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ABSTRACT: Water quality trading has been proposed as a
cost-effective approach for reducing nutrient loads through
credit generation from agricultural or point source reductions
sold to buyers facing costly options. We present a systematic
approach to determine attenuation coefficients and their
uncertainty. Using a process-based model, we determine
attenuation with safety margins at many watersheds for total
nitrogen (TN) and total phosphorus (TP) loads as they
transport from point of load reduction to the credit buyer. TN
and TP in-stream attenuation generally increases with
decreasing mean river flow; smaller rivers in the modeled
region of the Ohio River Basin had TN attenuation factors per
km, including safety margins, of 0.19−1.6%, medium rivers of
0.14−1.2%, large rivers of 0.13−1.1%, and very large rivers of 0.04−0.42%. Attenuation in ditches transporting nutrients from
farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety
margin of 30−40% for TN and 6−10% for TP, applied to the attenuation per km factors, was determined from the in-stream
sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in
50% attenuation = 2:1 trading ratio.

■ INTRODUCTION

Water quality trading allows for the cost-effective reduction of
nutrient loading to water bodies through the generation of
“credits” from agricultural conservation practices or point
source reductions that are sold to buyers facing costly
technological options for meeting clean water act permit limits.
With growing interest in this watershed management approach,
it is critical to ensure that credits represent the accounting unit
for which they are sold, most commonly load reductions of
total nitrogen (TN) or total phosphorus (TP). Since market
participants generally seek to maximize financial returns,1

program designs ideally imbed rules that will ensure environ-
mental integrity. A fundamental issue is the appropriate
estimation of credits both at the point of generation and the
point of use, with appropriate safety margins. Here we develop
a systematic methodology for determining the attenuation
factor and safety margins for credit calculations, which is key for
determining overall trading ratios. The methodology itself can
be applied to any water quality trading program and may have
broader application to Total Maximum Daily Loads and other
programs.
Efforts to trade discharge loads to improve water quality have

been around for over a decade,2 with varying degrees of
success; in many cases high trading ratios to address the various
sources of uncertainty have hindered water quality markets, and

low ratios may not protect water quality. A market system with
a cap on discharges and freely tradable permits has been studied
as an appropriate way to achieve water quality goals cost-
effectively.3 Allowing markets to allocate financial resources to
the most cost-effective pollutant load reduction approaches4−10

may be a viable method for providing incentives to others who
can reduced their loading at a lower cost11−14 The majority of
the studies on water quality trading have focused on the
economics and to some extent the social aspects of the
programs.2,11,15−23

Although there are a number of programs in several
countries,24−26 the US leads the efforts in establishing water
quality trading programs.27 One pilot project led by the Electric
Power Research Institute has established a trading program
involving three states in the Ohio River Basin (http://wqt.epri.
com). While the scale of this project presents unique social,
economic, and watershed management opportunities, the
challenge is to ensure that reductions comparable to those a
point source might otherwise achieve are realized through
credit trading, accounting for the attenuation of the load
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reduction. While many projects are being built and
implemented, there are concerns regarding ad-hoc trading
ratios that stress economic and social factors and that do not
adequately account for scientific uncertainty. This research
attempts to inform this gap.
Various models have been used to consider the fate and

transport processes that occur from the moment fertilizers are
applied on a farm or discharged at a point source, to the point
where the credit will be needed. These processes include
physical transport and abiotic chemical reactions as well as
biological processing of the nutrients. Nitrogen and phosphorus
compounds undergo complex biogeochemical processing on
their journey through any given watershed. Thus, robust
calculation methods and approaches are required to determine
the underlying response of the various environmental factors
and make predictions about the water quality impact of a
proposed set of trades. Water quality models employed include
annualized statistical relationships between land use, precip-
itation, broad soil types and residence time, used in
SPARROW,28−30 and mechanistic models such as
SWAT,31−35 WARMF,36−45 and HSPF.46 Bayesian networks47

have also been applied to developing credit trading ratios. The
statistically based models can be calibrated to reproduce region-
specific results accurately, but since there is no explicit process
representation it can be challenging to evaluate explicitly the
effects of different types of load reductions. The mechanistic
models generally require considerably more data, which
presents a challenge, but can be used for forward predictions
with projections about the changes in inputs (e.g., significant
land use changes, modifications to point source discharges,
changes in specific land management practices) which are not
captured by the historical database used to generate the
statistical relationships.
The scientific components of a crediting equation are

= × × ×‐ ‐ ‐CR (F F F F )LRPoU farm to river in stream equivalence safety

(1)

where CRPoU = credit at point of use (PoU); Ffarm‑to‑river =
attenuation from point of credit generation (e.g., farm,
stormwater BMP, point source) to edge of river; Fin‑stream =
in-stream attenuation from entry point to PoU; Fequivalence =
accounts for load reduction in different N or P species than
needed at PoU; Fsafety = safety margin for uncertainties in
attenuation calculation; and LR = load reduction at the point of
credit generation, at the edge of farm.
Since watershed scale models use fairly coarse grids, the local

farm load levels and effects of Best Management Practices
(BMPs) are generally modeled using models such as Nutrient
Tracking Tool and its variants48−52 or the STEPL and USEPA
Region V models.53,54 For this study we assumed that LR
would be estimated based on such models and did not consider
the inherent uncertainty in the calculation of LR; uncertainty
estimates from the LR will be addressed in a separate study.
Ffarm‑to‑river considers the attenuation that may occur when LR is
generated at a farm not directly on the edge of the stream
segments modeled with the watershed model. The load may be
carried overland as surface runoff in sheet flow, in drainage
ditches, via shallow groundwater or even small tributaries to the
larger segments. Fin‑stream accounts for nutrient assimilation or
storage in sediments that may reduce LR as the nutrients are
transported through the river network to the point of use or
compliance. Fequivalence takes into consideration that load
reduction may be in the form of reduced application of

ammonium, nitrate, or organic N, while the compliance at the
PoU is in total nitrogen (TN); a similar consideration can be
made for phosphate compounds and total phosphorus (TP).
Fsafety addresses the uncertainty in the fate and transport
calculations, first by determining the sensitivity of the
attenuation calculation to the watershed model parameters,
and then evaluating the probability that the attenuation
coefficients lie within a certain range.
In this study, the WARMF model was implemented for

several major tributaries of the Ohio River (e.g., Allegheny,
Muskingum, Scioto, and Great Miami) as well as the Upper and
Middle Ohio River sections. Given the geographical scope of
the Ohio River Basin Water Quality Trading Program,
extending over several states, it was decided that watershed
delineation would be at the USGS-defined Hydrologic Unit
Code level 10 (HUC10) scale, with a watershed model for
every HUC4 within the basin. Generally each river segment is
around 5 to 50 km in length, with the majority around 20 km.
Each HUC10 may contain hundreds or even a few thousand
farms, mostly planting corn, soybean, and winter wheat, or
supporting milk houses, typically with tens of point sources.
After implementing and calibrating the WARMF model for the
various watersheds, a sensitivity analysis was conducted to
determine the parameters that affect calibration most
significantly. Then the attenuation factors were determined
for each HUC10 watershed modeled. This was followed by a
sensitivity analysis for the attenuation factors. Using this
information, we estimated a safety margin for attenuation from
the edge of field to the point of credit purchase, and thereby
creating the most robust scientifically informed water quality
trading crediting equation to date. This study specifically
focused on the attenuation aspect of crediting and did not
consider policy, economic, or social factors that may influence
an overall trading ratio.

■ METHODS
The WARMF models were implemented using the data and
steps indicated in the Supporting Information. For reference,
Figure 1 presents the watershed delineation for the modeled
HUC4 of the Ohio River Basin (ORB). The delineations were
done based on the USGS HUC10. The WARMF models for
the various HUC 4s were calibrated55,56 using observed water

Figure 1. Modeled Ohio River Basin watersheds (HUC4) delineated
based on HUC10.
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quality to reduce variance between cumulative and observed
flows and concentrations of ammonia, nitrate, Total Kjehldahl
Nitrogen (TKN), TN, Total Suspended Solids (TSS), and TP.
Hydrology was calibrated against USGS stream gages (>180
locations), and then sediment and nutrient parameters (e.g.,
adsorption coefficients, abiotic reaction rates, biotic assim-
ilation, erosivity) were adjusted using USEPA STORET, Ohio
EPA, and ORSANCO data for over 180 locations within these
watersheds. Corn, winter wheat, and soybean fertilizer
application rates were based on USDA Economic Research
Service and regional information from the American Farmland
Trust (cf. the Supporting Information).
Sensitivity Analyses. For the sensitivity and uncertainty

analyses,57 the Probability Collocation Method (PCM) was
employed,58,59 which is much more efficient computationally
than Monte Carlo simulation which requires >10,000 model
simulations. PCM is a stochastic response surface method
developed in the late 1990s to address sensitivity and
uncertainty in the implementation of geophysical models.60,61

Recently it has been applied to determine watershed modeling
uncertainty using variance decomposition.62 By using a
Polynomial Chaos Expansion (PCE) to approximate
WARMF model output, PCM can capture the changes in
output by using different orders of a single variable as well as
their cross terms (cf. the Supporting Information).
Attenuation from Farm to Edge of River.While in some

circumstances the edge of a farm coincides with the river bank,
in many cases the distance between the edge of farm and a
receiving HUC10 river segment may be considerable. To
determine this portion of the attenuation, a WARMF model
was set up with soil characteristics, crops (i.e., corn), and
meteorology similar to that in the middle Ohio River basin. We
considered five farms of 1,000 × 1,000 m2 connected by an
agricultural drainage ditch (or small shallow stream), with the
first farm connected to a river segment and the others at various
locations up to 5000 m from the river. The load carried via the
ditch or shallow stream in surface runoff was evaluated over a
10 year period, noting also the load carried in shallow
groundwater via lateral flow. BMPs such as riparian vegetation
buffers and wetlands (natural or constructed) are considered
within the farm load calculation and were thus not considered
in this attenuation.
In-Stream Attenuation Matrix. In-stream attenuation was

calculated by considering a load reduction with minimal flow
(0.1 m3/s, 100 kg/day TN or TP load) at an upstream location
and determining the effect on river loads (in-stream
concentration × flow) at all downstream reaches. The entire
river network for a given HUC4 watershed was explored
systematically using a script that generated the load reduction at
an upstream location, and then ran the model and collected
concentrations at all downstream river segments (i.e.,
HUC10s). Attenuation was determined over a long time
period (e.g., several seasons or years) to reduce variability in the
attenuation calculated on a day to day basis. The time-averaged
attenuation, A̅i j, , is calculated using the sum over D days

̅ = −
∑ ∗ − ∗

∑ ∗ − ∗
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where A̅i j, = attenuation in river segment j from load change in
upstream river segment i, Qj,k = flow rate in river segment j on
the kth day (m3/s), and C = concentration at j on the kth day

(mg/L). The superscript L refers to the condition where a load
has been decreased at upstream location i to determine the
effect downstream at j locations. Naturally, when i = j, A = 1.
A matrix of attenuation coefficients between every pair of

connected locations (i,j) was determined for each HUC4
watershed. To determine the sensitivity of the attenuation
coefficients, the PCE procedure (Figure S2) was followed.
From previous work, 29 parameters were chosen for the TN
attenuation sensitivity analysis (Table S3) and 20 parameters
for the TP attenuation sensitivity analysis (Table S4).

Equivalence. Since models most commonly used for
estimating edge of farm load reductions provide output as
TN and TP, we considered Fequivalence = 1, to be explored in a
future study.

■ RESULTS
Attenuation from Edge of Farm to Edge of River. TN

attenuation is a function of distance from the edge of the river,
slope of the drainage channel, and level of flow rate (Figure 2).

There are differences in attenuation between low flow rate (LF)
days (i.e., small storms or days after a large storm) and high
flow rate (HF) days (i.e., significant storm event days), while
the average attenuation during all days (ALL) falls within these
two conditions. Attenuation is also a strong function of slope,
with very small gradients (0.00025) and thus more water
retention time resulting in higher attenuation than high slope
(0.025) channels where water flows rapidly to the river. Overall,
edge of farm to river attenuation of TN is on the order of 0.2%
to 2% (Ffarm‑to‑river,TN = 0.98 to 0.998) within a distance of 5,000
m, which is almost insignificant compared to the uncertainties
in farm level reductions and in-stream attenuation.
Figure 3 presents the attenuation from edge of farm to river

for TP, nitrate (NO3
−) and TSS, for all flow rates. Nitrate

attenuation is insignificant, typically around 0.1% at a distance
of up to 5,000 m, with a weak dependence on slope or flow
rate. TP attenuation ranges from 5 to 10% (Ffarm‑to‑river,TP = 0.90
to 0.95) after 5,000 m, depending on the slope of the channel,
with higher attenuation at lower gradients. TP attenuation from
farm to river can be estimated using

= ‐ − *S DTP attenuation [2.22E 05 exp( 24.8 )] (3)

where S = slope (−) and D = distance from edge of farm to the
river (m). The attenuation of TP is driven in part by the
significant attenuation of TSS loads under all conditions, which

Figure 2. Attenuation of TN load from edge of farm to river as a
function of flow rate (H = high, L = low, all) and slope (from 0.025 to
0.00025).
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ranges from 34 to 55% after 4,000 m. TSS includes sands, silts,
and clays, while TP is mostly associated with the clay fraction.
Since TSS attenuation is strictly a physical process that does
not depend on the concentration of TSS, it increases linearly
with distance from the edge of the river. Not captured explicitly
in this analysis is the potential flushing effect of a very large
storm that completely displaces the deposited sediments from
the drainage channel to the river; it is averaged out over the 10
year simulation.
Nutrient loads transported via shallow groundwater were

generally very small (<1% of total load) during the 10-year
simulation. Attenuation of such shallow groundwater loads will
depend on local soil conditions (i.e., hydraulic conductivity,
redox conditions, nutrient concentrations, and speciation). For
a nutrient credit of less than 10 years, the load reduction
contribution to the river from shallow groundwater can be
considered insignificant in most cases. These results are generic
for conditions around the Ohio River Basin and may be valid
for watersheds with similar soils, climates and land uses.
In-Stream Attenuation. Patterns became apparent when

comparing attenuation coefficients for the various watersheds
modeled, normalized by length. The river segments were first
classified according to mean flow rate (Table 1). Lakes and

reservoirs were excluded from this analysis, since each one has a
distinct impact on attenuation, and they represent a very small
fraction of the water bodies (<1%) in the modeled ORB.
TN and TP attenuation per km of river length was distinctly

different for the various rivers in the seven watersheds (Figure
4). Very large flow rate segments, on the main stem of the Ohio

River, have some of the smallest attenuation rates for TN
(around 0.0005 to 0.003 per km, or 0.05−0.3% per km) and TP
(around 0.03−0.7% per km) (Figure 5). For a 100 km segment
along the main stem of the Ohio River, in-stream TN
attenuation would be 5 to 30% (Fin‑stream,TN = 0.70 to 0.95) .
Adding in the edge of farm to river of 2% (Ffarm‑to‑river = 0.98)
and a safety margin still results in an in-stream TN attenuation
of around 10−50%, which is a trading ratio <2:1. However, this
does not take into account policy or implementation risk into
account. The lowest attenuation occurs in the Middle Ohio
River and the highest in the southern Upper Ohio River. In
general, there is increasing attenuation with decreasing stream
magnitude (Figure 5), in part because smaller streams have
much longer residence times during dry periods which leads to
more TN assimilation and TP storage in sediments.
The Great Miami, Muskingum, and Scioto watersheds have

substantial agricultural areas, while the Allegheny, Upper Ohio
(northern and southern), and Middle Ohio are dominated by
forested and wetland areas. Further analysis indicates that on
average rivers in agricultural areas indeed exhibit greater TN
attenuation per unit length compared to forested watersheds
(Figure 6), since higher in-stream concentrations result in faster
assimilation and transformation processes, due to higher overall
rates of biotic and abiotic transformation and assimilation at
higher concentrations, given assumed first-order processes. The
pattern is less clear for TP mostly because smaller rivers in
agricultural watersheds exhibit less attenuation than small rivers
in forested watersheds, but the observations for TN hold well
for medium, large, and very large rivers.

Safety Margin. Sensitivity of TN and TP in-stream
attenuation coefficients to changes in WARMF model
parameters is shown in Figure 7 for three typical river
segments: a small stream near the headwaters, medium, and
large river segments. TN attenuation coefficients are much
more sensitive to changes in WARMF model parameters
compared to TP. The 95 percentile attenuation factors per km
are 29 to 40% larger than the median for TN, but only 6 to 10%
for TP, given the much lower sensitivity of TP to the variation
in model parameters. A protective (i.e., greater discounting of
the credit) TN attenuation per km for the small river would be
0.59% instead of 0.46%, for the medium river 0.21% instead of
0.16%, and for the large river 0.15% instead of 0.11%. The most
sensitive parameters in the TN attenuation calculation are
related to denitrification, Manning’s n (river channel rough-
ness), initial sediment depth, and precipitation weighting factor
(i.e., distribution of rainfall among catchments). For TP, the
most sensitive parameters are all related to sediment transport
(e.g., soil erosivity, sediment bank erosion factors, initial
sediment depth) and precipitation weighting factor. The
adsorption parameters for phosphate play a very minor role,
since adsorption is quite significant and varying the value has
little impact on the outcome. Tables S9 and S10 in the
Supporting Information present a detailed analysis of the most
sensitive parameters. Similar sensitivity was observed for the
attenuation from edge of farm to the edge of river as for in-
stream attenuation in small streams (25−30% for TN, 5−6%
for TP). For the overall credit calculation (eq 1), it is
operationally easier to use the 95 percentile attenuation factors
per km to derive F*farm‑to‑river and F*in‑stream factors which
already incorporate a safety margin.

Figure 3. Attenuation of TP, NO3
−, and TSS load from edge of farm

to river as a function of slope, for all flow rates.

Table 1. Classification of River Segments by Mean Flow Rate
in the Various Watersheds Modeled

small
<10
m3/s

medium 10−
100 m3/s

large 100−
1000 m3/s

very large
>1000 m3/s

Allegheny (Al) 12 14 2 0
Great Miami
(GM)

6 15 3 0

Muskingum (Mu) 20 11 3 0
Scioto (Sc) 7 14 6 0
Northern Upper
Ohio (NUO)

5 12 1 3

Southern Upper
Ohio (SUO)

5 8 0 5

Middle Ohio
(MO)

7 15 0 12
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■ ENVIRONMENTAL SIGNIFICANCE
A systematic framework for developing attenuation factors for a
water quality trading program was developed, including a
rigorous approach for determining the appropriate safety
margin. The framework is independent of the model/method
used to represent the watershed processes or the characteristics

of the watershed(s). However, the results do indicate that the
attenuation coefficients for TN and TP are watershed-specific,
and thus it is recommended that each watershed be modeled to
appropriately represent local conditions. Ideally, a specific
trading ratio should be calculated considering the location of
seller and buyer within a given watershed. Attenuation and
uncertainty are different for TP and TN and need to be
considered separately. In cases where data or resources are very
limited, it may be possible to use the range of attenuation
values presented here for similar watersheds elsewhere.
Attenuation coefficients can also be estimated from observed
data, but quantification of uncertainty would be challenging
without a process-based approach.
Attenuation in small streams or drainage ditches transporting

nutrients from farms to receiving rivers is relatively small for
TN, up to 2% even for low channel slopes. For TP, attenuation
can be up to around 10% and is a much stronger function of
slope. In-stream attenuation factors for TN and TP generally
increase with decreasing mean river flow rate; smaller rivers in

Figure 4. Attenuation coefficients for (a) TN and (b) TP in seven ORB watersheds. Watershed codes are presented in Table 1. For river size, sm =
small, med = medium, lg = large, and vlg = very large.

Figure 5. Attenuation coefficients sorted by river flow rate (per Table
1) for TN and TP.

Figure 6. Attenuation coefficients sorted by river flow rate and land
use for TN and TP.

Figure 7. Sensitivity of TN and TP attenuation coefficients at three
river segments. Whiskers represent the minimum and maximum; the
dashed line is the 95 percentile.
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the modeled region of the Ohio River Basin had TN
attenuation factors per km, including safety margin, of 0.19−
1.6%, medium rivers of 0.14−1.2%, large rivers of 0.13−1.1%,
and very large rivers of 0.04−0.42%. For perspective, over 50
km a 1% per km factor would result in 50% attenuation = 2:1
trading ratio. Watersheds with substantial agricultural presence
had higher TN attenuation for all river sizes than forested
watersheds; the same was true for TP attenuation, except for
small rivers in agricultural watersheds which had lower TP
attenuation than forested watersheds. In this study, equivalence
issues were not explored. These results should hold in general
for the broader Ohio River Basin and other regions with similar
characteristics, but it is important to note that other watershed
characteristics can play an important role in determining the
attenuation of TN and TP and the corresponding safety
margins. The safety margin can be reduced as more monitoring
data becomes available, which would constrain model
parameters. The sensitivity analysis of the attenuation
coefficients informs us as to the parameters that should be
given particular attention during model calibration and for
addressing attenuation uncertainty. With Monte Carlo
simulation varying parameters that most influence the
attenuation coefficients, we can determine the probability
distribution of the attenuation coefficients and then select a
protective safety margin. The safety margin is a function of
distance traveled, which favors trading nearby.
This effort informs the determination of scientifically

appropriate and protective trading ratios that account for
attenuation between buyers and sellers in water quality trading.
The methodology itself can be applied to other water quality
trading programs and may have broader application for
determining safety margins for other modeling efforts, such as
determination of Total Maximum Daily Loads. This is an
important step for ensuring that credits represent the offsets
toward which they are applied at the point of compliance and, if
the methods are enforced through program design, adds to the
integrity and defensibility of water quality trading. Policy
makers and program managers may need to apply other factors
to a trading ratio to consider economics and address
implementation risk and other issues beyond attenuation.
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