CH$_3$O$_2$NO$_2$ downwind from convection from a flight on 21 June 2012 during DC3. The x-axis shows the age of the air parcel that the DC-8 started sampling at approximately 12:00 UTC (0 hr), which was the local sunrise.

Figure 2.10. The median profile of (a) NO$_2$, (b) CH$_3$O$_2$NO$_2$, (c) CH$_3$O$_2$NO$_2$/NO$_2$ + CH$_3$O$_2$NO$_2$), and (d) temperature for ARCTAS-A (blue), DC3 (black), and SEAC4RS (dark grey). The red line in (b) is the median limit of detection for S/N = 2, 60 s for DC3. The green line in (c) is the median CH$_3$O$_2$NO$_2$/NO$_2$ + CH$_3$O$_2$NO$_2$ in background air where NO$_x$/NO$_y$ is less than 0.2 during DC3.

Figure 2.11. Binned modeled versus measured CH$_3$O$_2$NO$_2$. The bars identify the interquartile of the modeled CH$_3$O$_2$NO$_2$. The blue line has a slope of 1 for reference.

Figure 3.1. Daytime NO$_x$ fate in the upper troposphere. Reactions or channels that are not NO$_x$ sinks (e.g., R2a) are not included. Double arrows indicate important thermal decomposition reactions that occur in the upper troposphere. Arrows and compounds in red (black) indicate reactions and products with NO (NO$_2$), and the blue arrow and reactants (products) in the bracket correspond to all the products. The lifetime for conversion back NO$_x$ in the upper troposphere by photolysis and reactions with OH is days for all species except HO$_2$NO$_2$ and HOONO. For these two species, the lifetime is hours in the upper troposphere.

Figure 3.2. Portions of the NASA DC-8 flight path (blue) used to calculate all the rate constants. The wind direction and relative speed observed on the DC-8 for the 21 June 2012 flight is shown as red arrows. The edge of the cloud that marks time equals 0 for the Lagrangian observations is shown as the green dashed-dot line. Leg 1, 2, and 3 corresponds to the left most, center, and right most flight tracks. Red arrow and black horizontal line corresponds to 25 m/s wind speed and 88 km distance, respectively.

Figure 3.3. Time series of (a) NO and NO$_2$, (b) ΣPNs, (c) ΣANs, (g+p), and (d) HNO$_3$(g+p), where ΣPNs = CH$_3$O$_2$NO$_2$ + HO$_2$NO$_2$ + PAN + PPN and HNO$_3$(g+p) is the average of the IC and CIMS data. Note, NO$_2$ is blue and the left y-axis and NO is green and the right y-axis in (a). Measurements not shown between 14:30 and 15:10 UTC are when the DC-8 sampled air outside the Lagragian parcel. The vertical red lines correspond to the beginning of Legs 1, 2, and 3 in Figure 3.2.

Figure 3.4. First order loss rate of ethene. The solid red line is the slope (-9.6×10^{-5} s$^{-1}$) and the dashed-dot red line is the 2σ uncertainty ($\pm 1.4 \times 10^{-5}$ s$^{-1}$).

Figure 3.5. The observed HNO$_3$(g+p) production rate (molecules/cm3/s) versus NO$_2$ (molecules/cm3). The solid red line is the slope (6.2×10^{-5} s$^{-1}$) and the dashed-dot line is the 2σ uncertainty ($\pm 2.0 \times 10^{-5}$ s$^{-1}$).
Figure 3.6. Comparison of k_{1a} rate constant at $T = 225$ K and $M = 7.3 \times 10^{18}$ molecules/cm3 from Sander et al. (2011), Atkinson et al. (2004), Henderson et al. (2012) and this study (red). The range shows the 2σ uncertainty of the product of the rate constant and branching ratio for HNO$_3$ formation.

Figure 3.7. The observed (a) PAN, (b) PPN, (c) CH$_3$O$_2$NO$_2$, and (d) HO$_2$NO$_2$ production rate (molecules/cm3/s) versus NO$_2$ (molecules/cm3). The solid red line is the slope and the dashed-dot red lines are the 2σ uncertainty. The slopes are (a) $4.5(\pm 1.0) \times 10^{-5}$ s$^{-1}$, (b) $6.8(\pm 1.2) \times 10^{-6}$ s$^{-1}$, (c) $8.4(\pm 4.8) \times 10^{-5}$ s$^{-1}$, and (d) $3.4(\pm 1.8) \times 10^{-5}$ s$^{-1}$. For (c), three minute averages are used to reduce the noise of the measurements.

Figure 3.8. (a) The observed O$_3$ versus ΣAN$_{(g+p)}$ during the flight. The slope (2σ uncertainty) is $25(\pm 6)$. (b) The calculated cumulative production of alkyl and multifunctional nitrates (area plot in pptv) and the 15 minute average (±1σ of the mean) measured production (red error bars in pptv).

Figure 3.9. The observed (black at ambient T and P) and calculated (blue) cumulative production of the ΣAN$_{(p)}$. The observations are 15 minute averages (±1σ of the spread) and the p$_{vap}$ is reduced by a factor of 3.

Figure 3.10. Comparison of the NO$_x$ lifetime (NO$_x$ lifetime = NO$_x$/Loss of NO$_x$) in the upper troposphere ($T \leq 230$ K) from a steady state model during the entire DC3 campaign. The base case uses the recommended rate constants from Sander et al. (2011) and the updated chemistry case uses the rate constants from Henderson et al. (2012) and Bacak et al. (2011). The slope (±1σ) is $1.20(\pm 0.01)$.

Figure 3.11. The absolute annual mean change in (a) NO$_x$, (b) HO$_2$, (c) OH, (d) O$_3$, (e) HNO$_3$, (f) PAN, (g) HO$_2$NO$_2$, and (h) CH$_3$O$_2$NO$_2$ in the upper troposphere (200 – 400 hPa). The mean change is calculated as (updated chemistry case – base case). Values above the tropopause are removed. Note the different scales for the color bars.

Figure 4.1. Changes in modeled NO$_2$ column density ($\times 10^{14}$ molec./cm2, first row) and upper tropospheric HNO$_3$ mixing ratios (pptv, second row) between Case 1 and Case 2 (first column), Case 3 (second column) and Case 4 (third column). Description of each case is found in Table 4.1. Note the differences in scale for each figure.

Figure 4.2. Changes in modeled NO$_2$ column density ($\times 10^{14}$ molec./cm2) between Case 1 and Case 4 for Northern Africa, Southeastern Asia, Southern Africa, and South America. The changes correspond to the months June through August for Northern Africa and Southeastern Asia and December through February for Southern Africa and South America. Description of each case is found in Table 4.1 and definitions of the regions are found in Table 4.2. Note the differences in scale for each figure.

Figure 4.3. Changes in modeled upper tropospheric HNO$_3$ mixing ratios (pptv) between Case 1 and Case 4 for Northern Africa, Southeastern Asia, Southern Africa, and South America. The changes correspond to the months June through August for Northern Africa and Southeastern Asia.
Asia and December through February for Southern Africa and South America. Description of each case is found in Table 4.1 and definitions of the regions are found in Table 4.2. Note the differences in scale for each figure.

Figure 4.4. Comparison between modeled and measured ratio of upper tropospheric (a) NOx and (b) HNO3. Values reported from Hudman et al. (2007) and Martini et al. (2011) are shown in dark grey as comparison to the values from Case 1 (black), Case 4 (red) and Case 5 (blue). Description of the cases is found in Table 4.1. The light grey dashed-dot line in (b) represents the upper 1σ of observations during DC3. Note, the measured NOx and HNO3 from Hudman et al. (2007) and Martini et al. (2011) are adjusted as recommended by Browne et al. (2011) and Bertram et al. (2007), respectively, assuming the upper limit that 35% of the NO2 signal is thermally decomposed CH3O2NO2.

Figure 4.5. Relative frequency of NOx/HNO3 ratios observed during DC3 (grey bars) and calculated in Case 1 (black line), Case 4 (red line) and Case 5 (blue line) models.

Figure 4.6. Mean binned scatter plot of instantaneous 1 hr HNO3 production rate (pptv/s) from modeled N2O5 hydrolysis (black) and modeled reaction of OH with NO2 (red) versus the modeled-to-measured ratio from DC3 observations. The bars represent 1σ standard deviation about the mean of the production. A hydrolysis rate of 4×10^{-5} s^{-1} (Evans and Jacob, 2005) is assumed, and the slower OH and NO2 rate constant (Henderson et al., 2012) is used. The R^2 for the grey (N2O5 hydrolysis) and red (OH with NO2 reaction) is 0.23 and 0.02, respectively.

Figure 4.7. Comparison between modeled and observed O3 during DC3 (a). Modeled annually averaged percent in upper tropospheric (350 hPa – tropopause) O3 concentration, by region, between Case 1 and Case 5, where percent change is (Case 5 – Case 1)/Case 1 × 100.

Figure 4.8. Binned mean observed (black) and modeled (blue) upper tropospheric (200 – 350 hPa) versus relative age of air mass (NOx/HNO3).

Figure A1. Intercomparison of (a) DC-8 versus GV HO2NO2, (b) ΣPNs (ΣPNs = CH3O2NO2 + HO2NO2 + PAN + PPN) versus ΣPNs, and (c) IC HNO3(g+p) versus CIMS HNO3(g). The slopes (±1σ), intercepts (±1σ), and R^2 values are (a) 0.66(±0.01), −3(±1), and 0.96, (b) 0.96(±0.02), 7(±9), and 0.68, and (c) 1.09(±0.02), 34(±2), and 0.81.

Figure A2. Intercomparison of photostationary steady state (PSS) NO2 versus measured NO2. The slope (±1σ), intercept (±1σ), and R^2 is 0.99(±0.01), −12(±2), and 0.89.

Figure A3. The full flight path of the NASA DC-8 is shown in black for the entire 21 June 2012 experiment. Wind direction and relative speed observed on the DC-8 is shown by the red arrows.

Figure A4. Time series of (a) CH3O2NO2, (b) HO2NO2, (c) PAN, and (d) PPN. The red vertical lines indicate the start of legs 1, 2, and 3, respectively in Fig. 3.2. The CH3O2NO2 observations are three minute averages and the values.
Figure A5. First order loss rate of (a) toluene and (b) ethyne. The solid red line is the slope $(-1.01 \times 10^{-4}$ and -5.9×10^{-6} s$^{-1}$ for toluene and ethyne, respectively) and the dashed-dot red line is the 2σ uncertainty ($\pm 2.3 \times 10^{-5}$ and $\pm 2.6 \times 10^{-6}$ s$^{-1}$ for toluene and ethyne, respectively).
Dedicated in loving memory to my mom, Susan Kreigh,
and my step-father, Terry Kreigh, who both passed away too early.

Wished you could have been part of this and future journeys.
Acknowledgements

First, I would like to thank my advisor, Ronald Cohen, for his mentorship, support, advice, and guidance. He allowed me intellectual freedom in the topics I research while still pushing me to find the new and exciting story and discovery. With his guidance, I have achieved significant growth intellectually, scientifically, and how I communicate as a scientist within the community and to broader audiences. Thank you for everything and never giving up.

I appreciate all of the discussions and advice from my qualifying exam and dissertation committees. Thank you, Inez Fung, David Shuster, and Allen Goldstein, for assisting me with explaining how my work fits into the big picture and the discussions about how to present myself and my work for my future endeavors.

Also, I would like to thank the group members that assisted me in learning how to operate the instrument and to analyze the data from the two airborne campaigns I participated in and use in this dissertation: Paul Wooldridge, Charity Garland, and Sally Pusede. I also want to thank Sally for her guidance during my second and third years as I was preparing for my qualifying exam and my first paper submission.

The support from prior and current Cohen Research Group members has been greatly appreciated. Thanks for being my sounding board, coffee breaks, and support system. Also, Josh Laughner, thanks for being a model whiz. Finally, I want to thank the support of prior and current Earth and Planetary Science graduate students during my 4.5 years. The camping trip adventures and conversations will never be forgotten.

The assistance of the administrative staffs in Chemistry, especially Maria Rodriguez, Earth and Planetary Sciences, and NSF fellowship coordination office has been greatly valued and will never be overlooked.

This work could not have happened without the administrative work and ground and flight support of NASA. Also, I acknowledge and appreciate the observations, discussions, and comments from my many collaborators that made my research possible. Finally, without the planning and leadership from the science teams from the two campaigns, my work would not have been possible. Thanks.

My undergraduate and graduate school could not have been done without the support of my family, especially from my dad, Nat Nault, grandmother, Betty Lou Nault, mother-in-law, Kate Metiva, and father-in-law, Stan Metiva. Thank you always being there and the encouragement.

I owe the last 4.5 years to you, Vanessa Nault. Thank you for understanding when I needed to get work completed at home but at the same time realizing when you needed to pull me away from work. Also, thank you for the support, encouragement, and belief that I could complete this and the support for all my future endeavors.

Besides the collaborators mentioned at the beginning of each chapter, I would like to acknowledge the following people for allowing me to use their data for my research: in Chapter
2, Professor William H. Brune (Pennsylvania State University) for OH and HO$_2$ measurements, Professor L. Gregory Huey (Georgia Institute of Technology) for HO$_2$NO$_2$, PAN, and PPN measurements, Professor Paul O. Wennberg (California Institute of Technology) for HNO$_3$ measurements, and Dr. Thomas B. Ryerson (NOAA) for NO data; in Chapter 3, Joshua L. Laughner (University of California, Berkeley) for assistance in setting up and running the GEOS-Chem model, Professor Donald Blake (University of California, Irvine) for the hydrocarbon measurements, and Dr. Glenn Diskin (NASA) for the CH$_4$ measurements; and, in Chapter 4, Joshua L. Laughner (University of California, Berkeley) for assistance in GEOS-Chem and satellite analysis, Dr. Thomas B. Ryerson (NOAA) for NO and O$_3$ measurements, Professor Jack Dibb (University of New Hampshire) and Professor Paul O. Wennberg (California Institute of Technology) for HNO$_3$ measurements, Dr. Glenn Diskin (NASA) for H$_2$O measurements, and the free use of tropospheric NO$_2$ column data from the OMI sensor from www.temis.nl.

Finally, I gratefully acknowledge and appreciate the financial support from NASA grant NNX12AB79G and from the National Science Foundation Graduate Research Fellowship under grant number DGE 1106400.
Chapter 1. Introduction

Nitrogen, N₂, constitutes 78% of the atmosphere; however, it is a chemically inert gas. Oxidized forms of nitrogen (e.g., NO, NO₂, HNO₃, ...) make up a relatively small fraction of the atmosphere (10 parts per trillion, or ppt, to 100 parts per billion, or ppb). Nitrogen oxide concentrations and the associated chemistry are strongly coupled to the production of ozone (O₃) and aerosols, both of which impact human, animal, and plant health (e.g., Monks et al., 2009; Myre et al., 2013). Oxidized nitrogen is generally emitted to the atmosphere as a result of combustion, microbial activity in soil, or lightning in the form of nitric oxide (NO). The majority, ~60%, of the emissions originate from anthropogenic activities (e.g., Schumann and Huntrieser, 2007). These emissions are concentrated in locations with high population densities. In remote regions, isolated from anthropogenic activities, the important sources of nitrogen oxides are natural.

In this dissertation, I focus on the chemistry and on the oxidation products of NO in one of these remote regions of the atmosphere, the upper troposphere. The upper troposphere is one of the coldest regions of Earth’s atmosphere and, as a result, is a location with unique chemistry. The products of oxidation of NO include nitrogen dioxide (NO₂), peroxy nitrates (PNs, RO₂NO₂), alkyl and multifunctional nitrates (ANs, RONO₂), and nitric acid (HONO₂). Typically NO and NO₂ reaches a steady-state with each other on a time scale of 100 seconds. We commonly treat them as a family and refer to the two molecules collectively as NOₓ. The sum of all odd-nitrogen molecules are referred to as NOᵧ, and the higher oxide components of NOₓ are labelled NOₓ, which can be defined as NOᵧ – NOₓ.

The upper troposphere, 8 to 12 km above the Earth’s surface, is a region of the atmosphere where temperatures are in the range 210 – 250 K and pressures are 200 – 400 hPa. In this region of the atmosphere, O₃ is an important greenhouse (e.g., Martini et al., 2011; Myre et al., 2013). Directly observing NOₓ and its chemical oxidation products in this region is difficult. As a result, tests of our understanding of the chemistry in the region by comparison of model predictions that use laboratory measurements of the kinetics of NOₓ as constraints have been inconclusive.

1.1 Sources of upper tropospheric NOₓ

The major source of upper tropospheric NOₓ include lightning, with secondary sources including transport from the stratosphere above (region of the atmosphere that is 12 to 50 km above ground level), by convection from below (e.g., thunderstorms), and by emissions from aircraft (e.g., Levy et al., 1999; Bertram et al., 2007; Schumann and Huntrieser, 2007; Liang et al., 2011). Lighting heats the surrounding air to temperatures greater than 2000 K, breaking the oxygen, O₂, molecular bonds to form atomic oxygen (O). Once the air has cooled to temperatures less than 2000 K, NOₓ is produced by the reaction of O with N₂ (R1) or atomic N (from R1) with O₂ (R2; e.g., Goldenbaum and Dickerson, 1993; Lee et al., 1997).

\begin{align*}
(R1) \quad & N₂ + O \rightleftharpoons NO + N \\
(R2) \quad & O₂ + N \rightleftharpoons NO + O
\end{align*}
Estimates of the rate of lightning NO\textsubscript{x} production ranges from 2 to 8 Tg yr-1 (Schumann and Huntrieser, 2007). These ranges include uncertainties in the total global lightning flash rate and the flash energies as well as the production of NO\textsubscript{x} per flash. Cloud to cloud and cloud to ground lightning are thought to behave differently, and there is evidence that storms at different latitudes produce NO\textsubscript{x} at different rates—possibly due to the coupling of wind-shear to flash length (e.g., Schumann and Huntrieser, 2007). As an alternative to mechanistic estimates of lightning NO\textsubscript{x} production, observations of NO\textsubscript{x} in the upper troposphere have been used to constraints on the aggregate source at global or regional scales (e.g., Beirle et al., 2004; Hudman et al., 2007; Martin et al., 2007; Martini et al., 2011; Miyazaki et al., 2014). In the simplest terms, the lightning NO\textsubscript{x} emission rate as estimate from NO\textsubscript{x} concentrations can be described as being inversely proportional to the NO\textsubscript{x} lifetime (e.g., Beirle et al., 2004). The NO\textsubscript{x} lifetime accounts for the chemical and physical removal of the lightning NO\textsubscript{x} prior to sampling (E1). Here, τ_{NO_x} represents the lifetime of NO\textsubscript{x}.

\begin{equation}
\text{Lightning NO}_x \text{ Emission} \propto \frac{[\text{NO}_x]}{\tau_{\text{NO}_x} \text{ Lightning flash rate}}
\end{equation}

This approximation is applicable for regional scale lightning NO\textsubscript{x} emission rates that are less than a day old (e.g., Beirle et al., 2004; Beirle et al., 2010). In one study that did take chemistry uncertainties into account, Miyazaki et al. (2014) estimated a 1 Tg yr-1 uncertainty (17%) in global lightning NO\textsubscript{x} emission rates due to uncertainty in the NO\textsubscript{x} lifetime.

1.2 Production of upper tropospheric O\textsubscript{3}

The uncertainty associated with lightning NO\textsubscript{x} has important impacts on the global burden of O\textsubscript{3} (e.g., Labrador et al., 2005). The coupling of NO\textsubscript{x} to O\textsubscript{3} production occurs in the process of oxidation of organic molecules. In the upper troposphere, the source of these organic molecules, which includes methane, butane, and acetone, is the transport of surface air by deep convection (e.g., Bechara et al., 2010; Apel et al., 2012). During the day, the organics, represented here as RH, are oxidized by the hydroxyl radical (OH), forming organic peroxy radicals, RO•_2 (R3). When RO•_2 reacts with NO (R4a), NO\textsubscript{2} is produced. The reaction of the organic alkoxy radical, RO•, with O\textsubscript{2} (R5) leads to the production of the hydroperoxy radical, or HO•_2. HO•_2 also reacts with NO to form NO\textsubscript{2} (R6a). The two NO\textsubscript{2} molecules produced from this reaction sequence undergo photolysis (R7) to produce ground state oxygen atom, O(3P), and O(3P) reacts with O\textsubscript{2} to form O\textsubscript{3} (R8).

\begin{align*}
(R3) \quad \text{RH} + \text{OH} &\rightarrow \text{RO}_2^\ast + \text{H}_2\text{O} \\
(R4a) \quad \text{RO}_2^\ast + \text{NO} &\rightarrow \text{RO}^\ast + \text{NO}_2 \\
(R5) \quad \text{RO}^\ast + \text{O}_2 &\rightarrow \text{RO} + \text{HO}_2^\ast \\
(R6) \quad \text{HO}_2^\ast + \text{NO} &\rightarrow \text{OH} + \text{NO}_2 \\
(R7) \quad \text{NO}_2 &\rightarrow \text{NO} + \text{O}(3\text{P})
\end{align*}
Here, M represents any third body molecule (e.g., argon, N$_2$, or O$_2$). As concluded by Seltzer et al. (2015), upper tropospheric O$_3$ concentrations, and its radiative impact, are sensitive to the upper tropospheric NO$_x$ lifetime. If the NO$_x$ lifetime is longer (shorter) than currently assumed, then more (less) NO$_x$ is available to produce O$_3$, and more (less) ozone is produced.

1.3 Sinks of upper tropospheric NO$_x$

The sinks of upper tropospheric NO$_x$ include oxidation to PNs, ANs, and HNO$_3$ and transport to lower altitudes in the troposphere (e.g., Bertram et al., 2007; Fang et al., 2010; Henderson et al., 2011). For this dissertation, I focus only on the daytime chemical oxidation of NO$_x$. Nighttime processes can be summarized as follows: NO$_2$ reacts with O$_3$ to produce nitrate radical, NO$_3^\bullet$, which reacts with NO$_2$ to produce dinitrogen pentoxide, N$_2$O$_5$. N$_2$O$_5$ then hydrolyzes on aerosols to produce two HNO$_3$ molecules.

\[\text{(R9)} \quad \text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3^\bullet + \text{O}_2 \]
\[\text{(R10)} \quad \text{NO}_2 + \text{NO}_3^\bullet \rightarrow \text{N}_2\text{O}_5 \]
\[\text{(R11)} \quad \text{N}_2\text{O}_5 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 \]

In the daytime, PNs are produced as products of the oxidation of NO$_2$ by simple peroxy radicals, RO$_2^\bullet$ and HO$_2^\bullet$, or acyl peroxy radicals, R(O)O$_2^\bullet$ (R12 – R14); ANs are produced as a branch in the oxidation of NO to NO$_2$ by RO$_2^\bullet$ (R4b); and HNO$_3$ is produced through the oxidation of NO$_2$ by OH (R15).

\[\text{(R12)} \quad \text{HO}_2^\bullet + \text{NO}_2 + \text{M} \rightleftharpoons \text{HO}_2\text{NO}_2 + \text{M} \]
\[\text{(R13)} \quad \text{RO}_2^\bullet + \text{NO}_2 + \text{M} \rightleftharpoons \text{RO}_2\text{NO}_2 + \text{M} \]
\[\text{(R14)} \quad \text{R(O)O}_2^\bullet + \text{NO}_2 + \text{M} \rightarrow \text{R(O)O}_2\text{NO}_2 + \text{M} \]
\[\text{(R4b)} \quad \text{RO}_2^\bullet + \text{NO} \rightarrow \text{RONO}_2 \]
\[\text{(R15)} \quad \text{OH} + \text{NO}_2 + \text{M} \rightarrow \text{HONO}_2 + \text{M} \]

However, Henderson et al. (2011) concluded the representation of the chemical removal of NO$_x$ in the upper troposphere is not consistent with observations, a problem that arises from the challenge of replicating upper tropospheric conditions in the laboratory. This misrepresentation of NO$_x$ sinks in the atmosphere has led to a 30% NO$_x$ under-prediction compared to observations (Henderson et al., 2011), indicating that the NO$_x$ removal rate is too fast. This fast NO$_x$ removal rate has important impacts on upper tropospheric O$_3$ chemistry (e.g., Seltzer et al., 2015), and lightning NO$_x$ production rates (e.g., Stavrakou et al., 2013).

Once produced, the effect of these products depends on their lifetime before conversion back to NO$_x$. The shortest lived molecules are HO$_2$NO$_2$ and RO$_2$NO$_2$. Their lifetime is typically hours due to the weak molecular bond between NO$_2$ and the simple peroxy radical. The lifetime of HO$_2$NO$_2$ and its organic analogs is set by the thermal decomposition rate (the reverse of R12 and R13) and by photolysis (R16 – R17). HO$_2$NO$_2$ also reacts with OH at an appreciable rate (R18).
Several studies of HO\textsubscript{2}NO\textsubscript{2} have clarified the role this molecule plays in the upper troposphere, identified that it photolyzes in the near-infrared through an unusual (for the atmosphere) overtone absorption mechanism, and established that current models and observations are in disagreement by about a factor of 2 for the concentration of HO\textsubscript{2}NO\textsubscript{2} in the upper troposphere (e.g., Jaeglé et al., 2001; Murphy et al., 2004; Hudman et al., 2007; Kim et al., 2007). Prior to my dissertation (Chapters 2 and 3), there were no direct measurements of any RO\textsubscript{2}NO\textsubscript{2} molecule in the atmosphere. The presence of methyl peroxy nitrate (CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}), the most important RO\textsubscript{2}NO\textsubscript{2} in the atmosphere, was inferred from observations of total PNs in a pioneering study by Murphy et al. (2004). Subsequently, Browne et al. (2011) established the presence of CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} by analysis of the temperature dependence of an apparent interference in the measurement of NO\textsubscript{2}. Such interferences have plagued measurements of NO\textsubscript{2} for decades (see Bradshaw et al., 1999 or Davis et al., 1993) without a clear explanation for their cause.

The acyl PNs, ANs, and HNO\textsubscript{3} have longer chemical lifetimes of weeks to months. As a result, the transport and rainout is the main path for removal of these molecules from the upper troposphere. Chemical reactions of NO\textsubscript{2} include photolysis and oxidation by OH to produce NO\textsubscript{x}, or partitioning to aerosols or cloud droplets (e.g., Jacob et al., 1996; Marmo et al., 2014). The residence time of air masses remaining in the upper troposphere is less than 10 days (e.g., Bertram et al., 2007).

1.4 Analysis of upper tropospheric NO\textsubscript{x} chemistry

To improve our understanding of upper tropospheric NO\textsubscript{x} chemistry, I designed and built an instrument for measuring CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} and measured CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} and a wide suite of other nitrogen oxides as part of two airborne field campaigns that focused on the chemistry of the upper troposphere: the Deep Convective Clouds and Chemistry (DC3, May – June 2012) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, August – September 2013). Both studies occurred over the continental United States to enable sampling of air where the effects of lightning and convection were large.

In Chapter 2, I describe instrument modifications that enabled the first direct measurements of CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}, and evaluate their effectiveness using measurements from the DC3 experiment. I then describe the role of CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} in the chemistry of the upper troposphere over the continental United States.

In Chapter 3, I target a comprehensive test of our understanding of the kinetics of NO\textsubscript{x} oxidation. I use observations downwind of a mesoscale convective system. In the cloud, all soluble species are removed by rain and large emissions of NO\textsubscript{x} are created by lightning. Consequently, we have an observational definition of time zero as the time when air exits the cloud and oxidation of NO\textsubscript{x} begins. The NASA DC-8 followed this air mass in a quasi-Lagrangian fashion enabling direct inference of the oxidation rate of NO\textsubscript{x} and the production rate of each of the higher oxides. I characterize the daytime rates for conversion of NO\textsubscript{x} to HO\textsubscript{2}NO\textsubscript{2}, CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}, and acyl peroxy.
nitrates, to the sum of alkyl and multifunctional nitrates, and to HNO₃. I find that the HNO₃ and HO₂NO₂ production rates are ~30 – 50% lower than currently expected while the other rate are consistent with expectations to within ±30%. Also, I evaluate the potential for HNO₃ production from the reaction of HO₂ with NO (e.g., Butkovskaya et al., 2005; Butkovskaya et al., 2007) to affect the chemistry of the upper troposphere. I show that to be consistent with measurements, if this reaction takes place, it must be accompanied by a slower rate for the production of HNO₃ from the reaction of OH with NO₂. Finally, I show that decreasing HNO₃ and HO₂NO₂ kinetic rate constants, which increases the NOx lifetime, increases upper tropospheric O₃ mixing ratios.

In Chapter 4, I build on the previous chapters to assess our understanding of lightning NOx emission rates. Compared to a model without CH₃O₂NO₂ chemistry and with fast HNO₃ production rate constant, a model with CH₃O₂NO₂ chemistry (Chapter 2) and with a slower HNO₃ production rate (Chapter 3) has decreased upper tropospheric HNO₃ and increased upper tropospheric NOₓ and O₃ mixing ratios. The NO₂ column density, a quantity observed from space instruments, such as OMI, is also larger in the revised model. The revised model is more consistent with observations, including in situ and space-based observations of HNO₃ and measurements of the ratio of HNO₃ to NO₂. The lightning NOₓ emissions that are consistent with observations are 33% larger than in the reference model.

In Chapter 5, I propose future directions for research, including measurements of CH₃O₂NO₂ to investigate its seasonal and diurnal behavior and additional measurements that would aid in our understanding of upper tropospheric HNO₃.
Chapter 2. Measurements of CH$_3$O$_2$NO$_2$ in the Upper Troposphere

2.1 Introduction

Methyl peroxy nitrate (CH$_3$O$_2$NO$_2$) is predicted to be abundant at temperatures below 240 K (Figure 2.1), where it serves a temporary reservoir of NO$_x$ (NO$_x$ = NO + NO$_2$). CH$_3$O$_2$NO$_2$ can be transported on regional scales moving NO$_x$ from source to receptor regions and thus affecting O$_3$, OH, and other chemistry of the upper troposphere. The emphasis on low temperatures results from non-acyl peroxy nitrates, such as CH$_3$O$_2$NO$_2$ and pernitric acid (HO$_2$NO$_2$), having lower thermal stability and shorter lifetimes than acyl peroxy nitrates, such as peroxy acetyl nitrate (PAN) and peroxy proionyl nitrate (PPN) (~100 kJ/mol for non-acyl peroxy nitrates versus ~120 kJ/mol for acyl peroxy nitrates).

The low thermal stability of CH$_3$O$_2$NO$_2$ poses analytical challenges. At room temperature, CH$_3$O$_2$NO$_2$’s lifetime is shorter than a second (Figure 2.1). If the air sample is brought into a warm aircraft prior to detection, this very short lifetime results in substantial decomposition for residence times longer than even 0.1 s (Figure 2.2). As a result of the decomposition of CH$_3$O$_2$NO$_2$, there is also a positive interference to NO$_2$ measurements with residence times at warm temperatures longer than 0.1 s. For NO$_2$ measurements, the interference was quantified to be as much as 43% during a study over Canada in springtime (Browne et al., 2011). Thus, in addition to interest in measurement of CH$_3$O$_2$NO$_2$, it is essential to understand CH$_3$O$_2$NO$_2$ to correct NO$_2$ measurements for its presence. Alternatively, in the absence of such a correction, it is necessary to interpret NO$_2$ measurements as XNO$_2$, where XNO$_2$ is the sum of ambient NO$_2$ and some or all of non-acyl peroxy nitrates (Browne et al., 2011).

There have been no prior direct measurements of ambient CH$_3$O$_2$NO$_2$. The only in situ information about CH$_3$O$_2$NO$_2$ stems from indirect measurements of the sum of CH$_3$O$_2$NO$_2$ and HO$_2$NO$_2$ by calculating the difference between total peroxy nitrate measurements and measurements of PAN and PPN (Murphy et al., 2004) and analysis of temperature dependent deviations of NO$_2$ observations from photostationary state (e.g., Browne et al., 2011). Murphy et al. (2004) showed that the sum of non-acyl peroxy nitrates contribute a large fraction of the NO$_y$ budget (10 – 22%) in aged air masses. However, the individual contributions from CH$_3$O$_2$NO$_2$ and HO$_2$NO$_2$ were only identified modeling the sum. Browne et al. (2011) calculated that CH$_3$O$_2$NO$_2$ mixing ratios of ~25 pptv should be expected; however, their calculations along flight tracks were limited to air samples at photostationary steady state.

Using the limited observational inferences as a guide, Browne et al. (2011) added CH$_3$O$_2$NO$_2$ chemistry to a global chemical transport model (GEOS-Chem) and used the model to explore the role of CH$_3$O$_2$NO$_2$ in the upper troposphere (T ~210 – 250 K), allowing study of conditions that do not reach steady-state. They found that CH$_3$O$_2$NO$_2$ chemistry reduced NO$_x$ mixing ratios with measureable effects on O$_3$, HNO$_3$, OH, and HO$_2$. They showed that CH$_3$O$_2$NO$_2$ mixing ratios peak in the summer due to more rapid photochemistry, and that biomass burning or deep
convection can increase CH$_3$O$_2$NO$_2$ mixing ratios by a factor of ~3 over mean atmospheric mixing ratios.

Following on these studies demonstrating an understanding of CH$_3$O$_2$NO$_2$ is important, we developed new configurations of the UC Berkeley thermal-dissociation laser-induced fluorescence (TD-LIF) instrument inlet aimed at unambiguous measurements of NO$_2$ and CH$_3$O$_2$NO$_2$. In this paper, we describe the design and performance of a modified inlet for the TD-LIF instrument, provide recommendations for minimizing and eliminating CH$_3$O$_2$NO$_2$ interferences to NO$_2$, and present observations of CH$_3$O$_2$NO$_2$ from DC3 and SEAC4RS. These measurements are the first in situ measurements providing specific information about atmospheric CH$_3$O$_2$NO$_2$.

2.2 Thermal-dissociation laser-induced fluorescence detection of CH$_3$O$_2$NO$_2$

2.2.1 Thermal-dissociation laser-induced fluorescence

The TD-LIF instrument has been described previously (Thornton et al., 2000; Day et al., 2002; Wooldridge et al., 2010). Briefly, NO$_2$ is measured by laser-induced fluorescence (Thornton et al., 2000) with supersonic expansion (Cleary et al., 2002). A 7 kHz, Q-switched, frequency doubled Nd:Yag laser pumps a tunable dye laser producing ~20 ns pulses at 585 nm and a bandwidth of 0.06 cm$^{-1}$. The dye laser is tuned on (9 s) and off (3 s) an isolated rovibronic feature of the jet-cooled NO$_2$ at 585 nm. The ratio between the peak and background NO$_2$ fluorescence is 10:1 sampling from an ambient pressure of 1 atm. The laser light is focused through two multipass White cells. Red-shifted fluorescence (wavelengths greater than 700 nm) of excited NO$_2$ is detected at a right angle to the excitation using a red sensitive photomultiplier tube (Hamamatsu H7421-50). Scattered light is minimized using time-gated detection and dielectric band pass filters that block light at wavelengths less than 700 nm. Fluorescence counts are collected at 4 Hz and reported as one second averages. For these measurements, calibrations were performed at least every hour during a level flight leg or after a significant change in altitude using a 4.67 (±0.26) ppmv NO$_2$ standard (Praxair) diluted to ~2 – 8 ppbv in zero air. The accuracy and stability of this reference gas was compared against a library of other NO$_2$ standards in our laboratory. Measurements of zero were obtained with similar frequency. Fluorescence quenching by water vapor is accounted for (Thornton et al., 2000) using diode laser hygrometer (DLH) measurements of H$_2$O (Diskin et al., 2002).

The TD-LIF instrument samples ambient air using a large flow carried through a 35 mm i.d. tube from the undisturbed free stream either by ram pressure from a partially plugged shroud at the inlet tip (ARCTAS, DC3), or carried through a 16 mm i.d. tube by a 120 liter/minute sample pump (SEAC4RS). The core of that flow was subsampled by a short (~ 0.10 m long) tube where air had a residence time of ~0.03 s and then split into multiple sample lines for detection of specific categories of NO$_y$ (Figure 2.3). For CH$_3$O$_2$NO$_2$ detection, the sample is passed directly through a heated quartz tube (internal diameter ~ 4.3 mm, T ≈ 60°C) for 0.06 – 0.08 s followed by PFA tubing (i.d. ~3.2 mm) to one of two NO$_2$ detection cells. The residence time between the heater and the detector was ~0.4 – 0.5 s. The temperature (~60°C) for the heated quartz was chosen by calculating the temperature that would maximize the amount of CH$_3$O$_2$NO$_2$ dissociated while minimizing the amount of HO$_2$NO$_2$ dissociated (Figure 2.4). This also ensures
that PAN and its analogs (e.g., PPN) did not dissociate in the CH$_3$O$_2$NO$_2$ channel. Dinitrogen pentoxide (N$_2$O$_5$) has similar thermodynamics to HO$_2$NO$_2$ at this temperature (Wooldridge et al., 2010); however, the typical N$_2$O$_5$ mixing ratio during the day is estimated to be small due to slow rates of production at night under the low temperature conditions favorable to the presence of CH$_3$O$_2$NO$_2$.

The lower maximum temperatures of the CH$_3$O$_2$NO$_2$ and sum of peroxy nitrates (ΣPNs) heaters compared to the sum of alkyl and multifunctional nitrates (ΣANs) heaters (Figure 2.5) allow for a simpler construction, as described in Wooldridge et al., 2010). Instead of bare nichrome wire, commercial woven fiberglass insulated heating cables are used, and thermocouples are fastened directly to the quartz tubes. The very small amount of heat required to bring the sample streams to 60°C (~ 1 W for CH$_3$O$_2$NO$_2$, as calculated from the air heat capacity and mass flow rates) means that neither the maximum heater power (50 W across the 0.175 m heated length for CH$_3$O$_2$NO$_2$ dissociation) nor the quartz tube thermal resistance are limiting factors that would cause the thermocouple measurement to differ significantly from the internal gas temperature. Additionally, using the constant wall temperature approximation (e.g., Kliner et al., 1997; references therein), we calculate thermal equilibration lengths of 0.01 – 0.02 m for CH$_3$O$_2$NO$_2$, which are short compared to the overall heated lengths (0.175 m).

Mixing ratios of ambient CH$_3$O$_2$NO$_2$ are determined by subtracting the measurements from the NO$_2$ channel from the CH$_3$O$_2$NO$_2$ channel (60°C, Figure 2.5). Similarly, the mixing ratio of ambient sum of peroxy nitrates (ΣPNs = PAN + PPN + CH$_3$O$_2$NO$_2$ + HO$_2$NO$_2$ + …) is determined by subtracting the measurements from the NO$_2$ channel from the ΣPNs channel, and the mixing ratio of ambient sum of alkyl and multifunctional nitrates (ΣANs) is determined by subtracting the measurements from the ΣPNs channel from the ΣANs channel (Figure 2.5). The HNO$_3$ channel depicted in Figure 2.5 has been employed in other TD-LIF deployments, but was not part of the DC3 and SEAC4RS configuration.

2.2.2 NO$_2$ measurements free of non-acyl peroxy nitrate interference

Measuring NO$_2$ free of CH$_3$O$_2$NO$_2$ interference is desirable for understanding upper tropospheric chemistry and essential to correctly derive the CH$_3$O$_2$NO$_2$ and ΣPNs mixing ratios from the heated channels (Figure 2.5). Measurements of NO$_2$ at ambient temperatures lower than 240 K, where non-acyl peroxy nitrates are more abundant due to longer thermal lifetimes (Figure 2.1), are not free of interferences if the sample residence time in the aircraft is long (Browne et al., 2011). Figure 2.2 shows the calculated fraction of CH$_3$O$_2$NO$_2$ and HO$_2$NO$_2$ thermally dissociating in the NO$_2$ inlet prior to measuring NO$_2$ for different residence times and as a function of cabin temperature. At a cabin temperature of 300 K, approximately 90$^{+5}_{-10}$%, 40$^{+11}_{-6}$% and 10$^{+3}_{-2}$% of CH$_3$O$_2$NO$_2$ and approximately 8±2%, 2%, and less than 1% of HO$_2$NO$_2$ will thermally decompose at residence times of 2 s, 0.5 s, and 0.1 s, respectively. The uncertainties are based on the 2σ range reported for the decomposition rates of CH$_3$O$_2$NO$_2$ and HO$_2$NO$_2$. The partial thermal decomposition of CH$_3$O$_2$NO$_2$ and HO$_2$NO$_2$ can cause up to 50% increase in the measured NO$_2$ (XNO$_2$) versus the ambient NO$_2$ (Figure 2.2c).
2.2.3 Inlet configurations and effects on NO$_2$ and CH$_3$O$_2$NO$_2$ measurements

Figure 2.3 shows the schematic of the TD-LIF inlet. Table 2.1 lists the lengths and residence times of the different inlets used in three recent experiments: ARCTAS, DC3, and SEAC4RS. The residence time is set by the measured length of tubing, the diameter of the tubing, and the flow speed of the sample pumps. Unless stated otherwise, the tubing has an internal diameter of ~3.2 mm. Following the recommendations of Wooldridge et al. (2010) and Browne et al. (2011), we shortened the residence time for the NO$_2$ sample from 0.85 s during ARCTAS to 0.5 s during DC3 reducing the decomposition of CH$_3$O$_2$NO$_2$ in the NO$_2$ channel from ~90% to ~45%.

To reduce the residence time further during SEAC4RS, a bypass pump was used to bring a large flow of ambient air through a 1 m, 15.9 mm id tubing (Section A). We then reduced the length of Section C (Figure 2.3, Table 2.1). The combined effects of these changes reduced the maximum residence time for NO$_2$ from 0.5 s (DC3) to 0.23 s (SEAC4RS). This reduced the fractional thermal dissociation of CH$_3$O$_2$NO$_2$ in the NO$_2$ channel to ~22%.

We obtain an NO$_2$ measurement by correcting for the partial thermal dissociation of CH$_3$O$_2$NO$_2$ in the XNO$_2$ channel (E1). The CH$_3$O$_2$NO$_2$ measurement is then determined by subtracting the corrected NO$_2$ and the fraction of thermally dissociated HO$_2$NO$_2$ in the CH$_3$O$_2$NO$_2$,CHANNEL (E2) from the total signal in that channel.

\[
\text{(E1)} \quad \text{NO}_2 = \text{XNO}_2 - f_1 \times \text{CH}_3\text{O}_2\text{NO}_2 \\
\text{(E2)} \quad \text{CH}_3\text{O}_2\text{NO}_2 = \text{CH}_3\text{O}_2\text{NO}_2,\text{CHANNEL} - \text{NO}_2 - f_2 \times \text{HO}_2\text{NO}_2
\]

To calculate the fraction of CH$_3$O$_2$NO$_2$ (f_1 in E1) that dissociates in the NO$_2$ sample line, we use the cabin temperature we measured near the TD-LIF NO$_2$ sample line along with the thermal rate constant (Table 2.2). To calculate the fraction of HO$_2$NO$_2$ (f_2 in E2) that has dissociated in the CH$_3$O$_2$NO$_2$ channel we use the measured oven temperature (~60°C) along with the thermal rate constant (Table 2.2). With E1 and E2, we solve for the NO$_2$ and CH$_3$O$_2$NO$_2$ mixing ratios observed if there is an independent measurement or calculation of HO$_2$NO$_2$. During DC3, the correction for the thermal dissociation of CH$_3$O$_2$NO$_2$ in XNO$_2$ ranged from a 0 to 30 pptv (0 to 40%) of the NO$_2$ mixing ratios at temperatures less than 240 K. During SEAC4RS, the correction ranged from 0 to 23 pptv (0 to 21%). The correction for the thermal decomposition of HO$_2$NO$_2$ ranged from 0 to 20 pptv (0 to 11%) for both campaigns.

2.2.4 Accuracy, uncertainty and limit of detection for CH$_3$O$_2$NO$_2$

The accuracy of the CH$_3$O$_2$NO$_2$ measurements depends on the accuracy of our primary measurement of NO$_2$, the conversion efficiency in our inlet, and the interference of HO$_2$NO$_2$ in the CH$_3$O$_2$NO$_2$ channel. The uncertainty of the NO$_2$ calibration standard is ~5% (Sect. 2.1). Using the rate constant and 2σ uncertainty recommendation from JPL-2011 (Sander et al., 2011) at 60°C, the thermal decomposition rate constant of CH$_3$O$_2$NO$_2$ is $36.0^{+19.0}_{-13.0}$ s$^{-1}$, indicating between 85 to 99% of CH$_3$O$_2$NO$_2$ is decomposed at this temperature and a residence time of 0.08
s. Including the uncertainty estimated for the oven temperature (±5°C), the amount of CH3O2NO2 decomposed ranges from 70 to 100%.

The transmission efficiency depends on recombination reactions and oxidation of NO. Day et al. (2002) and Wooldridge et al. (2010) showed these to be small effects (~5 – 10%) at NO mixing ratios less than 1 ppbv and pressures in the inlet region less than 400 hPa (ambient pressure). Assuming mixing ratios of 100 pptv for CH3O2NO2 and HO2NO2, 200 pptv for NO2 and 100 – 5000 pptv NO, we calculate a positive interference to CH3O2NO2 measurements ranging from ~8 – 26% from the oxidation of NO to NO2. The typical NO mixing ratios at the temperatures where CH3O2NO2 is stable range from ~50 – 400 pptv (25th – 75th percentile), and for this range, we calculate a positive interference of less than 10%.

The similarity in the bond strength between HO2NO2 and CH3O2NO2 (~100 kJ/mol and ~93 kJ/mol, respectively) prevents having a temperature set point that completely separates the two species (Figure 2.4). For the oven temperature selected to decompose CH3O2NO2 (60°C) and the residence time in the oven (0.08 s), we calculate approximately 11 ±10% of HO2NO2 dissociates in the CH3O2NO2 channel.

To summarize, the largest source of uncertainty in the CH3O2NO2 measurement is the uncertainty of the thermal decomposition rate for CH3O2NO2 (~30%). Other effects, including recombination reactions and the thermal decomposition of HO2NO2, are each typically less than 10%. Combining these uncertainties we estimate a total uncertainty of ±40% for the CH3O2NO2 measurements. We note that the sum of the NO2 and CH3O2NO2 measurement (CH3O2NO2,CHANNEL) is more accurate (~10%) than the separate quantities.

The precision of the CH3O2NO2 measurements depends on the shot noise of the photon counting rate, the precision of the NO2 measurement, the concentration of NO2, and the concentration of CH3O2NO2. Using the median NO2 measured between 10 and 11 km (~200 pptv of NO2), and using the lower end of the sensitivity observed during DC3 (0.100 cts/ppbv), the detection limit for CH3O2NO2 is 15 pptv at 60 s⁻¹ for S/N = 2. The median limit of detection (S/N = 2 and 60 s averaged data) for the DC3 campaign is shown versus altitude in Figure 2.10b (red line).

2.3 Ambient measurements of CH3O2NO2

CH3O2NO2 measurements obtained during the DC3 (2012) and SEAC4RS (2013) campaigns are located in NASA’s publicly accessible archives: http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs and https://www-air.larc.nasa.gov/cgi-bin/ArcView/seac4rs.

2.3.1 Characterization of the measurements of ambient CH3O2NO2

We utilize the measurements collected during DC3 to validate the temperature selected to fully decompose CH3O2NO2 with minimal interference from thermally decomposed HO2NO2. First, we ensure that the CH3O2NO2 channel behaves as expected: at high ambient temperatures (low altitudes), the CH3O2NO2 channel should only be detecting ambient NO2 (Figure 2.1), but at low ambient temperatures (high altitudes), the CH3O2NO2 channel should be detecting NO2 from
both ambient NO₂ and thermally decomposed CH₃O₂NO₂. This behavior is observed, as shown in an example flight from DC3 (Figure 2.6).

We utilize observations of CH₃O₂NO₂ near the limit of detection (Figure 2.7 between ~ 21:30 – 22:00 UTC) to calculate an upper limit for the thermal dissociation of HO₂NO₂ in the CH₃O₂NO₂ channel. The median observed HO₂NO₂ is 94±11 pptv (plus 75th quartile and minus 25th quartile). In the CH₃O₂NO₂ channel, we observed 24±6 pptv (median and inter-quartile). Assuming zero for the CH₃O₂NO₂ mixing ratio, this gives an upper limit to the HO₂NO₂ present in the CH₃O₂NO₂ of ~ 25% of the measured HO₂NO₂. Calculations (Sect. 2.4) suggest the most likely amount of HO₂NO₂ thermally dissociated is ~ 11% with an upper limit based on propagating uncertainties in rate constants of 25 to 30%. The observed values are consistent with this upper limit. We conclude that some (~ 6 pptv calculated assuming photostationary steady state) CH₃O₂NO₂ should be present. If we assume this CH₃O₂NO₂ is correct, the HO₂NO₂ fraction dissociated is ~20%.

Another way to determine if the temperature selected fully decomposes CH₃O₂NO₂ with minimal HO₂NO₂ decomposition is to compare inferred CH₃O₂NO₂ (CH₃O₂NO₂(inferred) ≡ ΣPNs – (HO₂NO₂ + PAN + PPN)) to measured CH₃O₂NO₂ during the DC3 campaign (Figure 2.8). PAN, PPN, and HO₂NO₂ were measured by chemical ionization-mass spectrometry (Slusher et al., 2004; Kim et al., 2007). The observations used are one minute merged data from temperatures between 220 and 230 K, where the signal of the CH₃O₂NO₂ measurements is well above the noise (Figure 2.10b). Using weighted (by accounting for differing uncertainties in the individual points) bivariate least-squares fit (Cantrell, 2008), we calculated a slope of 0.93 (±0.07) after removing a few (378 of 1296 data points) CH₃O₂NO₂(inferred) points more than ±3 standard deviations from the median. While the CH₃O₂NO₂(inferred) is not completely independent from CH₃O₂NO₂, as both CH₃O₂NO₂ and ΣPNs are measured by the same technique, the fact that the slope is nearly 1 indicates that the temperature selected for the CH₃O₂NO₂ channel is high enough to thermally decompose all CH₃O₂NO₂ supporting the conclusion that the thermally decomposed HO₂NO₂ is less than the upper limit (25 – 30%) calculated above. Also, the slope implies that the direct CH₃O₂NO₂ measurement is accurate to at least the ±40% estimated above.

2.3.2 Examples of measurements of CH₃O₂NO₂

A time series of CH₃O₂NO₂ during the flight of 30 May 2012 is shown in Figure 2.7. The flight of 30 May 2012 sampled the aging of deep convective outflow affected by lightning NOₓ. The time series shows the variability in the CH₃O₂NO₂ measurements that corresponds to the temperature of the ambient air, location of the DC-8, and chemical aging of the convective outflow. Prior to approximately 01:00 UTC, the DC-8 was sampling different altitudes to characterize the aging of convective outflow. At higher altitudes (ambient temperatures less than 230 K), the mean CH₃O₂NO₂ was ~100 pptv and ranged from ~26 – 165 pptv. At lower altitudes (ambient temperatures between 230 and 260 K), the mean CH₃O₂NO₂ was ~35 pptv and ranged from 0 – 95 pptv.

At these lower altitudes, where the HO₂NO₂ measurements are higher (range ~20 – 170 pptv) than the CH₃O₂NO₂ mixing ratios, the structure in the CH₃O₂NO₂ measurements is not simply a mirror of the HO₂NO₂ measurements. If there was a large interference from the thermal
decomposition of HO$_2$NO$_2$ in the CH$_3$O$_2$NO$_2$ channel, we would expect to see similar structure in the two measurements. For example, between 00:00 and 01:00 UTC, the HO$_2$NO$_2$ mixing ratio peaks at ~170 pptv whereas at the same time the CH$_3$O$_2$NO$_2$ decreases to ~10 pptv. The largest corrections for the thermal decomposition of HO$_2$NO$_2$ in the CH$_3$O$_2$NO$_2$ channel occur at lower altitudes (Figure 2.6a), where CH$_3$O$_2$NO$_2$ lifetime is short (Figure 2.1). This gives us further confidence that the thermal decomposition of HO$_2$NO$_2$ is a small interference in the measurement of CH$_3$O$_2$NO$_2$.

At 01:00 UTC, the DC-8 started sampling stratospheric air. The CH$_3$O$_2$NO$_2$ mixing ratios dropped to ~30 pptv (range 0 – 140 pptv). This is lower than the values observed in the upper troposphere at ambient temperatures less than 230 K. Even though the temperatures in the lower stratosphere are low enough for the CH$_3$O$_2$NO$_2$ lifetime to be greater than 10 h, the observations of CH$_3$O$_2$NO$_2$ indicate that the lower stratosphere has lower mixing ratios of the precursors of CH$_3$O$_2$ needed to form CH$_3$O$_2$NO$_2$. These include the peroxy acyl radical from acetaldehyde, which reacts with NO to produce CH$_3$O$_2$ (e.g., Tyndall et al., 2001), and CH$_3$COCH$_3$, which can photolyze to produce CH$_3$O$_2$ (e.g., Folkins and Chatfield, 2000; Jaeglé et al., 2001; Neumaier et al., 2014).

An example of CH$_3$O$_2$NO$_2$ behaving as an important NO$_x$ reservoir downwind of deep convection is shown in Figure 2.9. We observed the production of CH$_3$O$_2$NO$_2$ in the aging outflow of deep convection during the flight of 21 June 2012 (Figure 2.9). The DC-8 sampled at a constant ambient temperature (~ 225 K) and entered the outflow between 12:00 and 13:00 UTC (0 – 1 hr chemically aged), where the CH$_3$O$_2$NO$_2$ mixing ratio was observed to be ~ 0 pptv. The aircraft sampled the outflow until ~ 16:30 UTC (4.5 hr chemically aged), where the CH$_3$O$_2$NO$_2$ mixing ratio was observed to be ~ 150 pptv. The apparent CH$_3$O$_2$NO$_2$ production rate was ~ 60 pptv/hr; an indication of the importance of this chemistry to understanding upper tropospheric chemistry.

We compare the median CH$_3$O$_2$NO$_2$ profiles during DC3 (black), SEAC4RS (dark grey) and ARCTAS-A (blue, as calculated by Browne et al., 2011) in Figure 2.10b. At altitudes above 7 km, higher mixing ratios of CH$_3$O$_2$NO$_2$ were observed during both DC3 and SEAC4RS compared to ARCTAS-A due to the influence of deep convection, lightning NO$_x$, and biomass burning. Also, DC3 and SEAC4RS occurred later in the year (May – June, 2012 for DC3 and August – September, 2013 for SEAC4RS) than ARCTAS-A (April 2008); thus, photochemistry is more active, producing more CH$_3$O$_2$NO$_2$. This is consistent with calculations described by Browne et al. (2011), who found modeled CH$_3$O$_2$NO$_2$ mixing ratios are higher in the summer than spring. Finally, the observed CH$_3$O$_2$NO$_2$ during SEAC4RS at lower altitudes is higher due to the impact of agricultural and biomass burning. Higher NO$_2$ mixing ratios from biomass burning shift the equilibrium towards CH$_3$O$_2$NO$_2$, similar to the higher NO$_2$ concentrations shifting the equilibrium towards HO$_2$NO$_2$ production near an urban area (Spencer et al., 2009). Higher CH$_3$O$_2$NO$_2$ mixing ratios due to biomass burning are also consistent with the GEOS-Chem results from Browne et al. (2011).

During DC3, CH$_3$O$_2$NO$_2$ measurements drop to below the limit of detection at high altitudes (> 11.5 km) when the aircraft was sampling the stratosphere. The stratosphere is higher during
Finally, we compare the calculated instantaneous steady state mixing ratios of CH$_3$O$_2$NO$_2$ to measured CH$_3$O$_2$NO$_2$ during DC3 (Figure 2.11). We limit the comparison to observations for which the calculated lifetime of CH$_3$O$_2$NO$_2$ lifetime is less than 10 hrs, the tropospheric composition has not been recently perturbed by fresh NO$_x$ emissions (NO$_x$/NO$_y$ < 0.4) or stratospheric intrusions (O$_3$/CO < 1.25), and to solar zenith angles less than 85 degrees—all conditions that make it more likely that steady-state is achieved in the atmosphere. We used only observations at temperatures less than 250 K where CH$_3$O$_2$NO$_2$ is thermally stable. The comparison is also restricted to observations where the CH$_3$O$_2$NO$_2$ signal is greater than the noise (Figure 2.10b). Observations with CH$_3$O$_2$NO$_2$/NO$_2$ greater than 1 are excluded as they are also indicative of an air mass that is not in steady state. The reactions used in the model are listed in Table 2.2. Within the variability and uncertainty of the measured and calculated CH$_3$O$_2$NO$_2$ mixing ratios, the calculated values are nearly the same as the measured values (median values falling near the one-to-one line). This agreement indicates that for air parcels in photostationary state, the chemistry and kinetics are understood to within ~50%. This also provides us with further confidence in the laboratory measurements of CH$_3$O$_2$NO$_2$ rate constants that we use as a guide to instrument design and evaluation.

2.4 Discussion

We observe that CH$_3$O$_2$NO$_2$ composed 7% and HO$_2$NO$_2$ composed 5% of the median NO$_y$ budget between 220 K and 230 K during DC3, where NO$_y$ is defined as the sum of NO$_x$, ΣPNs, ΣANs, and HNO$_3$. This is significant since many transport models neglect CH$_3$O$_2$NO$_2$ chemistry. During DC3, these weakly bound species comprised a larger portion of the median NO$_y$ budget than HNO$_3$ (4%), which is a terminal sink for NO$_x$. In prior analysis of tropospheric air cooler than 240 K, Murphy et al. (2004) calculated the sum of HO$_2$NO$_2$ and CH$_3$O$_2$NO$_2$ as the difference between ΣPNs measured by TD-LIF and PAN and PPN measured using gas chromatography with electron capture detection (similar to CH$_3$O$_2$NO$_2$(inferred) above). Murphy et al. (2004) reported these two species were a large fraction of the NO$_y$ budget at temperatures cooler than 240 K (17 – 22%), impacting NO$_x$ and radical chemistry. That the percent composition for the non-acyl peroxy nitrates during DC3 were lower than reported by Murphy et al. (2004) is not surprising because the sampling during DC3 was biased toward fresh convective outflow impacted by lightning NO$_x$, meaning NO$_x$ composed 39% of the NO$_y$ budget versus the 5% for the air observed by Murphy et al. (2004). For background air (NO$_x$/NO$_y$ < 0.2) observed during DC3, CH$_3$O$_2$NO$_2$ composed a larger portion of the median NO$_y$ budget (12%), and the median non-acyl peroxy nitrate portion of the NO$_y$ budget (CH$_3$O$_2$NO$_2$ + HO$_2$NO$_2$ (5%)) have a sum that is similar to the observations by Murphy et al. (2004) of 17%.

The lower NO$_x$ mixing ratios characteristic of the air observed by Murphy et al. (2004) were also characteristic of the air observed by Browne et al. (2011) during ARCTAS-A, as both were springtime measurements in the Arctic. The comparison of ARCTAS-A, DC3, and SEAC4RS is shown in Figure 2.10. The lower NO$_2$ mixing ratios observed during ARCTAS-A meant the air masses were more dominated by CH$_3$O$_2$NO$_2$ than by NO$_2$ (CH$_3$O$_2$NO$_2$/(NO$_2$ + CH$_3$O$_2$NO$_2$) ratios closer to 1.0, Figure 2.10c). The dominance of CH$_3$O$_2$NO$_2$ means that it is an important source of
NO₂ and that is an important interference for ambient NO₂ measurements. In DC3, the influence of lightning NOₓ emissions made the median air masses for the entire campaign more dominated by NO₂ (ratios less than 0.5). The median CH₃O₂NO₂/(NO₂ + CH₃O₂NO₂) ratios are slightly smaller than the ratios calculated in the GEOS-Chem model from Browne et al. (2011) for air influenced by deep convection and lightning. In background air sampled by the DC-8 during DC3, the median CH₃O₂NO₂/(NO₂ + CH₃O₂NO₂) ratio was in the range 0.3 to 0.7 (Figure 2.10c, green). We observed similar median ratios during SEAC4RS (Figure 2.10c, dark grey). These values are closer to the values calculated during ARCTAS (Figure 2.10c, blue; Browne et al., 2011). This indicates that with aging, the ratio shifts toward air more dominated by CH₃O₂NO₂, impacting the ozone chemistry of the upper troposphere, as previously described by Browne et al. (2011).

2.5 Conclusion

We report the first measurements of atmospheric CH₃O₂NO₂ and report recommendations for instrument design to sample NO₂ free of interferences from thermal decomposition of non-acyl peroxy nitrates. We conclude that for an instruments where the sample lines and/or detection region is at a temperature of 300 K, total residence times of less than 0.1 s are required to keep the interference to NO₂ below 10% of CH₃O₂NO₂ and below 1% of HO₂NO₂. We describe a procedure for evaluating the interference of CH₃O₂NO₂ in NO₂ using measurements of CH₃O₂NO₂. Our measurements show that for temperatures less than 230 K, the median CH₃O₂NO₂ is a larger fraction of NOₓ than HNO₃, experimental evidence for the important role of CH₃O₂NO₂ in the upper troposphere. Our measurements also provide supporting evidence for the conclusion of Browne et al. (2011), who predicted larger CH₃O₂NO₂ mixing ratios in summer than in spring using GEOS-Chem.
Table 2.1. Lengths for tubing in the corresponding sections for Figure 2.3.

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Section A</th>
<th>Section B</th>
<th>Section C</th>
<th>NO$_2$ Channel Max Residence Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCTAS</td>
<td>0.10 m</td>
<td>0.20 m</td>
<td>2.00 m</td>
<td>0.85 s</td>
</tr>
<tr>
<td>DC3</td>
<td>0.10 m</td>
<td>0.08 m</td>
<td>1.50 m</td>
<td>0.50 s</td>
</tr>
<tr>
<td>SEAC4RS</td>
<td>1.00 m</td>
<td>0.12 m</td>
<td>0.30 m</td>
<td>0.23 s</td>
</tr>
</tbody>
</table>
Table 2.2. Reactions and rates used in calculating dissociations in instrument and photostationary steady state calculations for CH$_3$O$_2$NO$_2$.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
</tr>
</thead>
</table>
| CH$_3$O$_2$NO$_2$ + M \rightleftharpoons CH$_3$O$_2$ + NO$_2$ + M | Low Pressure Limit = $1.0 \times 10^{-30} \times (T/300)^{-4.8}$
High Pressure Limit = $7.2 \times 10^{-12} \times (T/300)^{-2.1}$
$K_{eq} = 9.5 \times 10^{-29} \times \exp(11234/T)$\(^a\) |
| HO$_2$NO$_2$ + M \rightleftharpoons HO$_2$ + NO$_2$ + M | Low Pressure Limit = $2.0 \times 10^{-31} \times (T/300)^{-3.4}$
High Pressure Limit = $2.9 \times 10^{-12} \times (T/300)^{-1.1}$
$K_{eq} = 2.1 \times 10^{-27} \times \exp(10900/T)$\(^a\) |
| CH$_3$O$_2$NO$_2$ + $h\nu$ \rightarrow CH$_3$O$_2$ + NO$_2$ | Assumed to be equal to measured HO$_2$NO$_2$ value |
| CH$_3$O$_2$NO$_2$ + $h\nu$ \rightarrow CH$_3$O + NO$_3$ | Assumed to be equal to measured HO$_2$NO$_2$ value |
| CH$_4$ + OH \rightarrow CH$_3$O + NO$_2$ | $2.45 \times 10^{-12} \times \exp(-1775/T)$\(^a\) |
| CH$_3$C(O)O$_2$ + NO \rightarrow CH$_3$O + CO$_2$ + NO$_2$ | $8.1 \times 10^{-12} \times \exp(270/T)$\(^a\) |
| CH$_3$C(O)O$_2$ + CH$_3$C(O)O$_2$ + 2 O \rightarrow 2 CH$_3$O + 2 CO$_2$ + O$_2$ | $2.9 \times 10^{-12} \times \exp(500/T)$\(^a\) |
| CH$_3$C(O)CH$_3$ + $h\nu$ + O$_2$ \rightarrow CH$_3$C(O)O$_2$ + CH$_3$O$_2$ | Measured |
| CH$_3$OOH + OH $\xrightarrow{70\%}$ CH$_3$O$_2$ + H$_2$O | $3.8 \times 10^{-12} \times \exp(200/T)$\(^a\) |
| CH$_3$C(O)OH + $h\nu$ + O$_2$ \rightarrow CH$_3$O$_2$ + HCO | Measured |
| CH$_3$O$_2$ + NO \rightarrow CH$_3$O + NO$_2$ | $2.8 \times 10^{-12} \times \exp(300/T)$\(^a\) |
| CH$_3$O$_2$ + HO$_2$ \rightarrow Products | $3.8 \times 10^{-13} \times \exp(780/T)$\(^b\) |
| CH$_3$O$_2$ + CH$_3$C(O)O$_2$ \rightarrow Products | $2.0 \times 10^{-12} \times \exp(500/T)$\(^a\) |
| CH$_3$O$_2$ + CH$_3$O \rightarrow Products | $9.5 \times 10^{-14} \times \exp(390/T)$\(^a\) |
| CH$_3$C(O)O$_2$NO$_2$ \rightleftharpoons CH$_3$C(O)O$_2$ + NO$_2$ | Low Pressure Limit = $9.7 \times 10^{-29} \times (T/300)^{-5.6}$
High Pressure Limit = $9.3 \times 10^{-12} \times (T/300)^{-1.5}$
$K_{eq} = 9.0 \times 10^{-29} \times \exp(14000/T)$\(^a\) |
| CH$_3$C(O)O$_2$NO$_2$ + $h\nu$ \rightarrow CH$_3$C(O)O$_2$ + NO$_2$ | Measured |
| CH$_3$C(O)OOH + OH \rightarrow CH$_3$C(O)O$_2$ + H$_2$O | 3.7×10^{-12}\(^c\) |
| CH$_3$C(O)H + OH + O$_2$ \rightarrow CH$_3$C(O)O$_2$ + H$_2$O | $4.7 \times 10^{-12} \times \exp(345/T)$\(^b\) |
| CH$_3$C(O)O$_2$ + HO$_2$ \rightarrow Products | $5.2 \times 10^{-13} \times \exp(980/T)$\(^b\) |
| HO$_2$NO$_2$ + OH \rightarrow Products | $8.8 \times 10^{-19} \times T^2 \times \exp(1130/T)$\(^d\) |

\(^a\) JPL 2011 (Sander et al., 2011)
\(^c\) Master Chemical Mechanism v3.2 (Saunders et al., 2003)
\(^d\) Jiménez et al. (2004)
Table 2.3. Measurements used in this analysis and calculations of the lifetimes in Figure 2.1.

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_2$, CH$_3$O$_2$NO$_2$, ΣPNs</td>
<td>Thermal dissociation-laser induced fluorescence</td>
<td>Thornton et al. (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Day et al. (2002)</td>
</tr>
<tr>
<td>HO$_2$NO$_2$, PAN, PPN</td>
<td>Chemical ionization mass spectrometry</td>
<td>Slusher et al. (2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kim et al. (2007)</td>
</tr>
<tr>
<td>OH, HO$_2$</td>
<td>Laser induced fluorescence</td>
<td>Faloona et al. (2004)</td>
</tr>
<tr>
<td>UV photolytic frequencies</td>
<td>Spectral radiometry</td>
<td>Shetter and Müller (1999)</td>
</tr>
</tbody>
</table>
Figure 2.1. Calculated mean total lifetime profile of CH$_3$O$_2$NO$_2$ (blue) and HO$_2$NO$_2$ (green) for typical conditions observed during DC3 in the daytime. The total lifetime is calculated using observed OH, photolysis rates, and temperatures along with the rate constants listed in Table 2.2. The black line marks the region where the non-acyl peroxy nitrates have a lifetime longer than 1 hour.
Figure 2.2. Calculated fraction of (a) CH$_3$O$_2$NO$_2$ and (b) HO$_2$NO$_2$ dissociated at residence times of 2.0s (blue), 0.5s (red) and 0.1s (black) and cabin temperatures ranging from 275-310K. The calculations are for ambient pressures of 230 hPa and ambient temperatures of ~225 K. (c) XNO$_2$ (XNO$_2$ = NO$_2$ + fraction dissociated CH$_3$O$_2$NO$_2$ and fraction dissociated HO$_2$NO$_2$) as a function of the residence times and cabin temperatures used in (a) and (b). We use the median mixing ratios of NO$_2$ (200 pptv), CH$_3$O$_2$NO$_2$ (90 pptv), and HO$_2$NO$_2$ (40 pptv) observed between 220 and 230 K during DC3.
Figure 2.3. Schematic of the TD-LIF inlet sampling manifold. Arrows and letters refer to lengths referenced in Table 2.1. The species measured in each channel is shown at the right, where $\Sigma \text{PNs} \equiv \text{PAN} + \text{PPN} + \text{CH}_3\text{O}_2\text{NO}_2 + \text{HO}_2\text{NO}_2 + \ldots$ and $\Sigma \text{ANs} \equiv$ the sum of gas and aerosol alkyl and multifunctional nitrates.
Figure 2.4. The calculated fractional decomposition of CH$_3$O$_2$NO$_2$ (blue) and HO$_2$NO$_2$ (green) as a function of CH$_3$O$_2$NO$_2$ oven temperatures at a pressure of 230 hPa and a residence time of 0.08 s. The black line marks the target temperature (~60°C) for optimal separation of CH$_3$O$_2$NO$_2$ and HO$_2$NO$_2$. Rates used to calculate the fraction decomposition are shown in Table 2.2.
Figure 2.5. Schematic of the species measured in the TD-LIF channels and the temperature set points (temperatures the species dissociate) for those channels. ΣPNs \equiv PAN + PPN + CH$_3$O$_2$NO$_2$ + HO$_2$NO$_2$ + … and ΣANs \equiv alkyl and multifunctional nitrates. The channel subtracted to calculate the measured species (e.g., CH$_3$O$_2$NO$_2$) is shown before the equals sign in the third column.
Figure 2.6. Five minute averaged time series of (a) NO$_2$ (blue) and CH$_3$O$_2$NO$_2$ (black) channel and (b) temperature from a flight on 17 June 2012 during DC3. The local time was approximately midafternoon during this time segment.
Figure 2.7. Five minute averaged time series of (a) uncorrected (black) and corrected (magenta) CH$_3$O$_2$NO$_2$ for HO$_2$NO$_2$ thermal decomposition, (b) HO$_2$NO$_2$, and (c) pressure altitude (blue) and temperature (green) from a flight on 30 May 2012 during DC3. Local sunset is approximately 00:00 UTC.
Figure 2.8. CH$_3$O$_2$NO$_2$ inferred (ΔCH$_3$O$_2$NO$_2$) as the difference of the total peroxy nitrates minus PAN, PPN, and HO$_2$NO$_2$ compared to CH$_3$O$_2$NO$_2$ observed by TD-LIF at temperatures between 220 and 230 K. The red line is a weighted fit to the data: slope of 0.93 (± 0.07) and intercept of $-33.0 (\pm 5.9)$ pptv. The uncertainties used in the calculations are $\pm 40\% + 20$ pptv for CH$_3$O$_2$NO$_2$, $\pm 15\% + 20$ pptv for ΣPNs, $\pm 15\% + 2$ pptv for PAN, $\pm 20\% + 1$ pptv for PPN, and $\pm 30\% + 1$ pptv for HO$_2$NO$_2$. The R^2 of the fit is 0.3.
Figure 2.9. Five minute averaged time series of the chemical evolution of CH$_3$O$_2$NO$_2$ downwind from convection from a flight on 21 June 2012 during DC3. The x-axis shows the age of the air parcel that the DC-8 started sampling at approximately 12:00 UTC (0 hr), which was the local sunrise.
Figure 2.10. The median profile of (a) NO₂, (b) CH₃O₂NO₂, (c) CH₃O₂NO₂/(NO₂ + CH₃O₂NO₂), and (d) temperature for ARCTAS-A (blue), DC3 (black), and SEAC4RS (dark grey). The red line in (b) is the median limit of detection for S/N = 2, 60 s for DC3. The green line in (c) is the median CH₃O₂NO₂/(NO₂ + CH₃O₂NO₂) in background air where NOₓ/NOᵧ is less than 0.2 during DC3.
Figure 2.11. Binned modeled versus measured CH$_3$O$_2$NO$_2$. The bars identify the interquartile of the modeled CH$_3$O$_2$NO$_2$. The blue line has a slope of 1 for reference.
Chapter 3. Observational Constraints on the Oxidation of NOx in the Upper Troposphere

3.1 Introduction

In the upper troposphere, where O3 is an important greenhouse gas (Myre et al., 2013). NOx (NOx \equiv NO + NO2) regulates O3 production. NOx concentrations in this region of the atmosphere are affected by transport including import from the stratosphere, convection, and large-scale descent, emissions from aircraft, in situ production by lightning, and photochemical reactions that convert NOx to higher oxides, or NOz (Figure 3.1; Levy et al., 1999; Bertram et al., 2007; Hudman et al., 2007; Liang et al., 2011). The higher oxides include HNO3 (R1a and R2b), alkyl and multifunctional nitrates (R3b), and acyl and non-acyl peroxy nitrates (R4 and R5).

\[
\begin{align*}
\text{(R1a)} & \quad \text{NO}_2 + \text{OH} + M \xrightarrow{k_{1a}} \text{HNO}_3 + M \\
\text{(R1b)} & \quad \text{NO}_2 + \text{OH} + M \xrightarrow{k_{1b}} \text{HOONO} + M \\
\text{(R-1b)} & \quad \text{HOONO} + M \xrightarrow{k_{-1b}} \text{NO}_2 + \text{OH} + M \\
\text{(R2a)} & \quad \text{NO} + \text{HO}_2 \xrightarrow{k_{2a}} \text{NO}_2 + \text{OH} \\
\text{(R2b)} & \quad \text{NO} + \text{HO}_2 \xrightarrow{k_{2b}} \text{HNO}_3 \\
\text{(R3a)} & \quad \text{NO} + \text{RO}_2^* \xrightarrow{k_{3a}} \text{NO}_2 + \text{RO}^* \\
\text{(R3b)} & \quad \text{NO} + \text{RO}_2^* \xrightarrow{k_{3b}} \text{RONO}_2 \\
\text{(R4)} & \quad \text{NO}_2 + \text{R(O)}\text{O}_2^* + M \xrightarrow{k_4} \text{R(O)}\text{O}_2\text{NO}_2 + M \\
\text{(R-4)} & \quad \text{R(O)}\text{O}_2\text{NO}_2 + M \xrightarrow{k_{-4}} \text{NO}_2 + \text{R(O)}\text{O}_2^* + M \\
\text{(R5)} & \quad \text{NO}_2 + \text{RO}_2^* (\text{HO}_2) + M \xrightarrow{k_5} \text{RO}_2\text{NO}_2 (\text{HO}_2\text{NO}_2) + M \\
\text{(R-5)} & \quad \text{RO}_2\text{NO}_2 (\text{HO}_2\text{NO}_2) + M \xrightarrow{k_{-5}} \text{NO}_2 + \text{RO}_2^* (\text{HO}_2) + M
\end{align*}
\]

It has been typically assumed (with support from calculations) that production of HNO3 strongly regulates the upper tropospheric NOx lifetime with other NOz playing a minor role (Jacob et al., 1996; Schultz et al., 2000; Cooper et al., 2011). However, there are relatively few laboratory studies constraining the rate constants for the production of NOz under the conditions of the upper troposphere (T less than 250 K and P less than 400 hPa). For example, there are no laboratory observations of the rate constants for production of peroxy acetyl nitrate (PAN) and proxy propionyl nitrate (PPN) at temperatures less than 240 K.

The main sink of NOx, formation of HNO3, has been subject of the most laboratory experiments. Total loss of OH in the reaction of OH with NO2 is known to represent production of HNO3.
(R1a) and peroxynitrous acid (HOONO, R1b; Mollner et al., 2010). The production of HOONO has only been studied at room temperature (Mollner et al., 2010), where the branching is 87% to HNO3 and 13% to HOONO. Significant extrapolations are involved at the temperatures and pressures of the upper troposphere. Estimates of the branching are 75% for HNO3 and 25% for HOONO at T = 225 K and P = 230 hPa (Sander et al., 2011). In addition to R1a, some laboratory studies (Butkovskaya et al., 2005; Butkovskaya et al., 2007; Butkovskaya et al., 2009) have measured the yield of HNO3 from the reaction of HO2 and NO (R2b) and suggest that this minor branch has non-zero yield of less than 1%. Since the overall rate of HO2 and NO is of order 10 – 100 times faster than the OH and NO2 reaction in the atmosphere, this low yield, if correct, represents an important sink of NOx and source of HNO3. Laboratory measurements of yields in this range are extremely difficult as secondary reactions (e.g., R2a then R1a) in the gas phase or on the walls of the reaction vessel can be significant interferences.

Other sinks of NOx are also important in the upper troposphere. For example, pernitric acid (HO2NO2) and methyl peroxy nitrate (CH3O2NO2) are important short-lived NOx reservoirs—less than 24 hours through thermal decomposition (R4), photolysis (R6), or reaction of HO2NO2 with OH (R7). For the conditions of the upper troposphere, several studies of the rate of HO2 with NO2 are available (Sander and Peterson, 1984; Kurylo and Ouellette, 1987; Christensen et al., 2004; Bacak et al., 2011) and one study for the rate of CH3O2 with NO2 (Bacak et al., 2006) is available. Bacak et al., 2011) report that the HO2NO2 production rate is almost 50% slower than currently recommended (Sander et al., 2011) and observed in prior experiments (Sander and Peterson, 1984; Kurylo and Ouellette, 1987; Christensen et al., 2004).

(R6a) \[\text{RO}_2\text{NO}_2 (\text{HO}_2\text{NO}_2) + h\nu \rightarrow \text{NO}_2 + \text{RO}_2^• (\text{HO}_2^•) \]

(R6b) \[\text{RO}_2\text{NO}_2 (\text{HO}_2\text{NO}_2) + h\nu \rightarrow \text{NO}_3 + \text{RO}^• (\text{HO}^•) \]

(R7) \[\text{HO}_2\text{NO}_2 + \text{OH} \rightarrow \text{NO}_2 + \text{O}_2 + \text{H}_2\text{O} \]

Any increases in the upper tropospheric NOx lifetime will lead to increases in O3 concentration (Bacak et al., 2011; Seltzer et al., 2015). This leads to higher O3 radiative impacts. Recently, Romps et al. (2014) described an analysis of lightning that predicts its increase in a warmer climate. The additional NOx associated with lightning will result in higher O3 than today in the upper troposphere and increases in its radiative forcing; thus, it is important to understand NOx lifetime in the upper troposphere.

To investigate the rates of NOx oxidation, we analyze a quasi-Lagrangian experiment that observed the temporal evolution of NO, NO2, CH3O2NO2, HO2NO2, PAN, PPN, the sum of alkyl and multifunctional nitrates, HNO3, and submicron aerosol nitrate downwind of a lightning storm on June 21st, 2012. The observations were obtained during the Deep Convective Clouds and Chemistry (DC3) experiment (Barth et al., 2015). To assess the impacts of rate coefficients we derive on the chemistry of NOx in the upper troposphere, we use a global chemical transport model to compare O3, OH, HO2, and NOx for standard chemistry and the modified set of rate constants.
3.2 Instrumentation

The observations described here were made aboard the NASA DC-8 during the DC3 experiment (May – June, 2012; Barth et al., 2015). All data used in this study can be accessed through the NASA public archives for this mission (DC3 Data Archive). We use the Version 5 60 s merged files.

NO$_2$ was measured by the UC Berkeley thermal-dissociation laser-induced fluorescence (TD-LIF) instrument (Thornton et al., 2000). Briefly, a tunable dye laser pumped at 7 kHz by a Q-switched, frequency doubled Nd:YAG laser, produces ~20 ns pulses at 585 nm with a bandwidth of 0.06 cm$^{-1}$. The dye laser is tuned onto (9 s) and off (3 s) an isolated rovibronic feature of the jet-cooled (Cleary et al., 2002) NO$_2$ at 585 nm. The difference between the two signals is directly proportional to the NO$_2$ mixing ratios. At the pressures of this flight (230 hPa), the ratio of the resonant peak to the non-resonant background fluorescence is 10 to 1. The laser light is focused through two multi-pass White cells. The red-shifted fluorescence from the excited NO$_2$ molecules is detected using a red-sensitive photomultiplier tube (Hamamatsu H7421-50). Scattered light is removed using time gated detection and dielectric band pass filters that block light at wavelengths shorter than 700 nm. The instrument is calibrated at least every hour during a level flight leg or after a significant change in altitude using a 4.67 (±0.26) ppmv NO$_2$ standard (Praxair) diluted to ~ 2 – 8 ppbv in zero air. The accuracy and stability of the reference is compared against a library of other NO$_2$ standards in our laboratory on a regular basis. Fluorescence quenching by water vapor is accounted for (Thornton et al., 2000) using the diode laser hygrometer (DLH) measurements of H$_2$O (Diskin et al., 2002). Partial thermal decomposition of CH$_3$O$_2$NO$_2$ in the NO$_2$ sample (Browne et al., 2011) is corrected by concurrent measurements of CH$_3$O$_2$NO$_2$ using thermal-dissociation with laser-induced fluorescence detection of the NO$_2$ enhancement (Nault et al., 2015a). During this flight, the maximum correction to the NO$_2$ measurements due to thermal decomposition of CH$_3$O$_2$NO$_2$ is 10% with a median correction of 7% for the entire flight. The correction is described in Nault et al. (2015a).

The measurements of CH$_3$O$_2$NO$_2$, sum of all peroxy nitrates (ΣPNs = PAN + PPN + HO$_2$NO$_2$ + CH$_3$O$_2$NO$_2$), and sum of alkyl and multifunctional nitrates in the gas- and particle-phase (ΣANs$_{(g+p)}$ = all molecules of the chemical form RONO$_2$) have been described elsewhere (Day et al., 2002; Wooldridge et al., 2010; Rollins et al., 2010; Nault et al., 2015a) and the specific configuration during DC3 by Nault et al. (2015a). Briefly, the CH$_3$O$_2$NO$_2$, ΣPNs, and ΣANs$_{(g+p)}$ are detected by thermal conversion to NO$_2$ in heated quartz tubes (60°C, 200°C, and 400°C, respectively) and detected by laser-induced fluorescence of the NO$_2$ fragment. The concentrations of CH$_3$O$_2$NO$_2$ and ΣPNs are calculated from the difference in the signal between the ambient NO$_2$ measurements and the 60°C and 200°C channel, respectively. Similarly, the concentrations of ΣANs$_{(g+p)}$ are calculated from the difference in the signal between the 200°C and 400°C channel.

The temperature selected for the thermal decomposition (60°C) of CH$_3$O$_2$NO$_2$ was selected to minimize the amount of HO$_2$NO$_2$ that thermally decomposed. At that temperature and with a residence time of 0.08 s, we calculated that ~10% of HO$_2$NO$_2$ thermally decomposes (Nault et al., 2015a). The CH$_3$O$_2$NO$_2$ measurements are corrected using HO$_2$NO$_2$ observed by chemical
ionization-mass spectrometry (Kim et al., 2007) as described by Nault et al. (2015). The maximum correction is 10% with a median correction of 5% for the entire flight. Our estimates indicate that no other peroxy nitrates have important effects on the CH$_3$O$_2$NO$_2$ and ΣPNs measurements (Nault et al., 2015).

In addition to the NO$_2$, CH$_3$O$_2$NO$_2$, ΣPNs, and ΣANs$_{(g+p)}$ measurements, we use the measurements of NO and O$_3$ by chemiluminescence (Ryerson et al., 1999), OH and HO$_2$ by laser-induced fluorescence (Faloona et al., 2004), gas-phase nitric acid (HNO$_3$$_3$), CH$_3OOH, CH_3$C(O)OOH, and hydroxyacetone by chemical ionization-mass spectrometry (CIMS; Crounse et al., 2006; St. Clair et al., 2010), particle-phase inorganic nitrate (NO$_3^-$) and particulate organic nitrate (ΣANs$_{(p)}$) by aerosol mass spectrometry (AMS; DeCarlo et al., 2006; Fry et al., 2013), the sum of gas- and particle-phase nitric acid (HNO$_3$$_{(g+p)}$) by mist chamber-ion chromatography (IC; Talbot et al., 1997), hydrocarbons (i.e., ethane, propane, ethene, n-butane) by whole air sampling with gas-chromatography analysis (Blake et al., 2003); PAN, PPN, and HO$_2$NO$_2$ by chemical ionization-mass spectrometry (Slusher et al., 2004; Kim et al., 2007), methyl vinyl ketone (MVK), methacrolein (MACR), acetone, acetaldehyde, isoprene, benzene, toluene, C10 terpenes (i.e., α-pinene) and C8 aromatics (i.e., m-xylene) by proton transfer reaction-mass spectrometry (Wisthaler et al., 2002), and CH$_4$ by tunable diode laser absorption spectroscopy (Sachse et al., 1987; Diskin et al., 2002; Table 3.1). Here, HNO$_3$$_{(g+p)}$ is taken as the average of the CIMS and IC measurements. An intercomparison and treatment of the HO$_2$NO$_2$, peroxy nitrates, and HNO$_3$$_{(g+p)}$ measurements are described in the Appendix A. Also, an intercomparison of photostationary steady state NO$_2$ versus measured NO$_2$ is described in the Appendix A.

3.3 Results

On 21 June 2012, the NASA DC-8 sampled the photochemistry of a decaying mesoscale convective system over the central United States (Figure 3.2) at a near constant temperature and pressure of 225 K and 230 hPa (~7.3×10^{18} molecules/cm3). The decaying mesoscale convective system and flight are described in Barth et al. (2015). Briefly, the DC-8 flew 5 legs spaced at varied distances downwind of the convection (full flight Figure A3). Portions of the last three legs that we characterize as sampling the outflow in a quasi-Lagrangian sense are shown in Figure 3.2, along with our estimate of the location of the cloud outflow marked as the green dashed-dot line. We define time zero as the first point in our sampling at 13:35 UTC. We estimate this was less than 10 minutes after the air left the cloud. The observations used in our analysis are those that are in the portions of the flight track that were approximately perpendicular to the flow. As the outflow was a line source (green line in Figure 3.2), all points sampled can be thought of as having a common chemical origin and time evolution (entire green line) and time evolution from the source of the outflow. The specific data we use are measurements initialized at 13:35 UTC (7:35 local time) and continuing to 8100 s after the initial time (15:50 UTC). Using the distance between the legs (~50 and 100 km) and the wind speed (~25 m/s), we calculate that it takes the air ~2000 s to travel from a point in leg 1 to 2 and 4000 s from a point in leg 2 to 3, respectively. Based on this calculation, the observation time (relative to 13:35 UTC) and the transit time from that point are approximately equal, and we define the observation time difference as the time that the air parcel has evolved in the subsequent analysis.
Initializing the observations at the point observed at 13:35 UTC, we observed a decay in NO\textsubscript{x} and production of CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}, HO\textsubscript{2}NO\textsubscript{2}, PAN, PPN, ΣAN\textsubscript{s(p)}, and HNO\textsubscript{3}(g+p) (Figure 3.3 and A4). NO and NO\textsubscript{2} decayed by 190(±70) and 90(±20) pptv from an initial median mixing ratio of 670 and 270 pptv, respectively. The uncertainty in the decay represents the inter-quartile of the change. This corresponds to a total loss rate of 2.6(±0.6)×105 molecules/cm3/s, if we assume chemical loss of NO\textsubscript{x} is constant and linear over the 8100 s between the initial and final observation. Over the same interval, the production of the four peroxy nitrates was 140(±25) (CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}), 20(±5) (HO\textsubscript{2}NO\textsubscript{2}), 15(±5) (PAN), and 5(±1) (PPN) pptv. The initial median mixing ratios for the four peroxy nitrates was 0 (CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}), 50 (HO\textsubscript{2}NO\textsubscript{2}), 210 (PAN), and 20 (PPN) pptv. The ΣAN\textsubscript{s(p)} concentration grew 45(±20) pptv, from an initial 105 pptv, or 4.1(±1.8)×104 molecules/cm3/s, while ΣAN\textsubscript{s(p)} increased by 7(±2) pptv, from an initial 5 pptv. Finally, HNO\textsubscript{3}(g+p) increased by 40(±5) pptv, from an initial 38 pptv, or 3.6(±0.5)×104 molecules/cm3/s. The loss rate of NO\textsubscript{x} is, within the measurement uncertainty, identical to the production rate of the higher oxide species (2.3(±0.3)×105 molecules/cm3/s), indicating the observations of the decay of NO\textsubscript{x} are consistent with the formation of NO\textsubscript{z}.

Analysis of observations of ethene, ethyne, and toluene confirm the air mass is evolving in isolation with little mixing. These three hydrocarbons are selected since their only known source in the upper troposphere is convection (Bechara et al., 2010; Apel et al., 2012). OH was constant to within 25% in this segment of the flight at 9.5×106 molecules/cm3. The OH concentration stayed constant during this time since its sources (e.g., CH\textsubscript{3}O) and sinks (e.g., NO\textsubscript{x}) decayed at similar rates. Using the measured decay of ethene—initial median mixing ratio of 43 pptv and final median mixing ratio of 14 pptv—and this OH concentration, we find a value of 1.0(±0.4)×10-11 cm3/molecules/s (Figure 3.4) for the rate constant for the reaction of ethene with OH. The 2σ uncertainty of 40% is determined by adding the uncertainty of the slope (±7%) and the uncertainty of the OH measurement (1σ ≈ 16%) in quadrature. This is nearly identical to the recommended rate constant of 8.9_{-1.9}^{±2.1}×10-12 cm3/molecules/s at 225 K and 230 hPa (Sander et al., 2011). Doing a similar analysis with the decay of ethyne (initial and final median values of 98 to 89 pptv, respectively) and toluene (initial and final median values of 25 pptv to 14 pptv, respectively), we find values of 6.3(±3.5)×10-13 and 1.1(±0.4)×10-11 cm3/molecules/s (Figure A5), respectively. These ethyne and toluene rate constants are also nearly identical to the recommended rate constants of 7.0_{-1.0}^{+1.1}×10-13 and 8.8_{-4.3}^{±8.2}×10-12 cm3/molecules/s, respectively (Atkinson, 1986; Sander et al., 2011). The 2σ is calculated the same as for the ethene rate constant. In addition to confirming the air parcel is evolving in isolation, the ability to calculate these three rate constants within the uncertainty of the recommended values supports the combined assumptions made about the evolution of the air parcel as a quasi-Lagrangian air parcel for 8100 s. If we assume the uncertainty in the slopes of the calculations is largely driven by uncertainty in the elapsed time, then the uncertainty in time is 10 – 40%. However, other uncertainties likely contribute, indicating a smaller range for the uncertainty in reaction time is more likely. In conclusion, the analysis of the hydrocarbon decay confirms that the initial observations (t = 0) occurred at 13:35 UTC and confirms our time coordinates as time in seconds since 13:35 UTC.
3.4 Analysis

3.4.1 Nitric acid production

We apply the same assumptions to analysis of the rate of oxidation of NO\textsubscript{x}, starting with an analysis of HNO\textsubscript{3(g+p)} production. The HNO\textsubscript{3(g+p)} production rate, dHNO\textsubscript{3(g+p)}/dt, is calculated by subtracting the initial HNO\textsubscript{3(g+p)} concentrations at time 0, which is 2.8×108 molecules/cm3 at 13:35 UTC, from HNO\textsubscript{3(g+p)} concentrations at time t. We use small time increments to account for other processes affecting the NO\textsubscript{2} available for reaction (R4 – R5 and photolysis). The measured dHNO\textsubscript{3(g+p)}/dt is plotted versus the corresponding NO\textsubscript{2} concentration at that time, t (Figure 3.5). Similar to the hydrocarbon rate constant calculation (Sect. 3.3), we assume any uncertainty in the time after the initial observation is incorporated in the uncertainty of the slope. We find that the rate constant is 6.2(±2.9)×10−12 cm3/molecules/s, with the 2σ uncertainty defined as for ethene. This rate constant (T = 225 K and P = 230 hPa) is slower than recommended by Atkinson et al. (2004) and Sander et al. (2011) and nearly identical to the recommendation of Henderson et al. (2012) who derived a slower rate based on observations of NO\textsubscript{x} and HNO\textsubscript{3} concentrations in the upper troposphere during the Intercontinental Chemical Transport Experiment – North America (Figure 3.6). Though the rate constant we calculated is lower than Sander et al. (2011) by 30%, the value we calculated overlaps with the lower bound of the 2σ uncertainty, which is 6.1×10−12 cm3/molecules/s from Sander et al. (2011).

Given that the standard k\textsubscript{1a} rate constant alone results in more rapid production of HNO\textsubscript{3} than we observe, it is straightforward to conclude that any additional production from the reaction of HO\textsubscript{2} with NO to produce HNO\textsubscript{3} (R2b) must be accompanied by further slowing of the k\textsubscript{1a} rate. In the air mass we are evaluating, HO\textsubscript{2} was constant to within 25% at 6.7×107 molecules/cm3. If the k\textsubscript{1a} rate were zero, than the measurements would give the k\textsubscript{2b} of 1.9(±1.0)×10−13 cm3/molecules/s. If this were the case, we calculate a branching ratio of 1.7% for HNO\textsubscript{3} production in the HO\textsubscript{2} and NO reaction. On the other hand, if we assume the production by OH and NO\textsubscript{2} is 50% of the recommended value (~4.4×10−12 cm3/molecules/s), then we find a branching ratio no larger than 0.8% for R2b. This is similar to the laboratory value (Butkovskaya et al., 2005; Butkovskaya et al., 2007; Butkovskaya et al., 2009). For the R2b branching ratios in the range of 0 to 0.7%, we find k\textsubscript{1a} ranges from 6.2(±2.9) – 4.7(±2.6)×10−12 cm3/molecules/s, respectively.

3.4.2 Speciated peroxy nitrate production

The observed production rates of PAN, PPN, CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}, and HO\textsubscript{2}NO\textsubscript{2} versus NO\textsubscript{2} are shown in Figure 3.7. The calculations to produce Figure 3.7 are similar to the HNO\textsubscript{3(g+p)} production and described in Sect. 3.4.2. Unlike HNO\textsubscript{3}, we do not have observations of the respective radical species that produce the peroxy nitrates, except for HO\textsubscript{2}NO\textsubscript{2}. We use the observations (Table 3.1) to calculate the production rates of the respective radical species using the rate constants found in Table A1 – A3. For the case of PPN, we use the relationship observed by Singh et al. (2004) between acetaldehyde and propanal to estimate propanal, which was not observed. Then, we use the calculated radical production rate and observed slopes from Figure 3.7 to converge to a radical concentration and NO\textsubscript{2} rate constant. All the peroxy nitrate lifetimes are calculated to be longer than the length of the experiment (3.5, 13, and 464 hours for HO\textsubscript{2}NO\textsubscript{2}, CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}, and PAN/PPN, respectively). Also, the HO\textsubscript{2}NO\textsubscript{2} production rate is calculated to be a factor of 1.5 to
3 higher than the rate; therefore, the losses of the peroxy nitrates are not important to the assessment of the speciated peroxy nitrate production rate constants.

The calculated rate constants for the speciated peroxy nitrates are compared with the recommended rate constants in Table 3.2. The uncertainty in the rate constants, ranging from ~50 – ~75%, is defined by the uncertainty in the slopes and the spread in the radical concentrations (±25% for the inter-quartiles) or the uncertainty in the HO2 concentration (1σ ≈ 16%). We find agreement (less than 30% difference) between the recommended (Sander et al., 2011) and calculated rate constants for the peroxy nitrates except for HO2NO2. Our calculated rate constants support the current recommendations (Sander et al., 2011) for the production rates of PAN, PPN, and CH3O2NO2 for the conditions of the upper troposphere and the findings of Bacak et al. (2011), that the HO2NO2 production is slower than the recommendation by ~50%. The lower HO2NO2 is also consistent with the conclusions of Kim et al. (2007), that the current recommendations (Sander et al., 2011) produced more HO2NO2 than observed in the upper troposphere. To our knowledge, this is the first time that the PAN and PPN production rates have been reported for the conditions representative of the upper troposphere.

3.4.3 Alkyl and multifunctional nitrate production

To evaluate the production of $\Sigma \text{ANs}_{(g+p)}$, we compare $\Sigma \text{ANs}_{(g+p)}$ and O3 mixing ratios (Figure 3.8a). As described by Perring et al. (2013), the slope of a plot of O3 versus $\Sigma \text{ANs}_{(g+p)}$ is approximately equal to $2/\alpha$, where α is the ratio of $k_{3a}/(k_{3a} + k_{3b})$, as seen in E1 – E3. This assumes all the hydrocarbons oxidized produce two O3 molecules ($\gamma = 2$), meaning that 2 peroxy radicals are rapidly produced following the photooxidation of the hydrocarbon (Perring et al., 2013).

(E1) \[P(O_3) = \sum \gamma_i (1 - \alpha_i)k_{OH+RH_i}[OH][RH_i] \]

(E2) \[P(\Sigma \text{ANs}_{(g+p)}) = \sum \alpha_i k_{OH+RH_i}[OH][RH_i] \]

(E3) \[P(O_3) \approx \frac{\gamma(1-\alpha)}{\alpha} P(\Sigma \text{ANs}_{(g+p)}) \approx \frac{2}{\alpha} P(\Sigma \text{ANs}_{(g+p)}) \]

From the O3 versus $\Sigma \text{ANs}_{(g+p)}$ correlation, we calculate an effective branching ratio, $\bar{\alpha}$, (1σ) of 8(±2)%.

For comparison, we calculate the $\Sigma \text{ANs}_{(g+p)}$ production rate directly using the temperature and pressure dependent parameterization of $\Sigma \text{ANs}_{(g+p)}$ formation from Carter and Atkinson (1989) and the observations of the various hydrocarbons (Tables 3.1 and A4 and description of calculation in Appendix A). Lee et al. (2014a) showed that at 273 K, $\Sigma \text{ANs}_{(g+p)}$ production is 50% more efficient than at 300 K and even larger increases are calculated here for $T = 225$ K (250% more efficient). The direct calculation gives an average (1σ) $\bar{\alpha}$ of 7(±4)% of the production rate of the flight is 46(±18) pptv (Figure 3.8b).
In this air mass, the hydrocarbons that produce the largest fraction of the ΣANs(p) (~70% or 34 pptv) are a group that have chemical lifetimes of less than 1 hour (MVK, MACR, isoprene, and monoterpane) and a group with longer lifetimes but still less than 6 hours (greater than C6 hydrocarbons). These short lifetimes suggest that the ΣANs(p) production rate will not be sustained downwind of lightning NOx injection into the upper troposphere and only impacts the NOx lifetime in the near-field of the NOx injection. Observations of ΣANs(g+p) in the upper troposphere were typically ~90 pptv, which is a factor of 2 – 4 lower than the ΣANs(g+p) mixing ratios in the outflow of convection, confirming that ΣANs(g+p) production is primarily important in the near-field (Figure 3.3c).

The multifunctional organic nitrates produced after radical isomerization or from biogenic hydrocarbons at the low temperatures of the upper troposphere are expected to have low vapor pressures and condense onto aerosol particles. During the flight, an apparent production rate of 2.2×10⁻³ μg/m³ (at ambient T and P), or 3 pptv, ΣANs(p) was observed (Figure 3.9). We use the method described by Fry et al. (2013) to differentiate between NO₃⁻(p) and ΣANs(p). This accounts for approximately 7% of the ΣANs(g+p) observed during the flight.

We calculate the vapor pressures of the individual ΣANs(g) using the SIMPOL.1 model (Pankow and Asher, 2008) and the contribution to the aerosol phase using the equilibrium absorptive partitioning formalism (Pankow, 1994; E4 – E5 and Table A5). The largest contribution to the ΣANs(p) are the monoterpane hydroxy nitrates, isoprene dihydroxy dinitrates, and hydroxy nitrates formed from the isomerization of n-hexane, methyl hexanes, and n-heptane (Table A5). Explanation of the variables is found in Appendix A.

\[
K_p = \frac{R \cdot T \cdot f_{om}}{M_{wo} \cdot 10^{6} \cdot f_{p} \cdot p_{vap}}
\]

\[
m_{AN,i,p} = K_{p,i} \cdot m_{om} \cdot m_{AN,i,g}
\]

The calculated ΣANs(p) at the end of the experiment is 5.8×10⁻⁴ μg/m³, which is a factor 4 lower than observations. Prior studies have concluded that the SIMPOL.1 model can overestimate the vapor pressures of multifunctional nitrates by up to 2 orders of magnitude, which is compounded by the need to estimate them at unusually low temperatures (225 K; Leungsakul et al., 2005; Fry et al., 2009; Fry et al., 2011). Given the prior discrepancy, a factor of 4 difference is not surprising. If the estimated vapor pressures are reduced by a factor of 3 (well within the uncertainties), then good model-measurement agreement is observed (Figure 3.9).

3.5 Atmospheric Implications

Our results indicate that both the HNO₃ and HO₂NO₂ production rate are slower in the upper troposphere than in current models, consistent with recent reports (Kim et al., 2007; Henderson et al., 2011; Seltzer et al., 2015). Production of ΣANs(g+p) depends on temperature and, as a result, is more rapid than in some current models. Production of CH₃O₂NO₂, PAN, and PPN are observed to occur at the rates currently recommended, although many models do not include CH₃O₂NO₂. Incorporating all of these changes and using the observations during the DC3 experiment to constrain a steady state model, we find the NOx lifetime increases by 20% (Figure...
3.10), leading up to as much as ~10 hour increases in the NO\textsubscript{x} lifetime, and consequently, to higher O\textsubscript{3} production.

Some recent model studies have added the R2b yield without adjustment of the HNO\textsubscript{3} production rate (Cariolle et al., 2008; Søvde et al., 2011; Gottschaldt et al., 2013). Not surprisingly, these models result in too little NO\textsubscript{x} and too much HNO\textsubscript{3} compared to observations. One study (Seltzer et al., 2015) decreased the HNO\textsubscript{3} production rate based on the recommendations from Henderson et al. (2012), who analyzed upper tropospheric NO\textsubscript{x} observations from the Intercontinental Chemical Transport Experiment – North America, and the authors did not include R2b. The slower HNO\textsubscript{3} production rate decreased the HNO\textsubscript{3} concentrations by ~5 – 20 pptv and increased the NO\textsubscript{x} concentrations by a similar amount. Bacak et al. (2011) calculated the impact of the slower HO\textsubscript{2}NO\textsubscript{2} production rate on HO\textsubscript{2}NO\textsubscript{2} and NO\textsubscript{x}. They report a decrease in HO\textsubscript{2}NO\textsubscript{2} of 30 – 40% and an increase in NO\textsubscript{x} of 5 – 20%.

To investigate the impacts of the slower HNO\textsubscript{3} and HO\textsubscript{2}NO\textsubscript{2} production compared to current recommendations, we use GEOS-Chem v9-02b (details in Appendix A) to model the year 2012 (Figure 3.11). The largest NO\textsubscript{x} increases (> 15 pptv for the entire year) occur over regions (central Africa, southeast United States, and northern India) of high lightning and deep convection (e.g., Miyazaki et al., 2014). The combined effects of slower HNO\textsubscript{3} and slower HO\textsubscript{2}NO\textsubscript{2} production lead to larger changes in NO\textsubscript{x} and O\textsubscript{3} concentrations than calculated with only a slower HNO\textsubscript{3} rate (Seltzer et al., 2015). The increases in NO\textsubscript{x} concentrations are associated with decreases in HNO\textsubscript{3} and HO\textsubscript{2}NO\textsubscript{2} concentrations (up to 20 and 15 pptv, respectively) and increases in OH, PAN, CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}, and O\textsubscript{3} concentrations (up to 0.04, 15, and 5 pptv and 5 ppbv, respectively). HO\textsubscript{2} concentrations change little due to the competing effects of decreased HO\textsubscript{2}NO\textsubscript{2} production and increased NO concentrations. The increases in both PAN and CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} concentrations are associated with O\textsubscript{3} increases. The increased production of these less stable NO\textsubscript{2} species allows transport of NO\textsubscript{x} and leads to O\textsubscript{3} production downwind of the NO\textsubscript{x} source (Fischer et al., 2014).

3.6 Conclusions

We have directly measured the production rates of speciated peroxy nitrates, alkyl and multifunctional nitrates, and HNO\textsubscript{3} in the upper troposphere. Using these observations to infer rate constants for the reactions at the temperature and pressure of the upper troposphere, we find that the rate of OH and NO\textsubscript{2} (k\textsubscript{1a}) to produce HNO\textsubscript{3} is slower than currently recommended, making peroxy nitrates production as important as HNO\textsubscript{3} production as a sink of NO\textsubscript{x} in the near field of lightning NO\textsubscript{x} injection. The observations indicate that any HNO\textsubscript{3} production from the reaction of HO\textsubscript{2} with NO is small, which suggests the combined effects of k\textsubscript{1a} and k\textsubscript{2b} should not exceed the estimate for k\textsubscript{1a} when k\textsubscript{2b} is assumed to be zero. We also calculate that the HO\textsubscript{2}NO\textsubscript{2} production rate is ~50% slower than currently recommended, supporting conclusions of Bacak et al. (2011). We show that in the near field of deep convection, the effective average branching ratio to forming $\sum_{\text{ANs}_{(g+p)}}$, $\bar{\alpha}$, is high (~8%) and dominated by short-lived hydrocarbons. Combining these ideas in a global chemical transport model, we demonstrate that decreases in the HNO\textsubscript{3} and HO\textsubscript{2}NO\textsubscript{2} production rates lead to increases in the calculated upper tropospheric NO\textsubscript{x} (10 – 14%), OH (10 – 13%), and O\textsubscript{3} (5 – 6%) concentrations.
Table 3.1. Measurements used in this analysis to calculate rate constants, peroxy radical concentrations, average α, and ΣANs production rate.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemiluminescencea</td>
<td>NO, O$_3$</td>
</tr>
<tr>
<td>Thermal-Dissociation Laser-Induced Fluorescenceb</td>
<td>NO$_2$, CH$_3$O$_2$NO2, ΣPNs, ΣANs${(g+p)}$</td>
</tr>
<tr>
<td>Laser-Induced Fluorescencec</td>
<td>OH, HO$_2$</td>
</tr>
<tr>
<td>Chemical Ionization-Mass Spectrometryd</td>
<td>HNO$_{3,g}$, CH$_3$OOH, CH$_3$C(O)OOH, Hydroxyacetone</td>
</tr>
<tr>
<td>Aerosol Mass Spectrometrye</td>
<td>NO3(p), ΣANs${(p)}$</td>
</tr>
<tr>
<td>Mist Chamber-Ion Chromatographyf</td>
<td>HNO$_{3(g+p)}$</td>
</tr>
<tr>
<td>Chemical Ionization-Mass Spectrometryg</td>
<td>PAN, PPN, HO$_2$NO$_2$</td>
</tr>
<tr>
<td>Spectral Radiometryh</td>
<td>Photolysis Rates</td>
</tr>
<tr>
<td>Whole Air Sampleri</td>
<td>Hydrocarbons</td>
</tr>
<tr>
<td>Proton Transfer Reaction Mass Spectrometryj</td>
<td>Acetaldehyde, Acetone, Benzene, C8 Aromatics, Isoprene, Monoterpenes, MVK + MACR, Toluene</td>
</tr>
<tr>
<td>Tunable Diode Laser Absorption Spectroscopyk</td>
<td>CH$_4$</td>
</tr>
</tbody>
</table>

a Ryerson et al. (1999).
b Thornton et al. (2000), Day et al. (2002), Wooldridge et al. (2010), Rollins et al. (2010), and Nault et al. (2015a).
c Faloona et al. (2004).
d Crounse et al. (2006) and St. Clair et al. (2010).
e DeCarlo et al. (2006) and Fry et al. (2013).
f Talbot et al. (1997).
g Slusher et al. (2004) and Kim et al. (2007).
h Shetter and Müller (1999).
i Blake et al. (2003).
j Wisthaler et al. (2002).
k Sachse et al. (1987) and Diskin et al. (2002).
Table 3.2. Calculated and recommended rate constants (±2σ uncertainty) for speciated peroxy nitrates at T = 225 K and P = 230 hPa.\(^a\)

<table>
<thead>
<tr>
<th>Species</th>
<th>Calculated Rate Constant</th>
<th>Sander et al. Recommendations(^b)</th>
<th>Recent Laboratory Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN</td>
<td>1.3(±0.8)(\times)10(^{-11})</td>
<td>1.3(^{+0.4}_{-0.3}) (\times) 10(^{-11})</td>
<td>N/A</td>
</tr>
<tr>
<td>PPN</td>
<td>7.3(±3.4)(\times)10(^{-12})</td>
<td>7.9(^{+1.0}_{-0.4}) (\times) 10(^{-12})</td>
<td>N/A</td>
</tr>
<tr>
<td>CH(_3)O(_2)NO</td>
<td>7.2(±5.7)(\times)10(^{-12})</td>
<td>5.7(^{+2.3}_{-2.3}) (\times) 10(^{-12})</td>
<td>6.4(±0.5)(\times)10(^{-12})(^c)</td>
</tr>
<tr>
<td>HO(_2)NO(_2)</td>
<td>5.1(±3.1)(\times)10(^{-13})</td>
<td>1.2(^{+0.4}_{-0.3}) (\times) 10(^{-12})</td>
<td>6.7(^{+2.2}_{-1.7}) (\times) 10(^{-13})(^d)</td>
</tr>
</tbody>
</table>

\(^a\)Rate constants used to calculate the peroxy radical species are found in Tables A1 – A3.
\(^b\)Sander et al. (2011).
\(^c\)Bacak et al. (2006). Rate is measured at 223 K and 267 hPa.
\(^d\)Bacak et al. (2011).
Figure 3.1. Daytime NOx fate in the upper troposphere. Reactions or channels that are not NOx sinks (e.g., R2a) are not included. Double arrows indicate important thermal decomposition reactions that occur in the upper troposphere. Arrows and compounds in red (black) indicate reactions and products with NO (NO2), and the blue arrow and reactants (products) in the bracket correspond to all the products. The lifetime for conversion back NOx in the upper troposphere by photolysis and reactions with OH is days for all species except HO2NO2 and HOONO. For these two species, the lifetime is hours in the upper troposphere.
Figure 3.2. Portions of the NASA DC-8 flight path (blue) used to calculate all the rate constants. The wind direction and relative speed observed on the DC-8 for the 21 June 2012 flight is shown as red arrows. The edge of the cloud that marks time equals 0 for the Lagrangian observations is shown as the green dashed-dot line. Leg 1, 2, and 3 corresponds to the left most, center, and right most flight tracks. Red arrow and black horizontal line corresponds to 25 m/s wind speed and 88 km distance, respectively.
Figure 3.3. Time series of (a) NO and NO₂, (b) ΣPNs, (c) ΣANSₙ(g+p), and (d) HNO₃(g+p), where ΣPNs = CH₃O₂NO₂ + HO₂NO₂ + PAN + PPN and HNO₃(g+p) is the average of the IC and CIMS data. Note, NO₂ is blue and the left y-axis and NO is green and the right y-axis in (a). Measurements not shown between 14:30 and 15:10 UTC are when the DC-8 sampled air outside the Lagragian parcel. The vertical red lines correspond to the beginning of Legs 1, 2, and 3 in Figure 3.2.
Figure 3.4. First order loss rate of ethene. The solid red line is the slope (-9.6×10^{-5} s$^{-1}$) and the dashed-dot red line is the 2σ uncertainty ($\pm 1.4 \times 10^{-5}$ s$^{-1}$).
Figure 3.5. The observed HNO$_3$(g+p) production rate (molecules/cm3/s) versus NO$_2$ (molecules/cm3). The solid red line is the slope (6.2×10$^{-5}$ s$^{-1}$) and the dashed-dot line is the 2σ uncertainty (±2.0×10$^{-5}$ s$^{-1}$).
Figure 3.6. Comparison of \(k_{1a} \) rate constant at \(T = 225 \) K and \(M = 7.3 \times 10^{18} \) molecules/cm\(^3\) from Sander et al. (2011), Atkinson et al. (2004), Henderson et al. (2012) and this study (red). The range shows the 2\(\sigma \) uncertainty of the product of the rate constant and branching ratio for HNO\(_3\) formation.
Figure 3.7. The observed (a) PAN, (b) PPN, (c) CH$_3$O$_2$NO$_2$, and (d) HO$_2$NO$_2$ production rate (molecules/cm3/s) versus NO$_2$ (molecules/cm3). The solid red line is the slope and the dashed-dot red lines are the 2σ uncertainty. The slopes are (a) $4.5(\pm 1.0) \times 10^{-5}$ s$^{-1}$, (b) $6.8(\pm 1.2) \times 10^{-6}$ s$^{-1}$, (c) $8.4(\pm 4.8) \times 10^{-5}$ s$^{-1}$, and (d) $3.4(\pm 1.8) \times 10^{-5}$ s$^{-1}$. For (c), three minute averages are used to reduce the noise of the measurements.
Figure 3.8. (a) The observed O_3 versus $\Sigma ANs_{(g+p)}$ during the flight. The slope (2σ uncertainty) is $25(\pm 6)$. (b) The calculated cumulative production of alkyl and multifunctional nitrates (area plot in pptv) and the 15 minute average ($\pm 1\sigma$ of the mean) measured production (red error bars in pptv).
Figure 3.9. The observed (black at ambient T and P) and calculated (blue) cumulative production of the ΣANsₚ. The observations are 15 minute averages (±1σ of the spread) and the \(p_{\text{vap}} \) is reduced by a factor of 3.
Figure 3.10. Comparison of the NO$_x$ lifetime (NO$_x$ lifetime = NO$_x$/Loss of NO$_x$) in the upper troposphere (T ≤ 230 K) from a steady state model during the entire DC3 campaign. The base case uses the recommended rate constants from Sander et al. (2011) and the updated chemistry case uses the rate constants from Henderson et al. (2012) and Bacak et al. (2011). The slope (±1σ) is 1.20(±0.01).
Figure 3.11. The absolute annual mean change in (a) NO$_x$, (b) HO$_2$, (c) OH, (d) O$_3$, (e) HNO$_3$, (f) PAN, (g) HO$_2$NO$_2$, and (h) CH$_3$O$_2$NO$_2$ in the upper troposphere (200 – 400 hPa). The mean change is calculated as (updated chemistry case – base case). Values above the tropopause are removed. Note the different scales for the color bars.
Chapter 4. Impacts of Updated Upper Tropospheric NO\textsubscript{x} Chemistry on Lightning NO\textsubscript{x} Emission Rates

4.1 Introduction

In the troposphere, NO\textsubscript{x} (NO\textsubscript{x} = NO + NO\textsubscript{2}) controls the oxidative capacity and the concentration of ozone, O\textsubscript{3} (Labrador et al., 2004; Labrador et al., 2005; Murray et al., 2013; Liaskos et al., 2015). In the upper troposphere, where O\textsubscript{3} is a powerful greenhouse gas (e.g., Martini et al., 2011; Seltzer et al., 2015), lightning NO\textsubscript{x} is the primary source of NO\textsubscript{x} (e.g., Schumann and Huntrieser, 2007), and the primary control over O\textsubscript{3} production rates. NO\textsubscript{x} produced by lightning accounts for \approx10\% of the global NO\textsubscript{x} input to the atmosphere (Schumann and Huntrieser, 2007). With warming climates, it has been predicted that lightning will increase (e.g., Romps et al., 2014), leading to higher NO\textsubscript{x} emission rates.

The type of lightning (cloud-to-cloud versus cloud-to-ground) and location (maritime versus continental) are thought to lead to different lightning energies and thus different lightning NO\textsubscript{x} emission rates (Schumann and Huntrieser, 2007 and references therein) and the vertical distribution of lightning NO\textsubscript{x} production (e.g., Pickering et al., 1998; Ott et al., 2010). In even the highest resolution atmospheric models, mechanistic representations of lightning NO\textsubscript{x} generation is not feasible. Instead, lightning NO\textsubscript{x} is parameterized (e.g., Pickering et al., 1998; DeCaria et al., 2000; DeCaria et al., 2005; Schumann and Huntrieser, 2007; Ott et al., 2010). The parameters carry considerable uncertainty as the limited observational data results in weak tests of the form of the parameterizations and the parameters chosen. Both the emission rate and vertical distribution of lightning NO\textsubscript{x} have important impacts for the production and the concentration of upper tropospheric O\textsubscript{3} (Labrador et al., 2005).

Some studies have used direct observations, either \textit{in situ} or by satellite, of NO\textsubscript{x} downwind of lightning to calculate the emission rates from individual storms or from the average lightning strikes (e.g., Ridley et al., 1996; Beirle et al., 2004; Huntrieser et al., 2007; Huntrieser et al., 2009; Beirle et al., 2010; Bucsela et al., 2010; Huntrieser et al., 2011). In these studies, the enhancement in NO\textsubscript{x}, compared to air not perturbed by lightning, is divided by the lightning flash rate. The results is an empirical estimate of moles of NO produced per lightning flash (mol NO flash−1). As many of these studies are well downwind of the cloud, they often make an implicit assumption that the NO\textsubscript{x} lifetime is significantly long (longer than 1 day).

To get a larger statistical data base, observations of upper tropospheric NO\textsubscript{x}, HNO\textsubscript{3}, and O\textsubscript{3} have been used in combination with observations of lightning flash rates to constrain the emission rate parameters in chemical transport models (e.g., Hudman et al., 2007; Martin et al., 2007; Schumann and Huntrieser, 2007; Allen et al., 2010; Jourdain et al., 2010; Martini et al., 2011; Allen et al., 2012; Cooper et al., 2014; Miyazaki et al., 2014; Liaskos et al., 2015). Recent literature has settled on lightning NO\textsubscript{x} emission rates in the range of 2 – 8 Tg yr−1, or 500 (260) mol NO flash−1 for midlatitude (maritime and tropical) regions (e.g., Martin et al., 2007; Hudman et al., 2007; Schumann and Huntrieser, 2007). The uncertainty in the mol NO flash−1 ranges from a factor of 0.13 to 2.7 (Schumann and Huntrieser, 2007; Miyazaki et al., 2014). In many of these studies, the parameterization of lightning NO\textsubscript{x} results in model predictions that have less NO\textsubscript{x} than observed and more HNO\textsubscript{3} compared to observations (Hudman et al., 2007;...
HNO₃ is the oxidation product of NOₓ and it is reasonable to think of lightning as contributing to the sum of both molecules. Assuming the observations are correct, this discrepancy in the partitioning of NOₓ and HNO₃ indicates an error in upper tropospheric NOₓ chemistry.

Several recent experiments have suggested changes in the kinetics of nitrogen oxides in the upper troposphere that affect calculations of the rate of conversion of NOₓ to HNO₃. These include studies by Browne et al. (2011) and Nault et al. (2015a), who showed that methyl peroxy nitrate, CH₃O₂NO₂, chemistry is important to the upper troposphere, and by Henderson et al. (2011), Henderson et al. (2012), Seltzer et al. (2015), and Nault et al. (2015b), who showed that the rate of conversion of NO₂ to HNO₃ is overestimated for the temperatures and pressures characteristic of the upper troposphere. Modeled upper tropospheric NOₓ remains largely unaffected because the amount of NOₓ sequestered in CH₃O₂NO₂ is balanced by the slower conversion to HNO₃ (Nault et al., 2015b).

Another important sink (source) of upper tropospheric NOₓ (HNO₃) is hydrolysis of dinitrogen pentoxide, N₂O₅, on aerosol (Jacob et al., 1996; Schultz et al., 1999; Schultz et al., 2000). N₂O₅ is produced at night through the reaction of the nitrate radical, NO₃⁻, with NO₂—lifetime of NO₃⁻ due to photolysis is less than 1 hour making this reaction unimportant during the day. The authors of recent laboratory and ambient observations, at conditions representative of the boundary layer, have concluded the hydrolysis rate constant is at least 1 order of magnitude higher than currently assumed (e.g., Brown et al., 2009; Bertram and Thornton, 2009; Wagner et al., 2013); however, the hydrolysis rate constant has not been studied for the conditions of the upper troposphere. Extrapolating the results from these recent studies would also indicate that the upper tropospheric hydrolysis rate constant should be at least 1 order of magnitude lower (Stavrakou et al., 2013). The lower hydrolysis rate constant would further decrease modeled HNO₃, and this would also impact the interpretation of lightning NOₓ emission rates.

In this study, we update the GEOS-Chem model to represent some of these changes in upper tropospheric chemistry—inclusion of CH₃O₂NO₂ chemistry and slower HNO₃ production rate constant from the reaction of OH with NO₂. These changes are evaluated to determine how it impacts our interpretation of lightning NOₓ emission rates subject to simultaneous constraints of the NOₓ and HNO₃ observations. We assess the lightning NOₓ emission rate that is consistent with observations and discuss remaining discrepancies between observations and models for upper tropospheric nitrogen oxides.

4.2 Methods

4.2.1 Model Description

GEOS-Chem version 09-02b (Bey et al., 2001; http://geos-chem.org) is used at 2°×2.5° resolution. The standard chemistry and model is described by Mao et al. (2013). Four separate chemistry combinations were analyzed (Table 4.1): one with current recommendations for HNO₃ production rate constant (Sander et al., 2011) and no CH₃O₂NO₂ chemistry (Base case, or Case 1), one with current recommendations for HNO₃ production rate constant (Sander et al., 2011) and with CH₃O₂NO₂ chemistry (Base case + CH₃O₂NO₂, or Case 2), one with 10 – 30% slower
HNO₃ production rate constant (Henderson et al., 2012; Nault et al., 2015b) and no CH₃O₂NO₂ chemistry (Slower case, or Case 3), and one with 10 – 30% slower HNO₃ production rate constant (Henderson et al., 2012; Nault et al., 2015b) and with CH₃O₂NO₂ chemistry (Slower case + CH₃O₂NO₂, or Case 4). We evaluated the model by comparison to observations from in situ and space-based platforms. For the case with optimized kinetics, we assessed a range of lightning NOₓ parameters to find ones that gave reasonable representations of NOₓ and HNO₃ observations (Case 5). Models were allowed to spin-up from January 2011 to December 2011, and, then, the 2012 calendar year was used for analysis. Model output was sampled at 12:00 – 14:00 local standard time for comparison to satellite observations and 16:00 – 20:00 local standard time for comparison with in situ observations.

We used the lightning NOₓ emissions profile recommended by Pickering et al. (1998). The profile was changed to increase the amount of lightning NOₓ produced in the upper troposphere since recent studies (e.g., Allen et al., 2012; Seltzer et al., 2015) concluded that the Ott et al. (2010) profile placed too much NOₓ in the middle troposphere and not enough NOₓ in the upper troposphere.

We calculate the NO₂ column from the modeled surface to modeled tropopause height to compare to OMI NO₂ tropospheric columns. For the HNO₃, we evaluate the mean HNO₃ mixing ratio from ~250 hPa to modeled tropopause height, which corresponds to the peak tropospheric sensitivity of the MLS HNO₃ measurements (e.g., Miyazaki et al., 2014; Cooper et al., 2014). For the comparison to the DC-8 in situ observations, the modeled NOₓ, HNO₃, and O₃ mixing ratios are averaged between 200 and 350 hPa for the corresponding grid cell and date.

4.2.2 Airborne Observations

Airborne observations from the Deep Convective Clouds and Chemistry (DC3) experiment are used in the analysis. The observations are discussed in detail by Barth et al. (2015). Briefly, the NASA DC-8 aircraft sampled fresh lightning NOₓ emissions and the chemical aging of the lightning NOₓ emissions, over the continental United States, between May and June, 2012. The observations (DC3 Data Archive) used in this study include NO and O₃ from chemiluminescence (Ryerson et al., 1999), NO₂ from laser-induced fluorescence (Thornton et al., 2000; Nault et al., 2015a), and HNO₃ from mist chamber-ion chromatography (Talbot et al., 1997) and chemical ionization-mass spectrometry (Crounse et al., 2006). We take the average of the two HNO₃ measurements for this study since there was a 10% difference between the two measurements (Nault et al., 2015b). The observations used to compare to the GEOS-Chem output are constrained between 200 and 350 hPa with O₃/CO less than 1.5 (removes stratospheric influences) and NOₓ/HNO₃ less than 5 (removes fresh lightning NOₓ emissions). A minimum of 10 1-minute averaged observations are required to ensure enough spatial coverage of the 2°×2.5° grid cell. Only observations with a NOₓ/HNO₃ ratio less than 5 are used since higher ratios are associated with the near field of convective emissions and the large model grid cell size dilutes fresh lightning NOₓ emissions (e.g., Cooper et al., 2014). During DC3, 30% of upper tropospheric (P = 200 – 350 hPa) observations had NOₓ/HNO₃ ratios greater than 5, which cannot be captured by GEOS-Chem at this spatial resolution since the convective spatial scale during DC3 was significantly smaller GEOS-Chem.
Satellite Observations

The Ozone Monitoring Instrument (OMI) aboard the NASA Aura satellite is used and is described in detail by Levelt et al. (2006). The UV/Vis spectrometer observes solar irradiance and sunlight reflected from Earth’s surface in the 270 – 500 nm wavelength range. The instrument, with a field of view of 2600 km swath with a ground pixel size between 13 × 24 km2 at nadir to 24 × 128 km2 at the edge of the swath, achieves near global coverage daily with an overpass time at approximately 13:40 local time. There are currently two products for global NO$_2$ column densities for OMI—the NASA Standard Product 2 (Bucsela et al., 2013) and the Dutch OMI NO$_2$ (DOMINO) Product (Boersma et al., 2011). The Level 3 daily gridded NASA Standard Product (OMNO2d) is used here (Krotkov). Since no matching daily product is available for DOMINO, the ungridded Level 2 product was used. Prior studies (e.g., Lamsal et al., 2010; Russell et al., 2011) have indicated that the two products can disagree by 20 – 40%; therefore, we take the average of the two products for this study. For both products, observations are first filtered for the presence of clouds and the effects of the row anomaly. Pixels with a cloud fraction greater than 30% are removed. The row anomaly is an obstruction that affects the observed radiances of ~20 rows of pixels on the OMI instrument. The affected pixels are flagged in both products and are removed. Pixels are matched to GEOS-Chem grid cells if the pixel center falls within the grid cell, and a weighted average of all such observations is taken. The weight used is provided in the OMNO2d product and described in the OMNO2d readme (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/documents/v003/OMNO2_readme_v003.pdf). For the DOMINO product, the weight for each pixel is calculated as the reciprocal of the area. This gives the greatest weight to near-nadir pixels that are most representative of the area of interest (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/documents/v003/OMNO2_readme_v003.pdf)

To minimize the influence of surface NO$_x$ sources (soil, anthropogenic, and biomass burning), which cannot be easily separated from lightning NO$_x$ emissions from a total column nadir satellite observation, we focus on regions where the model predicts the lightning NO emissions are more than 60% of the NO$_x$ source. Observations over South America, Northern Africa, Southern Africa, and Southeast Asia (Table 4.2) during their summer months meet this criterion.

4.3 Sensitivity in modeled NO$_2$ and HNO$_3$ from lightning emissions

4.3.1 Changes in NO$_2$ column densities

CH$_3$O$_2$NO$_2$ chemistry (Case 2 – Case 1) decreases the average NO$_2$ column density between −0.2 to 0×1014 molecules/cm2 (−2 to 0% change), with an average change of −0.08×1014 molecules/cm2 (−1% change), during the months of June through August (Fig. 4.1). The most negative changes occur in the southeastern United States, where the most lightning flashes occur along with injection of isoprene and isoprene products, which undergoes photooxidation to produce methyl peroxy radicals, CH$_3$O$_2$, the precursor to CH$_3$O$_2$NO$_2$ (Hudman et al., 2007; Martini et al., 2011; Apel et al., 2012; Barth et al., 2015). Since CH$_3$O$_2$NO$_2$ chemistry is important as temperature decreases and the CH$_3$O$_2$NO$_2$ lifetime maximizes where the lightning NO$_x$ emission rate is maxima in the upper troposphere (Pickering et al., 1998; Browne et al.,...
2011; Nault et al., 2015a), the inclusion of CH$_3$ONO$_2$ chemistry strongly impacts and removes NO$_x$ emitted by lightning NO$_x$ production. The small decrease in the column density results from adding another NO$_x$ sink; however, CH$_3$ONO$_2$ is only important as a NO$_x$ sink at temperatures less than 255 K (Browne et al., 2011; Nault et al., 2015a). At these low temperatures, NO constitutes a large fraction of the NO$_x$ budget due to the temperature dependent conversion of NO to NO$_2$ (e.g., Schumann and Huntrieser, 2007); therefore, the impact to the total NO$_2$ column density is small.

The inclusion of slower HNO$_3$ production rate constant (Case 3 – Case 1) increases the averaged NO$_2$ column density by 0.5 to 3×1014 molecules/cm2 (6 – 16% increase), with an average of 1.3×1014 molecules/cm2, or 12% increase (Fig. 4.1). The largest increases are located both in areas of high surface emissions from urban (e.g., Chicago area) or agricultural regions (e.g., central United States, Hudman et al., 2010) and high lightning flash rates (e.g., southeastern United States). The increase in the NO$_2$ column density stems from increasing the NO$_x$ lifetime throughout the entire column; however, the change in the NO$_x$ lifetime is smallest near the surface (~10%) while it is largest near the tropopause (~40%; Mollner et al., 2010; Henderson et al., 2012).

When CH$_3$ONO$_2$ chemistry and slower HNO$_3$ production rate constants are both included (Case 4 – Case 1), the NO$_2$ column density increases by nearly the same amount as Case 3 – Case 1. Small differences of order 10% are found in southeastern United States, where there is lightning and CH$_3$O$_2$ precursors are collocated. The net changes in the column NO$_2$ density due to updating upper tropospheric NO$_x$ chemistry are small, and would not impact the interpretations of prior studies of lightning NO$_x$.

4.3.2 Changes in upper tropospheric HNO$_3$ mixing ratios

Unlike the changes in the NO$_2$ column densities, all Cases (2 through 4) – Case 1 show a net decrease in averaged upper tropospheric HNO$_3$ mixing ratios (Fig. 4.1). The smallest decrease occurs for Case 2 – Case 1 (average decrease is −22 pptv or −5%). In this instance, including CH$_3$O$_2$NO$_2$ removes a source of NO$_x$ that would otherwise be oxidized to produce HNO$_3$. The small change is similar to the results from Browne et al. (2011), where they found a decrease in upper tropospheric HNO$_3$ of 15 to 40 pptv in a model with versus a model without CH$_3$O$_2$NO$_2$ chemistry. The largest decrease occurs for Case 4 – Case 1 (average decrease is −71 pptv or −20%). Here, both the extra sink of NO$_x$, CH$_3$O$_2$NO$_2$, and decreasing the production of HNO$_3$ by using a lower rate constant reduces the upper tropospheric HNO$_3$ mixing ratios. Similar to the changes in the NO$_2$ column densities, the largest changes occur over areas of higher lightning flash rates. The decreases in modeled upper tropospheric HNO$_3$ are large and important as this compound has established the maximum lightning NO$_x$ emission rates consistent with observations in prior studies (e.g., Hudman et al., 2007; Fang et al., 2010; Martini et al., 2011; Cooper et al., 2014).

4.3.3 Changes in other regions of the world

The sensitivity of the modeled tropospheric NO$_2$ column density and upper tropospheric HNO$_3$ mixing ratios to different chemistry cases (Table 4.1) were evaluated over North America during
the months of June through August. For other regions of the world (Table 4.2), the sensitivity of
the modeled tropospheric NO\textsubscript{2} column density (Fig. 4.2) and upper tropospheric HNO\textsubscript{3} mixing
ratios (Fig. 4.3) were investigated for Case 1 versus Case 4 (Table 4.1) for the respective summer
months of those regions—June through August for Northern Africa and Southeast Asia and
December through February for Southern Africa and South America.

Similar to North America, there are net increases in the NO\textsubscript{2} column densities that range from 0 – 1.9\times10^{14} molecules/cm2 over the different regions (Fig. 4.2). The mean percent (absolute)
change for the different regions is less than North America, at 6\% (3\times1013 molecules/cm2) for
South America and 9\% for the other regions (6.2\times1013, 3.9\times1013, and 5.9\times1013 molecules/cm2 for
Northern Africa, Southeast Asia, and Southern Africa, respectively). These regions are
considered tropical or marine for the lightning NO\textsubscript{x} emission parameterization. These regions
typically have lower mol NO flash−1 than midlatitude regions (North America) since the energy
per lightning flash is lower (Pickering et al., 1998; Ott et al., 2010). The lower lightning NO\textsubscript{x}
production rate leads to lower changes in the NO\textsubscript{2} column density compared to North America.

With the lower mol NO flash−1, the modeled absolute mean HNO\textsubscript{3} changes were smaller than
over North America—\textasciitilde48, \textasciitilde22, \textasciitilde63, and \textasciitilde54 pptv for Northern Africa, Southeast Asia,
Southern Africa, and South America, respectively. The smallest change occurs over Southeast
Asia. Cooper et al. (2014) determined that models have too low lightning NO\textsubscript{x} emission rates
over Southeast Asia when the authors compared modeled HNO\textsubscript{3} to \textit{in situ} and satellite
observations. Similar to North America, the changes are negative and large (mean percent
change is 20\%). These large changes thus have impacts on the established maximum lightning
NO\textsubscript{x} emission rates.

4.4 Implications for lightning NO\textsubscript{x} emission rates

4.4.1 Comparison to upper tropospheric observations during DC3

In Fig. 4.4, we compare the modeled-to-observed ratios for upper tropospheric NO\textsubscript{x} and HNO\textsubscript{3}
from two prior studies (Hudman et al., 2007; Martini et al., 2011) with the modeled-to-observed
results from Case 1, Case 4, and Case 5 (Table 4.1) during DC3. For the two prior studies, the
modeled NO\textsubscript{x} mixing ratios are biased low compared to observations, and modeled HNO\textsubscript{3}
mixing ratios are biased high compared to observations. The increases in NO\textsubscript{x} and HNO\textsubscript{3}
between Hudman et al. (2007) and Martini et al. (2011) stems from using observations to
prescribe the location and intensity of lightning flash rates rather than increasing the NO mol
flash−1. Models now use observed flash rates since the models typically did not correctly locate
the lightning or its intensities (e.g., Hudman et al., 2007; Murray et al., 2012).

Similar to the two prior studies, the Case 1 ratios for NO\textsubscript{x} and HNO\textsubscript{3} have similar discrepancies,
indicating a consistent bias in the description of the upper tropospheric NO\textsubscript{x} chemistry
(Henderson et al., 2011). By updating the upper tropospheric NO\textsubscript{x} chemistry (Case 4), the
modeled-to-observed ratios for HNO\textsubscript{3} decreases by 15\% from 1.45 to 1.23, showing better
agreement. The NO\textsubscript{x} ratio changes are 1\% or 0.78 to 0.79. The small change in NO\textsubscript{x} is due to
CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} removing the excess NO\textsubscript{x} that was available from the slower HNO\textsubscript{3} production rate
(Fig. 4.1).
Since chemistry alone does not improve the NO\textsubscript{x} modeled-to-measured agreement, as suggested by Henderson et al. (2011), we investigate if updating the chemistry along with increasing lightning NO\textsubscript{x} emission rates results in better agreement. Many studies have suggested that increasing lightning NO\textsubscript{x} emission rates would be necessary for better agreement between observed and modeled upper tropospheric NO\textsubscript{x} (Allen et al., 2010; Jourdain et al., 2010; Martini et al., 2011; Liaskos et al., 2015); however, a typical constraint for increasing lightning NO\textsubscript{x} emission rates is the agreement of modeled and observed HNO\textsubscript{3}. For example, in Martini et al. (2011), the authors found that increasing the lightning NO\textsubscript{x} emission of their model from 240 to 480 mol NO flash−1 led to lower biases between measured and modeled NO\textsubscript{x}; however, the increase in lightning NO\textsubscript{x} emissions increased the bias between measured and modeled HNO\textsubscript{3} (Fig. 4.4). Similarly, the lightning NO\textsubscript{x} emission recommended by Hudman et al. (2007) was tuned so that the modeled HNO\textsubscript{3} was slightly higher than the upper 1σ spread of the measurements whereas the modeled NO\textsubscript{x} just agreed with the lower 1σ spread of the measurements (Fig. 4.4). When the lightning NO\textsubscript{x} emissions for Case 1 were increased by 33% to compare against the DC3 observations, the NO\textsubscript{x} ratio improved to 0.92, but the HNO\textsubscript{3} ratio increased to 1.70 (not shown). This HNO\textsubscript{3} ratio is well above the 1σ spread of the HNO\textsubscript{3} observations (Fig. 4.4).

We find that increasing the lightning NO\textsubscript{x} emission rates by 33%, with the updated chemistry (Case 4), led to the best agreement between observed and modeled NO\textsubscript{x} and HNO\textsubscript{3} during the DC3 mission. The NO\textsubscript{x} ratio increases to 0.96 while the HNO\textsubscript{3} ratio increases 1.45.

The NO\textsubscript{x} to HNO\textsubscript{3} ratios can also be utilized to improve our understanding of upper tropospheric NO\textsubscript{x} chemistry and the time since an air mass has been impacted by lightning NO\textsubscript{x} emissions (Bertram et al., 2007; Henderson et al., 2011). Higher ratios indicate fresh emissions due to lightning NO\textsubscript{x} emissions and rain-out of HNO\textsubscript{3} while lower ratios represent aged air from the chemical conversion of NO\textsubscript{x} to HNO\textsubscript{3}. Comparison of observations to Case 1, which has a smaller range of NO\textsubscript{x}/HNO\textsubscript{3} than observation, indicates the modeled air is older (lower ratios) than observations. It also further proves that the current model does not accurately describe NO\textsubscript{x} chemistry and lightning NO\textsubscript{x} emission rates (Fig. 4.5). Using updated chemistry (Case 4) has a larger range of NO\textsubscript{x}/HNO\textsubscript{3} than Case 1; however, the model still calculates older (lower ratios) air than observations. The updated chemistry with increased lightning NO\textsubscript{x} emission rates (Case 5), though, shows a similar range as Case 4. This results from the model producing too much HNO\textsubscript{3} even though the model better represents NO\textsubscript{x} (Fig. 4.4). Lower modeled HNO\textsubscript{3} would increase the ratio, resulting in the model calculating fresher air that we observed during DC3.

This bias in HNO\textsubscript{3} suggests that either the loss processes—uptake to cloud particles, uptake to aerosols, photolysis, photooxidation of HNO\textsubscript{3}, or transport from upper troposphere—are too low or production—hydrolysis of N\textsubscript{2}O\textsubscript{5} on aerosols or transport into upper troposphere—is too high. As previously mentioned, the hydrolysis rate constant is likely an order of magnitude too high. Over North America during summer, the 24 hour averaged N\textsubscript{2}O\textsubscript{5} mixing ratio increases by 38% from Case 1 to Case 5. Using the averaged N\textsubscript{2}O\textsubscript{5} mixing ratios between 01:00 and 03:00 local time from Case 5, spatially coincident with DC3 observations, a correlation between higher 1 hr N\textsubscript{2}O\textsubscript{5} hydrolysis production rates and too high modeled HNO\textsubscript{3} compared to observations is apparent while there is no correlation between too high modeled HNO\textsubscript{3} and the HNO\textsubscript{3} production rate from the reaction of OH with NO\textsubscript{2} (Fig. 4.6). This suggests that the modeled N\textsubscript{2}O\textsubscript{5}
hydrolysis rate is too fast. Assuming N₂O₅ mixing ratios remain constant during night, the 1 hr production rates result in 40 – 110 pptv HNO₃ (assuming an 8 – 12 hr night). This would explain a large fraction of the averaged difference between modeled and observed HNO₃ (160 pptv). Assuming that the rate is at least one order of magnitude too high (e.g., Brown et al., 2009), the amount of HNO₃ produced decreases to 4 – 11 pptv, which would bring the modeled and observed HNO₃ into better agreement.

4.4.2 Comparisons to satellite observations

Comparison of modeled NO₂ column densities with satellite observations indicate that, in general, the updated chemistry improves the agreement between model and observations and that increased lightning NOₓ emission rates are necessary to further reduce the average bias between model and observations (Table 4.3). In Southeast Asia and South America, the comparison indicates that the lightning NOₓ emissions could increase even more than done in this study to reduce the bias, which is in agreement with the conclusion of Cooper et al. (2014) and comparison of satellite NO₂ observations with modeled results from Liaskos et al. (2015). However, in South Africa, the negative bias at higher lightning NOₓ emission rates means that the current lightning NOₓ emissions properly describe the observations. These differences in the biases for different regions agree with the conclusion from Cooper et al. (2014) that the lightning NOₓ emission rates for different regions are not uniformed even though current models assume the same mol NO flash⁻¹ for similar regions. The authors in this study concluded, using Case 1 chemistry and HNO₃ satellite observations, that Southeast Asian lightning NOₓ emissions need to increase whereas the other regions of the world has the correct lightning NOₓ emission rates. By updating the upper tropospheric NOₓ chemistry, this leads to other locations also needing higher lightning NOₓ emission rates, similar to the comparison to the DC3 observations in the prior section.

A similar comparison with satellite HNO₃ observations was not done. Various studies have indicated inconsistent biases and little correlation between satellite observations with in situ, or other satellite observations, of upper tropospheric HNO₃ (Froidevaux et al., 2006; Santee et al., 2007; Kinnison et al., 2008; Wolff et al., 2008; Cooper et al., 2011). These inconsistencies for all the HNO₃ satellite observations would not provide valuable constraints on whether the inclusion of updated chemistry and increased lightning NOₓ emission rates in the model correctly depict observations.

4.4.3 Impacts of shorter NOₓ lifetime on direct lightning NOₓ observations

As previously mentioned, an assumption to calculate mol NO flash⁻¹ directly from observations (in situ or satellite) is that the NOₓ lifetime is sufficiently long—greater than 1 day. Nault et al. (2015b) showed that the NOₓ lifetime directly downwind of lightning is typically shorter than 1 day due to production of peroxy nitrates and nitric acid. With many observations occurring typically occurring ~3 hours after the lightning flash (e.g., Huntrieser et al., 2007; Beirle et al., 2010; Huntrieser et al., 2011), the lifetimes found in Nault et al. (2015b) indicates that approximately 10 – 70% of the NOₓ is chemically removed prior to sampling. Due to this assumption, many of the in situ and remote sensing studies that directly measure the lightning
NOx emission rates are lower, by 3 to 100%, than the studies that use in situ or satellite observations with chemical transport models (Miyazaki et al., 2014).

As an example, Beirle et al. (2004) calculated a lightning NOx emission rate of 100(30 – 500) mol NOx flash\(^{-1}\) over Australia, a region classified as tropical in GEOS-Chem (corresponds to 260 mol NO flash\(^{-1}\)). The average value from this study is 60 – 80% lower than the currently accepted average values of 260 – 500 mol NO flash\(^{-1}\). In this study, the authors assumed a NOx lifetime of 2 – 6 days. If the lifetime is reduced to 0.5 days, the mean lifetime observed by Nault et al. (2015b), the emission rate increases to 750(250 – 1000) mol NOx flash\(^{-1}\). Using the shorter lifetime indicates and agrees with lightning NOx emission rates should increase by at least 33%. Even if a lifetime of 1 day is assumed, the emission rate increases to 370(125 – 500) mol NOx flash\(^{-1}\), which is still in agreement with higher emission rates.

4.4.4 Impacts on O\(_3\)

Similar to recent studies (e.g., Martini et al., 2011; Liaskos et al., 2015), Case 1 model calculates higher O\(_3\) than measured during DC3 by nearly 16% (Fig. 4.7a). Using the improved NOx chemistry and increasing lightning NOx emission rates (Case 5), the modeled O\(_3\) only increases by 5%, but this leads to a 21% discrepancy between observations and model results. This indicates, similar to the HNO\(_3\) comparison, that the modeled loss or production processes for upper tropospheric O\(_3\) does not properly describe the chemistry. An important control on the O\(_3\) production is NOx and water vapor concentration. An increase of water vapor with high NOx concentration leads to more photooxidation of hydrocarbons, which increases the radical cycling to produce more O\(_3\) (Klonecki and Levy, 1997). Sauvage et al. (2007) found that an update to meteorological fields increased the amount of water in the upper troposphere. This led to higher modeled upper tropospheric O\(_3\) mixing ratios. For this study, the modeled water vapor mixing ratio is higher than observed at high NOx mixing ratios (Fig. 4.8); therefore, we conclude the higher modeled water vapor in the presence of high NOx and hydrocarbons from deep convection has led to higher modeled than observed O3 mixing ratios in Fig. 4.7a.

For the entire year, the percent increase over various regions of the world are typically less than 10% after incorporating updated chemistry and increasing lightning NOx emission rates (Fig. 4.7b). The only region with a change larger than 10% is Southeastern Asia. The percent changes in O\(_3\) in Fig. 4.7b are smaller than the percent changes observed in prior studies after increasing lightning NOx emission rates (e.g., Martini et al., 2011; Liaskos et al., 2015). The smaller decreases in O\(_3\) in this study stem from the removal of NOx from CH\(_3\)O\(_2\)NO\(_2\) production (Browne et al., 2011) that competes with longer NOx lifetime from slower HNO\(_3\) production (Seltzer et al., 2015). The incorporation of the improved upper tropospheric NOx chemistry minimizes the gross error in modeled O\(_3\) concentrations for gross lightning NOx emission rates greater than 8 Tg N yr\(^{-1}\) that Martin et al. (2007) predicted could occur.

4.5 Conclusions

We have incorporated updated upper tropospheric NOx chemistry into the GEOS-Chem global chemical transport model to investigate the impact on lightning NOx emission rates. Including
CH$_3$O$_2$NO$_2$ chemistry and slower daytime HNO$_3$ production rate from the reaction of OH with NO$_2$ decreases modeled upper tropospheric HNO$_3$ mixing ratios as much as 71 pptv over North America while minimally impacting modeled upper tropospheric NO$_2$ column densities. The decrease in modeled upper tropospheric HNO$_3$ is significant as this value has been typically used to constrain modeled lightning NO$_x$ emission rates, and these lightning emission rates have largely underestimated observed upper tropospheric NO$_x$ mixing ratios. With the updated chemistry, we find that increasing the lightning NO$_x$ emission rates by 33% better simulates the observed upper tropospheric NO$_x$ mixing ratios compared to observations during the DC3 airborne campaign. Comparison to satellite observations indicates that the lightning NO$_x$ emission rate is variable, depending on the location, similar to the conclusion of Cooper et al. (2014). Most regions need at least a 33% increase in lightning NO$_x$ emission rates to agree with observations. Sources of modeled HNO$_3$ and O$_3$ higher than observations are explored after increasing lightning NO$_x$ emission rates, and we suggest that N$_2$O$_5$ hydrolysis rates to produce HNO$_3$ and too high modeled water vapor mixing ratios, which promotes O$_3$ production, lead to the disagreement between observations and models.
Table 4.1. Description of the different chemical sensitivity cases used in this study.

<table>
<thead>
<tr>
<th>Case</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Base case</td>
<td>Sander et al. (2011) recommended OH + NO₂ rate constant to produce HNO₃ without CH₃O₂NO₂ chemistry</td>
</tr>
<tr>
<td>2</td>
<td>Base case + CH₃O₂NO₂</td>
<td>Sander et al. (2011) recommended OH + NO₂ rate constant to produce HNO₃ with CH₃O₂NO₂ chemistry</td>
</tr>
<tr>
<td>3</td>
<td>Slower case</td>
<td>Henderson et al. (2012) recommended OH + NO₂ rate constant to produce HNO₃ without CH₃O₂NO₂ chemistry</td>
</tr>
<tr>
<td>4</td>
<td>Slower case + CH₃O₂NO₂</td>
<td>Henderson et al. (2012) recommended OH + NO₂ rate constant to produce HNO₃ with CH₃O₂NO₂ chemistry</td>
</tr>
<tr>
<td>5</td>
<td>Increased lightning NOₓ</td>
<td>Case 4 with 33% increased lightning NOₓ emission rate</td>
</tr>
<tr>
<td></td>
<td>emission rates</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.2. Coordinates of the different regions used in this study.

<table>
<thead>
<tr>
<th>Region</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>120 – 65°W</td>
<td>20 – 60°N</td>
</tr>
<tr>
<td>South America</td>
<td>77 – 39°W</td>
<td>35°S – 10°N</td>
</tr>
<tr>
<td>Northern Africa</td>
<td>15°W – 48°E</td>
<td>3 – 25°N</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>10 – 48°E</td>
<td>30°S – 3°N</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>95 – 146°E</td>
<td>9°S – 26°N</td>
</tr>
</tbody>
</table>
Table 4.3. Percent biases of the NO$_2$ column density from the averaged OMNO2d and DOMINO product over South America, Northern Africa, Southern Africa, and Southeast Asia during their respective summer months (June – August for Northern Africa and Southeast Asia and December – February for South America and Southern Africa). The Cases are defined in Table 4.1. The percent mean bias is calculated as (observations – Case 5)/observations \times 100.

<table>
<thead>
<tr>
<th>% Mean Bias NO$_2$ Column Density</th>
<th>Case 1</th>
<th>Case 4</th>
<th>Case 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>South America</td>
<td>41</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>Northern Africa</td>
<td>16</td>
<td>9</td>
<td>−5</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>4</td>
<td>−4</td>
<td>−22</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>48</td>
<td>44</td>
<td>39</td>
</tr>
</tbody>
</table>
Figure 4.1. Changes in modeled NO$_2$ column density ($\times 10^{14}$ molec./cm2, first row) and upper tropospheric HNO$_3$ mixing ratios (pptv, second row) between Case 1 and Case 2 (first column), Case 3 (second column) and Case 4 (third column). Description of each case is found in Table 4.1. Note the differences in scale for each figure.
Figure 4.2. Changes in modeled NO$_2$ column density ($\times 10^{14}$ molec./cm2) between Case 1 and Case 4 for Northern Africa, Southeastern Asia, Southern Africa, and South America. The changes correspond to the months June through August for Northern Africa and Southeastern Asia and December through February for Southern Africa and South America. Description of each case is found in Table 4.1 and definitions of the regions are found in Table 4.2. Note the differences in scale for each figure.
Figure 4.3. Changes in modeled upper tropospheric HNO₃ mixing ratios (pptv) between Case 1 and Case 4 for Northern Africa, Southeastern Asia, Southern Africa, and South America. The changes correspond to the months June through August for Northern Africa and Southeastern Asia and December through February for Southern Africa and South America. Description of each case is found in Table 4.1 and definitions of the regions are found in Table 4.2. Note the differences in scale for each figure.
Figure 4.4. Comparison between modeled and measured ratio of upper tropospheric (a) NO$_x$ and (b) HNO$_3$. Values reported from Hudman et al. (2007) and Martini et al. (2011) are shown in dark grey as comparison to the values from Case 1 (black), Case 4 (red) and Case 5 (blue). Description of the cases is found in Table 4.1. The light grey dashed-dot line in (b) represents the upper 1σ of observations during DC3. Note, the measured NO$_x$ and HNO$_3$ from Hudman et al. (2007) and Martini et al. (2011) are adjusted as recommended by Browne et al. (2011) and Bertram et al. (2007), respectively, assuming the upper limit that 35% of the NO$_2$ signal is thermally decomposed CH$_3$O$_2$NO$_2$.

\[\text{Modelled/Measured NO}_x \]

\[\text{Modelled/Measured HNO}_3 \]
Figure 4.5. Relative frequency of NO$_x$/HNO$_3$ ratios observed during DC3 (grey bars) and calculated in Case 1 (black line), Case 4 (red line) and Case 5 (blue line) models.
Figure 4.6. Mean binned scatter plot of instantaneous 1 hr HNO₃ production rate (pptv/s) from modeled N₂O₅ hydrolysis (black) and modeled reaction of OH with NO₂ (red) versus the modeled-to-measured ratio from DC3 observations. The bars represent 1σ standard deviation about the mean of the production. A hydrolysis rate of 4×10^{-5} s⁻¹ (Evans and Jacob, 2005) is assumed, and the slower OH and NO₂ rate constant (Henderson et al., 2012) is used. The R^2 for the grey (N₂O₅ hydrolysis) and red (OH with NO₂ reaction) is 0.23 and 0.02, respectively.
Figure 4.7. Comparison between modeled and observed O₃ during DC3 (a). Modeled annually averaged percent in upper tropospheric (350 hPa – tropopause) O₃ concentration, by region, between Case 1 and Case 5, where percent change is (Case 5 – Case 1)/Case 1 × 100.
Figure 4.8. Binned mean observed (black) and modeled (blue) upper tropospheric (200 – 350 hPa) versus relative age of air mass (NO$_x$/HNO$_3$).
Chapter 5. Conclusions

The chemistry of the upper troposphere controls O₃ production rates, an important greenhouse gas. Understanding the chemistry, including the rate constants and the reaction products, in this remote region of the atmosphere is challenging due to the low temperatures and pressures characteristic of the upper troposphere.

In this dissertation, I have focused on an improved understanding of upper tropospheric NOₓ chemistry using observations obtained during two airborne field campaigns: Deep Convective Clouds and Chemistry (DC3) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). Briefly, I measured atmospheric CH₃O₂NO₂ for the first time and demonstrated that it is an important reservoir of NOₓ at the cold temperatures of the upper troposphere (T < 255 K). Then, I directly measured the upper tropospheric production rates of all the NOₓ oxidative products and showed that while several rate expressions for NOₓ and hydrocarbon oxidation are consistent with observations, some of the key rate coefficients for NOₓ oxidation that are extrapolated to the temperature and pressure of the upper troposphere are between 30 – 50% too fast, and should be measured in the laboratory for confirmation at the relevant lower temperatures and pressures. Finally, implementing the updated chemistry from Chapters 2 and 3, I evaluated the representation of lightning NOₓ emission rates in a model (GEOS-Chem) and suggest that these rates should increase by at least 33% to be more consistent with in situ and space-based observations.

The changes to kinetic and emission parameters described above affect our understanding of upper tropospheric NOₓ and O₃ chemistry. When these changes are included in a model, the result for upper tropospheric O₃ predictions is that they are between 5 to 10% higher. This is a combination of 3 effects, the increased emissions of NOₓ from lightning, the longer lifetime to conversion to HNO₃, and the role of CH₃O₂NO₂ in spreading NOₓ further from the lightning source. The revised model predicts an increase in ozone instantaneous radiative forcing of approximately 4 – 12%, using the relationship of O₃ mixing ratios to the instantaneous radiative forcing from Aghedo et al. (2011). Lightning flash rates will increase with warming temperatures, as predicted by Romps et al. (2014), which will lead to more upper tropospheric O₃ in the future.

These results raise further questions about our understanding of upper tropospheric chemistry:

(1) What is the seasonal and diurnal behavior of CH₃O₂NO₂ in the upper troposphere? From the modeling results of Browne et al. (2011), CH₃O₂NO₂ showed a strong seasonal dependence with the highest mixing ratios in summer and the lowest mixing ratios in winter. In Chapter 2, the comparison of the CH₃O₂NO₂ profile between DC3 and SEAC4RS showed that CH₃O₂NO₂ mixing ratios increased from late spring to late summer, indicating that we currently understand the chemistry and precursors of CH₃O₂NO₂ during these two seasons. Measurements in other seasons are needed to evaluate the accuracy of this prediction to ensure we understand CH₃O₂NO₂ chemistry and precursors, furthering our understanding of upper tropospheric NOₓ chemistry and lifetime and thus O₃ concentrations.
The measurements for the two campaigns described in this dissertation were biased toward fresh lightning NO\textsubscript{x} emissions, which promote CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} production. In the upper troposphere, CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} has a short photolytic and thermal lifetime (typically less than 1 day). In the far field from emissions, we would expect to observe a daily cycle in CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}, similar to that of HO\textsubscript{2}NO\textsubscript{2} (e.g., Wennberg et al., 1999; Kim et al., 2007). Observing this pattern in CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2} simultaneously with HO\textsubscript{2}NO\textsubscript{2} would test our understanding of upper tropospheric NO\textsubscript{x} and HO\textsubscript{x} chemistry.

(2) What is the chemical fate of peroxynitrous acid (HOONO), the minor product produced from the reaction of OH with NO\textsubscript{2}? To date, there is little insight about the chemical fate of HOONO. It is currently thought to chemically behave similarly to HO\textsubscript{2}NO\textsubscript{2}; however, majority of our understanding of this compound is theoretical (e.g., Golden and Smith, 2000; Golden et al., 2003). If this is true, HOONO is a non-negligible reservoir of NO\textsubscript{x}, and would impact the NO\textsubscript{x} lifetime in a similar fashion to HO\textsubscript{2}NO\textsubscript{2} and lead to lower NO\textsubscript{x} lifetimes than I found in Chapter 3. However, if HOONO is significantly more unstable and has shorter lifetime than what would be described by HO\textsubscript{2}NO\textsubscript{2} chemistry, HOONO would not greatly change my results about the NO\textsubscript{x} lifetime in Chapter 3. Alternatively, HOONO could not be very reactive to OH or have similar cross-sections as HO\textsubscript{2}NO\textsubscript{2}, which would increase the HOONO lifetime and would decrease the upper tropospheric NO\textsubscript{x} lifetime in Chapter 3.

(3) What is the hydrolysis rate leading to the production of HNO\textsubscript{3} in the upper troposphere? In Chapter 3, I provided further evidence that the daytime HNO\textsubscript{3} production rate should decrease by \~30\% in the upper troposphere. The slower production rate decreases modeled HNO\textsubscript{3} mixing ratios, leading to better agreement between observations and model calculations (Chapter 4; Seltzer et al., 2015). However, the ratio of NO\textsubscript{x} to HNO\textsubscript{3} in the model is still lower than in the observations. In Chapter 4, I hypothesized that the most likely reason for the too high modeled HNO\textsubscript{3} mixing ratios is the hydrolysis rate that converts dinitrogen pentoxide, N\textsubscript{2}O\textsubscript{5}, to 2 HNO\textsubscript{3}, used in models is too fast. The reaction is well known to be fast in the stratosphere. However, recent boundary layer observations have indicated that the rate depends strongly on aerosol composition which is more varied in the troposphere than the stratosphere. On some aerosol types, the generic rate assumed in models is at least 1 order of magnitude too fast (e.g., Brown et al., 2009). Direct observations of NO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5} have not been made in the upper troposphere. Measurements of N\textsubscript{2}O\textsubscript{5} during day and night in the upper troposphere would be important contributions to understanding the NO\textsubscript{x} and HNO\textsubscript{3} budgets in the region.

An alternative to the hydrolysis rate being too high is that the loss rates of HNO\textsubscript{3} are too low. Prior studies have attempted to use observations to constrain the photolysis and photooxidation rates for HNO\textsubscript{3} in the upper troposphere and lower stratosphere; however, the results did not provide any evidence if the rates are too slow (e.g., Cohen et al., 2000). Similarly, the transport and dilution rates or uptake to aerosols or cloud droplets could be too slow. Understanding these processes will provide opportunities to further evaluate upper tropospheric NO\textsubscript{x} chemistry and lightning NO\textsubscript{x} emission rates.

(4) What is the branching ratio and fate of alkyl and multifunctional nitrates in the upper troposphere? In Chapter 3, I provided some of the first measurements and evaluations of the production and fate of upper tropospheric alkyl and multifunctional nitrates. However, the
branching ratios I used to calculate the production rates is highly parameterized (Carter and Atkinson, 1989), and there have been minimal studies evaluating the branching ratios for different alkyl and multifunctional nitrates at the temperatures and pressures characteristic of the upper troposphere (Butkovskaya et al., 2010; Butkovskaya et al., 2012). Since I have shown that the production of alkyl and multifunctional nitrates are an important NO\textsubscript{x} sink (~20% of the sink) in the near-field of lightning NO\textsubscript{x} emissions, evaluation of these branching ratios are necessary to better understand upper tropospheric NO\textsubscript{x} lifetime and evaluation of lightning NO\textsubscript{x} emission rates. If the branching ratios are different than the calculated values from Carter and Atkinson (1989), it will change our understanding of the near-field NO\textsubscript{x} lifetime and O\textsubscript{3} production rates.

In conclusion, my dissertation has provided important progress in understanding upper tropospheric NO\textsubscript{x} chemistry and emissions. The upper troposphere encompasses a large fraction of the atmosphere and represents an important region for the radiative forcing of O\textsubscript{3}. The results indicate that the typical approach of extrapolating results from boundary layer conditions to the upper troposphere does not properly describe upper tropospheric chemistry, which impacts NO\textsubscript{x}, HO\textsubscript{x}, O\textsubscript{3} and our interpretation of lightning NO\textsubscript{x} emission rates. Future work should focus on the production and loss rate constants for short-lived species, specifically N\textsubscript{2}O\textsubscript{5} and HOONO, which is necessary to understand upper tropospheric NO\textsubscript{x}, HO\textsubscript{x}, and O\textsubscript{3} chemistry. Also, the use of future geostationary satellites will provide excellent opportunities to investigate the evolution and chemistry of upper tropospheric lightning NO\textsubscript{x} emissions, providing further evaluation of our understanding of the kinetics, products, and emission rates.
References

Cooper, M., Martin, R. V., Wespels, C., Coheur, P., Clerbaux, C. and Murray, L. T.: Tropospheric nitric acid columns from the IASI satellite instrument interpreted with a chemical

AMMA and their impact on the NO\textsubscript{x} and O\textsubscript{3} budget over West Africa, Atmos. Chem. Phys., 11, 2503-2536, doi:10.5194/acp-11-2503-2011, 2011.

Krotkov, N. A.: OMI/Aura NO\textsubscript{2} Cloud-Screened Total and Tropospheric Column Daily L3 Global 0.25deg Lat/Lon Grid, version 003, NASA Goddard Space Flight Center, doi:10.5067/Aura/OMI/DATA3007, access: Nov. 9 2015.

Appendix A. Observational Constraints on the Oxidation of NO$_x$ in the Upper Troposphere

A.1 Measurement Intercomparisons

During DC3, the NASA DC-8 payload included measurements of speciated (CH$_3$O$_2$NO$_2$, HO$_2$NO$_2$, PAN, and PPN) and total peroxy nitrates, gas-phase, and gas- and particle-phase HNO$_3$, allowing for intercomparisons of the total peroxy nitrates and HNO$_3$(g+p) for the entire mission. Also, the NSF National Center for Atmospheric Research GV and DC-8 conducted 5 wing tip-to-wing tip intercomparisons, allowing comparison of two HO$_2$NO$_2$ measurements. The results are shown in Figure A1. Finally, the DC-8 payload included measurements of temperature, pressure, NO$_2$ photolysis rate, HO$_2$, and O$_3$ (Table 3.1). These measurements are used to calculate photostationary steady state (PSS) NO$_2$ (E1) to compare against measured NO$_2$ (Fig. A2). The PSS NO$_2$ is calculated for observations where NO$_x$/NO$_y$ < 0.4 (removes emissions), solar zenith angle < 80° (removes nighttime observations), O$_3$/CO < 1.25 (removes stratospheric intrusion), and at all temperatures due to the lack of observations meeting these criteria in the upper troposphere. We assumed that [RO$_2$] ≈ [HO$_2$]. The rate constants are from Sander et al. (2011).

\[
(\text{E1}) \quad [\text{NO}_2,\text{PSS}] = \frac{k_{\text{NO}+\text{O}_3}[\text{O}_3][\text{NO}]+2k_{\text{NO}+\text{HO}_2}[\text{HO}_2][\text{NO}]}{J_{\text{NO}_2}}
\]

The difference between the two HO$_2$NO$_2$ measurements is 35%. We scale the DC-8 observations to the average of the two measurements. For the peroxy nitrates, the difference between the speciated sum and total peroxy nitrates is 4%. There is a 10% difference between the two HNO$_3$(g+p) measurements. We take the average of the two measurements as the HNO$_3$(g+p).

A.2 Calculation of Alkyl and Multifunctional Nitrate

To calculate the speciated ΣANs production, we use 15 minute averaged observations of the hydrocarbons. The hydrocarbons, OH rate constants, and α are listed in Table A4. We also include the fraction of time the peroxy radical reacts with NO versus other species (~80%) in the calculation of the speciated ΣANs production. The α also includes any contribution from secondary organic nitrate formation after radical isomerization (e.g., Lee et al., 2014a). For hydrocarbons at or near the limit of detection (indicated in Table A4), we take the median mixing ratio observed during Leg 2 and calculate what the concentration should be in Leg 3, using the median OH concentration during Leg 2 (2.5×106 molecules/cm3) and the time between sampling Leg 2 and Leg 3 (~ 4000 s). Then, we use that calculated mixing ratio as the initial mixing ratio for the rest of the flight. For the hydrocarbons that do not have a temperature dependent rate constant reported (i.e., methylhexane), we use a temperature dependent rate constant that has a similar value at 298 K. Finally, for isoprene nitrate, we use the branching ratios for the different peroxy radicals from Paulot et al. (2009) and we use the recommended rate constants and mechanism from Lee et al. (2014b) to produce other isoprene nitrate species (i.e., isoprene dinitrate, ethanal nitrate, etc.) from the first generation isoprene nitrates.
A.3 Calculation of Alkyl and Multifunctional Nitrate in Aerosol-Phase

Here are the following definitions for the values used in E4 – E5 in Chapter 3 to calculate the partitioning into aerosol. R is the gas constant $(8.206 \times 10^{-5}$ atm m3 K$^{-1}$ mol$^{-1}$), T is temperature (225 K), f_{om} is the weight fraction of organic material in the total aerosol (0.8 for this experiment), MW_{om} is the molecular weight of the absorbing organic material (assumed to be 180 g/mol), ζ is the activity coefficient of the compound of interest in the condensed phase (assumed to be 1 for this experiment), p_{vap} is the subcooled vapor pressure of interest (atm), 10^6 (μg/g) is a conversion factor, m_{om} is the mass of the background organic aerosol (ranged from 0.015 – 0.030 μg/m3 at ambient T and P), and $m_{AN_{l,g}}$ and $m_{AN_{l,p}}$ are the masses of the speciated alkyl and multifunctional nitrates in the gas- and particle-phase, respectively. The units of K_p are m3 μg$^{-1}$.

A.4 Description of GEOS-Chem Model

GEOS-Chem version 09-02b (Bey et al., 2001, http://geos-chem.org) is used at 2×2.5 degree resolution. The standard chemistry is described by Mao et al. (2013) and includes CH$_3$O$_2$NO$_2$ chemistry as recommended by Browne et al. (2011). Two separate runs were conducted: one with current recommendations (Sander et al., 2011; Mao et al., 2013, Base Case) and one with the slower recommendations (Bacak et al., 2011; Henderson et al., 2012, Updated Chemistry Case) for the HNO$_3$ and HO$_2$NO$_2$ production rate constant. Both models were run from January 2011 to December 2012, and only results from January – December 2012 are analyzed to minimize memory from the initialization of the model. We use the output between 200 – 400 hPa (upper troposphere) and remove output defined as being above the meteorological tropopause.
Table A1. Reactions and rate constants at T = 225 K and P = 230 hPa used to calculate PAN production rate and CH$_3$(O)O$_2$ concentrations.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant (cm3/molecules/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$C(O)OOH + OH \rightarrow CH$_3$C(O)O$_2$ + H$_2$O</td>
<td>9.2×10$^{-12a}$</td>
</tr>
<tr>
<td>CH$_3$C(O)H + OH + O$_2$ \rightarrow CH$_3$C(O)O$_2$ + H$_2$O</td>
<td>2.2×10$^{-11b}$</td>
</tr>
<tr>
<td>CH$_3$C(O)O$_2$ + HO$_2$ \rightarrow Products</td>
<td>4.4×10$^{-11b}$</td>
</tr>
<tr>
<td>CH$_3$C(O)CH3 + hν + O$_2$ \rightarrow CH$_3$C(O)O$_2$ + CH$_3$O$_2$</td>
<td>Measured</td>
</tr>
<tr>
<td>CH$_3$C(O)CH$_3$ + OH \rightarrow CH$_3$C(O)O$_2$ + products</td>
<td>1.4×10$^{-15a}$</td>
</tr>
<tr>
<td>CH$_2$CHC(O)CH3 + hν \rightarrow CH$_3$C(O)O$_2$ + products</td>
<td>Assumed same as methyl vinyl ketone photolysisc</td>
</tr>
<tr>
<td>CH$_2$CHC(O)CH$_3$ + OH \rightarrow CH$_3$C(O)O$_2$ + products</td>
<td>3.9×10$^{-11b,c,d}$</td>
</tr>
<tr>
<td>CH$_2$C(CH2)C(O)H + hν \rightarrow CH$_3$C(O)O$_2$ + products</td>
<td>Assumed same as butanal photolysisc,d</td>
</tr>
<tr>
<td>CH$_2$C(CH2)C(O)H + hν \rightarrow CH$_3$C(O)O$_2$ + products</td>
<td>4.3×10$^{-11b,c,d}$</td>
</tr>
<tr>
<td>CH$_2$C(CH$_2$)C(O)H + OH \rightarrow CH$_3$C(O)O$_2$ + products</td>
<td>Assumed same as acetone photolysisc</td>
</tr>
<tr>
<td>CH$_3$(O)CH2OH + hν \rightarrow CH$_3$C(O)O$_2$ + products</td>
<td>Measured</td>
</tr>
<tr>
<td>CH$_3$(O)O$_2$ + NO \rightarrow CH$_3$O$_2$ + CO$_2$ + NO$_2$</td>
<td>2.7×10$^{-11a}$</td>
</tr>
<tr>
<td>C$_2$H$_5$(O)CH3 + hν \rightarrow CH$_3$C(O)O$_2$ + products</td>
<td>Measured</td>
</tr>
</tbody>
</table>

aSander et al. (2011)
bAtkinson et al. (2006)
cWe assumed that 40% of MACR+MVK measurements from the PTR-MS is MACR and 60% is MVK.
dThe percent over the arrow includes the branching between reacting with NO, HO$_2$, and NO$_2$.

92
Table A2. Reactions and rate constants used to calculate PPN production rate and C$_2$H$_5$C(O)O$_2$ concentrations.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant (cm3/molecules/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$H$_5$CHO + OH + O$_2$ → C$_2$H$_5$C(O)O$_2$ + H$_2$O</td>
<td>$3.0 \times 10^{11}^a$</td>
</tr>
<tr>
<td>C$_2$H$_5$C(O)O$_2$ + HO$_2$ → Products</td>
<td>$4.4 \times 10^{11}^b$</td>
</tr>
<tr>
<td>C$_2$H$_5$C(O)O$_2$ + NO → CH$_3$O$_2$ + CO$_2$ + NO$_2$</td>
<td>$2.7 \times 10^{11}^b$</td>
</tr>
</tbody>
</table>

aAtkinson et al. (2006).
bSander et al. (2011).
Table A3. Reactions and rate constants used to calculate CH$_3$O$_2$NO$_2$ production rate and CH$_3$O$_2$ concentrations.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant (cm3/molecules/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$ + OH + O$_2$ → CH$_3$O$_2$ + H$_2$O</td>
<td>9.2×10$^{-16}$a</td>
</tr>
<tr>
<td>CH$_3$C(O)O$_2$ + NO → CH$_3$O$_2$ + CO$_2$ + NO$_2$</td>
<td>2.7×10$^{-11}$a</td>
</tr>
<tr>
<td>CH$_3$C(O)CH3 + hν + O$_2$ → CH$_3$C(O)O$_2$ + CH$_3$O$_2$</td>
<td>Measured</td>
</tr>
<tr>
<td>CH$_3$OOH + OH $^{70%}$ → CH$_3$O$_2$ + H$_2$O</td>
<td>9.2×10$^{-12}$a</td>
</tr>
<tr>
<td>CH3C(O)OH + hν + O$_2$ → CH$_3$O$_2$ + HCO</td>
<td>Measured</td>
</tr>
<tr>
<td>CH$_3$O$_2$ + NO → CH$_3$O + NO$_2$</td>
<td>1.1×10$^{-11}$a</td>
</tr>
<tr>
<td>CH$_3$O$_2$ + HO$_2$ → Products</td>
<td>1.1×10$^{-11}$a</td>
</tr>
<tr>
<td>CH3C(O)OOH + hν → CH$_3$O$_2$ + product</td>
<td>Assumed same as methyl hydrogen peroxide</td>
</tr>
<tr>
<td>CH$_3$C(O)O$_2$ + HO$_2$ $^{45%}$ → CH$_3$O$_2$ + OH + product</td>
<td>4.4×10$^{-11}$a</td>
</tr>
</tbody>
</table>

aSander et al. (2011).
Table A4. Species, rate constants, average α, and classification used to calculate alkyl nitrate production (E2 in Chapter 3 and Fig. 3.8b) at $T = 225 \text{ K}$ and $P = 230 \text{ hPa}$.

<table>
<thead>
<tr>
<th>Parent Compound</th>
<th>Rate constant $(\text{cm}^3/\text{molecules/s})$</th>
<th>Initial Concentration (pptv)</th>
<th>α</th>
<th>Classification in Fig. 3.8b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>9.2×10^{-16d}</td>
<td>1.85×10^6</td>
<td>0.0014</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>Ethane</td>
<td>8.1×10^{-14e}</td>
<td>1880</td>
<td>0.0036</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>Propane</td>
<td>5.7×10^{-13e}</td>
<td>880</td>
<td>0.0189</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>i-Butane</td>
<td>1.6×10^{-12e}</td>
<td>136</td>
<td>0.0479</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>n-Butane</td>
<td>1.5×10^{-12e}</td>
<td>308</td>
<td>0.0426</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>i-Pentane</td>
<td>2.6×10^{-12f}</td>
<td>85</td>
<td>0.0535</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>2.8×10^{-12g}</td>
<td>71</td>
<td>0.1436</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>3.6×10^{-12g}</td>
<td>6</td>
<td>0.1030</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>2-Methylpentane</td>
<td>4.9×10^{-12h}</td>
<td>10</td>
<td>0.1821</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>3-Methylpentane</td>
<td>4.9×10^{-12h}</td>
<td>9</td>
<td>0.1354</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>4.9×10^{-12g}</td>
<td>8</td>
<td>0.4486</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>Methyl</td>
<td>6.9×10^{-12i}</td>
<td>9</td>
<td>0.1937</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>Cyclohexanea</td>
<td>5.3×10^{-12g}</td>
<td>12</td>
<td>0.2096</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>2,3-Dimethylbutanea</td>
<td>5.6×10^{-12g}</td>
<td>4</td>
<td>0.0735</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>n-Heptanea</td>
<td>6.7×10^{-12g}</td>
<td>12</td>
<td>0.5052</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>2-Methylhexanea</td>
<td>6.7×10^{-12j}</td>
<td>7.5</td>
<td>0.3933</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>3-Methylhexanea</td>
<td>6.7×10^{-12j}</td>
<td>21</td>
<td>0.4003</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>2,4-Dimethylpentanea</td>
<td>2.6×10^{-12k}</td>
<td>4</td>
<td>0.3134</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>2,3-Dimethylpentanea</td>
<td>2.6×10^{-12k}</td>
<td>6</td>
<td>0.3134</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentanea</td>
<td>2.6×10^{-12k}</td>
<td>11</td>
<td>0.3134</td>
<td>$\Sigma \text{ANs ≥ C6}$</td>
</tr>
<tr>
<td>Alkenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethene</td>
<td>8.9×10^{-12e}</td>
<td>34</td>
<td>0.0068m</td>
<td>$\Sigma \text{ANs < C6}$</td>
</tr>
<tr>
<td>Isoprenea</td>
<td>1.5×10^{-10e}</td>
<td>15</td>
<td>0.1135</td>
<td>$\Sigma \text{ANs Isoprene}$</td>
</tr>
<tr>
<td>α-Pinenea</td>
<td>8.5×10^{-11e}</td>
<td>10</td>
<td>0.4991</td>
<td>ΣANs Monoterpenes</td>
</tr>
<tr>
<td>OVOCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>1.4×10^{-13d}</td>
<td>1490</td>
<td>0.0091</td>
<td>$\Sigma \text{ANs OVOC}$</td>
</tr>
<tr>
<td>MVKb</td>
<td>3.9×10^{-11l}</td>
<td>39</td>
<td>0.0184a</td>
<td>$\Sigma \text{ANs OVOC}$</td>
</tr>
<tr>
<td>MACRb,c</td>
<td>4.3×10^{-11l}</td>
<td>26</td>
<td>0.0113</td>
<td>$\Sigma \text{ANs OVOC}$</td>
</tr>
<tr>
<td>Aromatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>9.9×10^{-13l}</td>
<td>33</td>
<td>0.0063o</td>
<td>$\Sigma \text{ANs Aromatic}$</td>
</tr>
<tr>
<td>Toluene</td>
<td>8.2×10^{-12l}</td>
<td>21</td>
<td>0.0052o</td>
<td>$\Sigma \text{ANs Aromatic}$</td>
</tr>
<tr>
<td>C8 Aromatics</td>
<td>1.6×10^{-11l}</td>
<td>8</td>
<td>0.0700o</td>
<td>$\Sigma \text{ANs Aromatic}$</td>
</tr>
</tbody>
</table>

aMeasurements at or near limit of detection. Calculated the initial concentration using observations from Leg 2.
We assumed that 40% of MACR+MVK measurements from the PTR-MS is MACR and 60% is MVK.

We assumed the reaction of MACRO₂ with NO is faster than isomerization (~0.04 s⁻¹ versus 0.005 s⁻¹); therefore, it will produce 2 multifunctional nitrates (Crounse et al., 2012).

Sander et al. (2011)
Atkinson et al. (2006)
Wilson et al. (2006)
Assumed same as n-hexane
Sprengnether et al. (2009)
Assumed same as n-heptane
Assumed same as i-pentane
Saunders et al. (2003)
Scaled to Teng et al. (2015).
Scaled to Praske et al. (2015).
Scaled to Perring et al. (2013).
Table A5. Species, corrected vapor pressure (atm), percent of gas-phase condensing onto the aerosol particle, and percent contribution of each species to the total calculated ΣANs\(_{(p)}\). The vapor pressure is calculated using SIMPOL.1 (Pankow and Asher, 2008) and divided by 3 (Leungsakul et al., 2005; Fry et al., 2009; Fry et al., 2011).

<table>
<thead>
<tr>
<th>Parent Compound</th>
<th>Corrected Vapor Pressure (atm)</th>
<th>% Gas–Phase Condensing onto Aerosol Particle</th>
<th>% Contribution to Calculated ΣANs(_{(p)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>5.2×10(^{-4})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Ethane</td>
<td>9.7×10(^{-5})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Propane</td>
<td>1.8×10(^{-5})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>i-Butane</td>
<td>3.3×10(^{-6})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>n-Butane</td>
<td>3.3×10(^{-6})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>i-Pentane 1(^{st}) Generation</td>
<td>6.2×10(^{-7})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>i-Pentane 2(^{nd}) Generation</td>
<td>5.1×10(^{-10})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>n-Pentane 1(^{st}) Generation</td>
<td>6.2×10(^{-7})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>n-Pentane 2(^{nd}) Generation</td>
<td>5.1×10(^{-10})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Cyclopentane 1(^{st}) Generation</td>
<td>1.2×10(^{-5})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Cyclopentane 2(^{nd}) Generation</td>
<td>7.0×10(^{-9})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>2-Methylpentane 1(^{st}) Generation</td>
<td>1.2×10(^{-7})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>2-Methylpentane 2(^{nd}) Generation</td>
<td>9.4×10(^{-11})</td>
<td>4</td>
<td>< 1</td>
</tr>
<tr>
<td>3-Methylpentane 1(^{st}) Generation</td>
<td>1.2×10(^{-7})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>3-Methylpentane 2(^{nd}) Generation</td>
<td>9.4×10(^{-11})</td>
<td>4</td>
<td>< 1</td>
</tr>
<tr>
<td>n-Hexane 1(^{st}) Generation</td>
<td>1.2×10(^{-7})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>n-Hexane 2(^{nd}) Generation</td>
<td>9.4×10(^{-11})</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Methyl Cyclopentane</td>
<td>4.0×10(^{-7})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Cyclohexane 1(^{st}) Generation</td>
<td>2.1×10(^{-6})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Cyclohexane 2(^{nd}) Generation</td>
<td>1.3×10(^{-9})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>2,3-Dimethylbutane</td>
<td>1.2×10(^{-7})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>n-Heptane 1(^{st}) Generation</td>
<td>2.2×10(^{-8})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>n-Heptane 2(^{nd}) Generation</td>
<td>1.8×10(^{-11})</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>2-Methylhexane 1(^{st}) Generation</td>
<td>2.2×10(^{-8})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>2-Methylhexane 2(^{nd}) Generation</td>
<td>1.8×10(^{-11})</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>3-Methylhexane 1(^{st}) Generation</td>
<td>2.2×10(^{-8})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>3-Methylhexane 2(^{nd}) Generation</td>
<td>1.8×10(^{-11})</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>2,4-Dimethylpentane</td>
<td>2.2×10(^{-8})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>2,3-Dimethylpentane</td>
<td>2.2×10(^{-8})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentane</td>
<td>4.0×10(^{-9})</td>
<td>< 1</td>
<td>< 1</td>
</tr>
</tbody>
</table>
Table A5. Continued. Species, corrected vapor pressure (atm), percent of gas–phase condensing onto the aerosol particle, and percent contribution of each species to the total calculated ΣANs(p). The vapor pressure is calculated using SIMPOL1 (Pankow and Asher, 2008) and divided by 3 (Leungsakul et al., 2005; Fry et al., 2009; Fry et al., 2011).

<table>
<thead>
<tr>
<th>Parent Compound</th>
<th>Corrected Vapor Pressure (atm)</th>
<th>% Gas–Phase Condensing onto Aerosol Particle</th>
<th>% Contribution to Calculated ΣANs(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkenes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethene</td>
<td>7.8×10^{-8}</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Isoprene 1st Generation</td>
<td>4.4×10^{-10}</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Isoprene 2nd Generation</td>
<td>3.7×10^{-16}</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>α-Pinene 2 Rings</td>
<td>3.9×10^{-11}</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>α-Pinene 1 Ring</td>
<td>1.8×10^{-12}</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>OVOCs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>2.2×10^{-6}</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>MVK</td>
<td>4.1×10^{-7}</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>MACR</td>
<td>4.1×10^{-7}</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Aromatics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>2.9×10^{-8}</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Toluene</td>
<td>3.7×10^{-9}</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>C8 Aromatics</td>
<td>6.7×10^{-10}</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>
Figure A1. Intercomparison of (a) DC-8 versus GV HO$_2$NO$_2$, (b) ΣPN$_i$ ($\Sigma PN_i = CH_3O_2NO_2 + HO_2NO_2 + PAN + PPN$) versus ΣPNs, and (c) IC HNO$_3(p+g)$ versus CIMS HNO$_3(g)$. The slopes (±1σ), intercepts (±1σ), and R2 values are (a) 0.66(±0.01), −3(±1), and 0.96, (b) 0.96(±0.02), 7(±9), and 0.68, and (c) 1.09(±0.02), 34(±2), and 0.81.
Figure A2. Intercomparison of photostationary steady state (PSS) NO$_2$ versus measured NO$_2$. The slope ($\pm 1\sigma$), intercept ($\pm 1\sigma$), and R2 is 0.99(± 0.01), $-12(\pm 2)$, and 0.89.
Figure A3. The full flight path of the NASA DC-8 is shown in black for the entire 21 June 2012 experiment. Wind direction and relative speed observed on the DC-8 is shown by the red arrows.
Figure A4. Time series of (a) CH$_3$O$_2$NO$_2$, (b) HO$_2$NO$_2$, (c) PAN, and (d) PPN. The red vertical lines indicate the start of legs 1, 2, and 3, respectively in Fig. 3.2. The CH$_3$O$_2$NO$_2$ observations are three minute averages and the values.
Figure A5. First order loss rate of (a) toluene and (b) ethyne. The solid red line is the slope (-1.01×10^{-4} and -5.9×10^{-6} s$^{-1}$ for toluene and ethyne, respectively) and the dashed-dot red line is the 2σ uncertainty ($\pm 2.3 \times 10^{-5}$ and $\pm 2.6 \times 10^{-6}$ s$^{-1}$ for toluene and ethyne, respectively).