Title
SURVEY REPORT: STUDY OF INFORMATION/EDUCATION DISCUSSIONS WITH PRIVATE INDUSTRIES AND PUBLIC INSTITUTIONS ON THE DIRECT-HEAT UTILIZATION OF GEOTHERMAL ENERGY

Permalink
https://escholarship.org/uc/item/54522260

Author
Davey, James V.

Publication Date
1977-03-01
SURVEY REPORT:
Study Of Information/Education
Discussions With Private Industries And
Public Institutions On The Direct-Heat
Utilization Of Geothermal Energy

James V. Davey
March 1977

Prepared for the U.S. Energy Research and Development Administration under Contract No. W-7405-ENG-48
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
SURVEY REPORT

STUDY OF INFORMATION/EDUCATIONAL DISCUSSIONS WITH PRIVATE INDUSTRIES AND PUBLIC INSTITUTIONS ON THE DIRECT-HEAT UTILIZATION OF GEOTHERMAL ENERGY

James V. Davey

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

March 1977
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Goals</td>
<td>2</td>
</tr>
<tr>
<td>Approach</td>
<td>2</td>
</tr>
<tr>
<td>Discussion</td>
<td>3</td>
</tr>
<tr>
<td>Study Findings</td>
<td>4</td>
</tr>
<tr>
<td>Study Data by Industry</td>
<td>5</td>
</tr>
<tr>
<td>Agriculture</td>
<td>5</td>
</tr>
<tr>
<td>Paper Pulp/Wood Products</td>
<td>10</td>
</tr>
<tr>
<td>Chemicals</td>
<td>12</td>
</tr>
<tr>
<td>Horticulture</td>
<td>12</td>
</tr>
<tr>
<td>Dairy Industry</td>
<td>12</td>
</tr>
<tr>
<td>Aquaculture</td>
<td>12</td>
</tr>
<tr>
<td>Other</td>
<td>13</td>
</tr>
<tr>
<td>Summary</td>
<td>13</td>
</tr>
<tr>
<td>Reference Group I</td>
<td>15</td>
</tr>
<tr>
<td>Reference Group II</td>
<td>22</td>
</tr>
<tr>
<td>Reference Group III</td>
<td>24</td>
</tr>
<tr>
<td>Reference Group IV</td>
<td>25</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>29</td>
</tr>
</tbody>
</table>
Abstract

This summary is the result of a four-month study of private and public institutions' response to the proposed use of geothermal energy in the form of direct heat. This heat energy is to be used as an alternate or supportive source for their process or other heat requirements.

The summary includes information from over 75 personal contacts with firms in several categories (see Reference Group I). No attempt is made to reference specific data to any particular company. Although not necessarily confidential, some financial information concerning energy costs to profits was considered sensitive and is respected as such. The companies contacted have been incorporated into the East Mesa Test Facility mailing list. The companies contacted are in several categories, as follows:

- Food processing – canning, drying, dehydration
- Chemicals
- Paper/wood-pulp processing
- Food machinery
- Horticulture
- Dairy

The area covered in the study was from Seattle, Washington to San Diego, California, during mid-1976. Industry's response varied from mild interest, as with corporations that had little or no knowledge of geothermal energy (and regard it as a new unproven science), to enthusiastic from corporations that employ their own energy departments. These enthusiastic corporations recognize the future energy crisis in fossil fuels and are seeking alternatives. However, geothermal science is still fairly vague.

The study clearly indicated the important areas of need for aiding the development of this valuable resource. Those needs are:

- An intense basic educational/promotional program.
- An operating demonstration project (industrial park) to prove economic feasibility and instill confidence in the potential of geothermal energy.
Goals

The goals of the study were threefold.

- Introduce to the private and public industrial sector the Energy Research and Development Administration's East Mesa Component Test Facility, make its availability known, its potential usefulness and capabilities, its location, its costs to the user, and arrange for its use. This facility was established by ERDA specifically to assist the rapid commercialization of the geothermal energy potential.

- Present a basic introductory program on geothermal energy and the role this energy can play in non-electric applications. Present a review of the economics of a single production well (Reference Group IV) and discuss specific areas of interest. Since the electric industry has considerable activity in the geothermal field, the emphasis was placed on the potential non-electric field that might benefit from an introduction to geothermal.

- Outline Lawrence Berkeley Laboratory's assistance programs in the geothermal sciences. These include not only operation of the geothermal component test facility but also the current "in house" geothermal research programs, the National Geothermal Information Resource (GRID) program, and the Technology Utilization Program.

Approach

An introductory program and a 35-mm slide presentation were assembled. A review of several current geothermal reports and contacts with several related agencies aided the investigation in obtaining the broadest coverage, and targeted the heat-intensive industries (Reference Group II).

Cooperation of several business publications in related fields was helpful in reaching each sector. Published articles proved to be ice breakers for some initial contacts (Reference Group III).
Discussion

The industries contacted, as a whole, know their present energy requirements and costs very well. The potential use of geothermal energy is almost unknown. At best it is known in relation to steam-powered electrical generating plants (The Geysers).

Many industries are aware of solar energy. Solar-energy sales and promotional effort are well advanced, compared to geothermal energy. The major areas covered during discussions were:

- Defining the hydrothermal systems. Particular emphasis was placed on the scarcity of vapor-dominated (steam) systems, as compared with the relative abundance of liquid-dominated systems in the low-to-moderate temperature range (up to 200°C).

- The vast amount of energy available in the < 200°C range.

- A brief explanation of geo-pressured and hot-dry rock systems and their present state of the art. Geo-pressured development was of interest to large land owners with holdings in the Gulf states.

- The geographic locations of surface manifestations of geothermal energy as shown on existing maps. These surface expressions are only indicators, but are significant enough to warrant further surface and possible subsurface investigation. The maps were used mainly to demonstrate the abundance and general locations of geothermal energy sources.

- The existing exploration techniques, such as resistivity, magneto-tellurics, seismic, geo-chemistry, or the combination of some or all to lend confidence to site selection or pre-drilling effort.

- The efficiency of direct-heat utilization methodologies.

- Presenting the economics of a single geothermal production well (Reference Group IV).

- Pointing out that direct-heat applications have fewer technical problems and can be made to work today, with existing hardware and engineering. They offer lower risks, which means lower development costs.
The approach to initiate an investigation into possible locations. Public agencies, existing reports, commercial investigators, and laboratory assistance.

The additional bonus of the opportunity to develop new industries in areas of economic need, as well as an opportunity to decentralize congested urban areas.

Problems: geothermal energy is site-dependent, and obviously isn't the answer to all heat requirements. However, for future expansion, plant replacement, or new development, it has great potential.

Emphasize the need for private industry to initiate its own geothermal development and outline Lawrence Berkeley Laboratory's assistance role.

Study Findings

The heat-intensive industries are, or have been, using natural gas or fuel oil. Of those on natural gas, many are on interrupted service and are presently converting to fuel oil, or are planning to do so. Private industry has invested many dollars and many hours of effort to improve its energy consumption and are well aware of energy costs as a factor of production costs. Reducing energy consumption within their current operations has taken the forefront of the efforts of many. Money is not readily available for research and development and new ventures are considered risky and expensive. Industry almost without exception considers geothermal energy as a relatively new science that needs government support to exploit.

To again emphasize the importance of a basic educational/promotional program, and present the general attitude of private industry, the following is a review of some typical queries that were received many times during the discussions:

- What is geothermal energy?
- Is it always in the form of steam?
- Do you use it in those panels on the roof?
- How hot is the water?
- Isn't it full of minerals and junk?
Is it located everywhere?
How do we find it?
Do you find it for us?
How do we use it in our process?
What does it cost?
How do we start?

These questions, and many more, are not intended to introduce humor to this report, but rather to point to the areas of need if the development of direct-heat utilization of geothermal energy is to proceed.

Study Data by Industry

Agriculture

As an energy consumer, the agriculture business is high on the list and is a good candidate for alternative energy. The operation, transportation, and processing of agricultural products used over 5.1% of the total energy consumed in the state of California during 1972, and has been increasing yearly (equivalent to nearly 40 million barrels of oil annually). Of that total, 53.1% is natural gas use. Table I shows the energy use (in declining order) for the most heat-intensive crops.

<table>
<thead>
<tr>
<th>Energy source</th>
<th>Category</th>
<th>Category</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Field crops</td>
<td>Vegetables</td>
<td>Fruits & nuts</td>
</tr>
<tr>
<td>Natural gas</td>
<td>Sugarbeets</td>
<td>Tomatoes</td>
<td>Grapes</td>
</tr>
<tr>
<td>Electricity</td>
<td>Cotton</td>
<td>Tomatoes</td>
<td>Grapes</td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>Cotton</td>
<td>Tomatoes</td>
<td>Grapes</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Alfalfa/Hay</td>
<td>Tomatoes</td>
<td>Grapes</td>
</tr>
<tr>
<td>LP gas (propane)</td>
<td>Cotton</td>
<td>Tomatoes</td>
<td>Almonds</td>
</tr>
</tbody>
</table>

Figures 1-3 and Tables II and III show the proportion of energy consumed, its distribution, and requirements in units and equivalent barrels of oil for the state of California (Reference Group II, "Energy Requirements for Agriculture in California - Joint Study").
<table>
<thead>
<tr>
<th>Category</th>
<th>Natural gas (therms)</th>
<th>Electricity (kWh)</th>
<th>Diesel fuel (gal)</th>
<th>Gasoline (gal)</th>
<th>LP Gas propane butane (gal)</th>
<th>Aviation fuel (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field crops</td>
<td>364.784</td>
<td>464.681</td>
<td>96.400</td>
<td>19.477</td>
<td>2.381</td>
<td>--</td>
</tr>
<tr>
<td>Vegetables</td>
<td>165.999</td>
<td>358.193</td>
<td>38.792</td>
<td>25.031</td>
<td>4.441</td>
<td>--</td>
</tr>
<tr>
<td>Fruits and nuts</td>
<td>127.168</td>
<td>410.773</td>
<td>26.158</td>
<td>12.602</td>
<td>3.296</td>
<td>--</td>
</tr>
<tr>
<td>Livestock</td>
<td>107.111</td>
<td>1,460.966</td>
<td>46.443</td>
<td>7.813</td>
<td>12.261</td>
<td>--</td>
</tr>
<tr>
<td>Irrigation</td>
<td>40.618</td>
<td>7,177.441</td>
<td>6.531</td>
<td>0.487</td>
<td>4.521</td>
<td>--</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>305.748</td>
<td>579.362</td>
<td>6.738</td>
<td>3.529</td>
<td>1.114</td>
<td>--</td>
</tr>
<tr>
<td>Frost protection</td>
<td>--</td>
<td>40.501</td>
<td>60.003</td>
<td>6.854</td>
<td>0.904</td>
<td>--</td>
</tr>
<tr>
<td>Greenhouses</td>
<td>102.700</td>
<td>83.427</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Agricultural aircraft</td>
<td>--</td>
<td>--</td>
<td>1.072</td>
<td>1.607</td>
<td>--</td>
<td>8.994</td>
</tr>
<tr>
<td>Vehicles (farm use)</td>
<td>--</td>
<td>--</td>
<td>10.447</td>
<td>117.798</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Others</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>23.711</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,214.128</td>
<td>10,575.344</td>
<td>292.584</td>
<td>195.198</td>
<td>52.629</td>
<td>8.994</td>
</tr>
</tbody>
</table>
TABLE III. Energy Requirements for Agriculture in California, 1972 (in equivalent 1,000,000 barrels of crude oil).

<table>
<thead>
<tr>
<th>Category</th>
<th>Natural gas</th>
<th>Electricity</th>
<th>Diesel fuel</th>
<th>Gasoline</th>
<th>LP Gas</th>
<th>Propane butane</th>
<th>Aviation fuel</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field crops</td>
<td>6.289</td>
<td>0.273</td>
<td>2.327</td>
<td>0.416</td>
<td>0.039</td>
<td>--</td>
<td>--</td>
<td>9.344</td>
</tr>
<tr>
<td>Vegetables</td>
<td>2.862</td>
<td>0.211</td>
<td>0.936</td>
<td>0.535</td>
<td>0.072</td>
<td>--</td>
<td>--</td>
<td>4.616</td>
</tr>
<tr>
<td>Fruits and nuts</td>
<td>2.192</td>
<td>0.242</td>
<td>0.631</td>
<td>0.269</td>
<td>0.054</td>
<td>--</td>
<td>--</td>
<td>3.388</td>
</tr>
<tr>
<td>Livestock</td>
<td>1.847</td>
<td>0.859</td>
<td>1.121</td>
<td>0.167</td>
<td>0.199</td>
<td>--</td>
<td>--</td>
<td>4.193</td>
</tr>
<tr>
<td>Irrigation</td>
<td>0.700</td>
<td>4.220</td>
<td>0.158</td>
<td>0.010</td>
<td>0.072</td>
<td>--</td>
<td>--</td>
<td>5.160</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>5.271</td>
<td>0.341</td>
<td>0.163</td>
<td>0.075</td>
<td>0.018</td>
<td>--</td>
<td>--</td>
<td>5.868</td>
</tr>
<tr>
<td>Frost protection</td>
<td>--</td>
<td>0.024</td>
<td>1.448</td>
<td>0.147</td>
<td>0.015</td>
<td>--</td>
<td>--</td>
<td>1.634</td>
</tr>
<tr>
<td>Greenhouses</td>
<td>1.771</td>
<td>0.049</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.820</td>
</tr>
<tr>
<td>Agricultural aircraft</td>
<td>--</td>
<td>--</td>
<td>0.026</td>
<td>0.034</td>
<td>--</td>
<td>0.192</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td>Vehicles (farm use)</td>
<td>--</td>
<td>--</td>
<td>0.252</td>
<td>2.518</td>
<td>--</td>
<td>--</td>
<td>2.770</td>
<td></td>
</tr>
<tr>
<td>Other use</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.387</td>
<td>--</td>
<td>0.387</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>20.932</td>
<td>6.219</td>
<td>7.062</td>
<td>4.171</td>
<td>0.856</td>
<td>0.192</td>
<td>--</td>
<td>39.432</td>
</tr>
</tbody>
</table>
Figure 1. Proportion of required energy sources in California agriculture (1972).

Figure 2. Proportion of energy as consumed by various sectors in California's agriculture (1972).
Figure 3. Distribution of energy requirements in California's agriculture (1972).
The following are some examples of energy use in agriculture:

- The canning industry processes one trillion cans of products per year, most of which is processed with a maximum temperature of 250°F.
- A medium-sized cannery, if on fuel oil, will consume 2500 gallons of oil per day.
- A central valley cannery co-op study revealed that converting from current gas use to fuel oil would require 200 tanker trucks moving oil into the Modesto area per day. The additional highway load would itself be a major problem.
- A typical tomato-concentrate cannery operating on natural gas can have a gas bill of $500,000 per month.
- Canners have additional problems such as labor and vandalism. In view of these problems, some are thinking of relocating in the future.
- A co-op cannery operating four plants in the Sonoma-Napa counties area processes 50% of California's apples. Their primary operations of dehydration, sauce making, and drying use water up to 150°F. They have cold-storage facilities for 10,000 tons of apples, which could be powered by geothermal energy. They are located 7-10 miles from Mark West Warm Springs.
- A typical sugar beet plant processing 5000 tons of sugar per day will spend $12,000 per day for fuel oil. Plants represent a major capital investment. However, it is feasible to relocate the plants, as the raw beets can be moved over relatively long distances without harm.

Figure 4 shows the major cannery locations in California and annual energy consumption (1974).

Paper Pulp/Wood Products

Wood-pulp processing uses approximately 36 million Btu/ton. Typical operations use direct heat in the range of 350°F down to drying at 150°F. One major corporation spent $243 million on energy for 1975. Of this total, $103 million was out-of-pocket cost with $140 million replaced by burning waste products (bark-chips-dust).
Figure 4. Major cannery locations in California and annual energy consumption (1974). (Reference: Canners League of California, 1007 L Street, Sacramento, California).
Chemicals

Chemicals are extremely varied in their processing. They go from fatty-acid (animal fats) processing with temperatures of (400°-500°F at 300-400 psi), to garden fertilizers and wood-treating chemicals at (320°F). Catalysts for auto-emission control are processed at 300°-350°F. However, there is the possibility of using geothermal sources as feed water to higher-temperature boilers.

Horticulture

Nursery operations are the ninth largest industry in California (Reference Group I, California Association of Nurserymen). They are primarily divided into two industries:

a. Cut flowers are locked geographically to metropolitan airports for exportation. They would need to be near both geothermal resources and major transcontinental airlines.

b. The bare-root, seedling, and seed operations are very large and a prime candidate for relocation to geothermal areas. They are a high-cost, small-package durable crop that could lend itself to remote areas.

Dairy Industry

Although time did not allow an in-depth study of this industry, it is a major heat-intensive area for geothermal application. Its feed-lot operations, including feed processing and handling, space heating, slaughter, refrigeration, manure drying and pelletizing, and other operations, could fit into the integrated geothermal concept, perhaps with other industries on the moderate-temperature "cascading" scale.

Aquaculture

Although it is in the early stages of development in many areas throughout the world, this important industry is one that fits well into the geothermal scene. Experimental studies with several types of fish are currently in process. Mosquito fish (Gambusia affinis) and guppies (Lebister SA.) not only grew but spawned in geothermal water. Crayfish (cancer sp.) were also successful. The giant freshwater prawn (Macrobrachium rosenbergii) was chosen as the best to use to develop a technology
for aquaculture using geothermal water. It has been successfully cultured in the Orient since 1969. Today, it is being raised in ponds in Florida, Hawaii, California, and Puerto Rico, and the warm effluent water from electrical power plants in New Jersey and Nevada. These prawns are in great demand and bring $5.00 per pound wholesale in Honolulu. The United States imports over one million pounds a year. Early studies at Oregon Institute of Technology indicate by visual observations that the prawns doubled in size in less than one month's time. Optimum water temperature is 27.6°C (79.9°F) (see Geo-Heat Quarterly Bulletin, July 1976).

Other

As geothermal development occurs, other industries that require direct heat for their product or process, or fill-in "seasonal operational" gaps, will fit into the developing scheme. Freeze-drying, hospital equipment sterilization, cosmetics, and many more not encountered in this study will surface.

Summary

As evidenced at the many conferences, meetings, and technology exchanges within the geothermal community, it is certain that this energy resource can be developed. The geothermal community is hard at work solving the scientific and technical problems for sophisticated systems that go beyond the temperature-range development covered by this report.

As emphasized in the findings of this report (page 4), an equally important task is that of reaching outside the geothermal community into the private sector to educate, stimulate, and disseminate this knowledge.

There are other factors that would enhance the economics in favor of geothermal development:

- Possible depletion allowance
- Possible intangible drilling cost expense
- Investment tax credit

Recognizing the need for stimulation to aid geothermal development, some suggested areas of effort to help meet the development goals would be:

- Effort through the media to reach the public (grass-roots level).
• More local- and state-level support for all stages of development.
• Public (and private) funding for actual "showcase" demonstration operations.
Reference Group I

Aerojet Energy Conversion Company
E. Breindel, P. E. Program Manager
Power Conservation Systems
P.O. Box 13222
Sacramento, California

Allied Chemical
E. S. Grimmett, Associate Scientist
550 Second Street
Idaho Falls, Idaho

American Cyanamid Company
Glynn Harris, Plant Engineer
Organic Chemicals Division
1001 North Todd Avenue
Azusa, California

Amstar Corporation, Spreckles Sugar Division
Dr. Russell Johnson, Vice President
Ernest W. Beck, Jr., Vice President
Temple C. Rowe, Chief Engineer
50 California Street
San Francisco, California

Austral-Erwin Engineering Company
R. W. (Woody) Erwin, Manager
2700 Exxon Building
Houston, Texas

Beard Brothers Drilling
Wayne Beard, President
P.O. Box 281
Grand View, Idaho

Bureau of Minerals and Energy
Arthur D. Zierold, Chief
Department of Lands
State Capitol Building
Boise, Idaho

California Association of Nurserymen
Louis Ludwick, Program Administrator
1005 Eighth Street
Sacramento, California
California Beet Growers Association, Ltd.
Ben A. Goodwin, Field Manager
2 West Swain Road
Stockton, California

Carnation Company (Albers Milling Company)
J. W. Webster, Director of Engineering
5045 Wilshire Boulevard
Los Angeles, California

Consolidated Foods Corporation, Union Sugar Division
Alden L. Stock, President
Edward C. Kealm, Factory Superintendent
100 Pine Street
San Francisco, California

Crown Zellerbach
Dr. E. G. Tonn, Assistant Vice President
Research and Development
1 Bush Street
San Francisco, California

Del Monte Corporation
J. Ward Downey, Director, Energy Management
and Conservation
C. D. Wintermantel, Assistant Director of Engineering
Fernando F. Herrero, Assistant Director of Engineering
Orrin W. Robinson, Jr., Division Engineer
1 Market Plaza / Box 3575
San Francisco, California

Department of Public Works, County of Imperial
Jeffery W. Wiegand, Ph.D., Geothermal Project
Research Administrator
Courthouse
El Centro, California

Emery Industries, Inc.
R. B. Ruddick, Plant Manager
Frank E. Power, Plant Engineer
5568 East 61st Street
Los Angeles, California
Energy Resources Conservation and Development Commission,
State of California
David N. Anderson, Geothermal Operations
David M. Hill, Senior Engineering Geologist
Syd Willard, Geologist
1111 Howe Avenue
Sacramento, California

Energy Systems, Inc.
Don E. Olsen, Vice President
P.O. Box 182
Cypress, California

Ernstoff, Barry D.
Attorney at Law (Indian Affairs)
600 Pioneer Square
Seattle, Washington

Facilities Systems Engineering Corporation
Edward F. Slattery, President
John M. Trundy, Vice President
8332 Osage Avenue
Los Angeles, California

FMC Corporation
Food Processing Machinery Division
Dr. Harold W. Adams, Research Manager
Jurgen Strasser, Ph.D., Manager, R & D Program
C. Don Watson, Senior Chemical Engineer
1185 Coleman Avenue
Santa Clara, California

Fowler, H. S. Pete
Consulting Engineer
6633 Colton Boulevard
Oakland, California

Gasch and Associates
Jerrie W. Gasch, President
1832 Tribute Road
Sacramento, California

Geothermal Resources International, Inc.
Domenic J. Falcone, Vice President
Walter Randall, Geologist
4676 Admiralty Way
Marina del Rey, California
ITT Rayoner, Timber Products
 Port Angeles, Washington

Lake County Planning Department
 Donald Johnson, Planning Director
 Fayne L. Tucker, Air Pollution Director
 255 North Forbes Street
 Lakeport, California

Los Angeles Chemical Company
 N. E. Blaine, Plant Manager
 4545 Ardine Street
 South Gate, California

The Mentors Company
 Douglas E. Roudabush, Executive Vice President
 555 Capitol Mall
 Sacramento, California

National Canners Association
 Richard P. Farrow, Director and Vice President
 1950 Sixth Street
 Berkeley, California

The National Geographic Magazine
 Kenneth F. Weaver, Assistant Editor
 Washington, D.C.

Oregon Institute of Technology
 Paul J. Lienau, Physicist, Director of Geo-Heat
 Utilization Center
 Dr. John W. Lund, P.E., Associate Director of
 Geo-Heat Center
 Klamath Falls, Oregon

Phillips Petroleum Company
 Charles E. Lee, Leasman, Geothermal Operations
 11526 Sorrento Valley Road
 San Diego, California

Ray, Dr. Dixy Lee, Governor
 State of Washington
 600 Pioneer Square
 Seattle, Washington

Roseburg Lumber Company
 Robert J. Crawford, Plant Manager
 P.O. Box 1088
 Roseburg, Oregon
Rotoflow Corporation
John Holm, Director of Sales
2235 Carmelina Avenue
Los Angeles, California

Safeway Stores, Inc.
Wilfred H. Braunle, Chief Utilities Engineer
Philip M. Ashworth, Chief Mechanical Engineer
T. S. Spahr, Chief Mechanical Engineer
Store Design Department
425 Madison Street
Oakland, California

San Diego Cooperative Poultry Association
Louis F. Nicholas, General Manager
2121 Imperial Avenue
San Diego, California

Sebastopol Co-operative Cannery
William G. Overstreet, General Manager
6782 Sebastopol Avenue
Sebastopol, California

Stanislaus Food Products Company
Jim Abbey, Plant Manager
12th and D Streets
Modesto, California

Stokely-Van Camp, Inc.
G. M. Clark, Plant Manager
1175 - 57th Avenue
Oakland, California

Sun Harbor Industries
Ray A. Little, Manager/Project Engineering
1995 Bay Front
San Diego, California

Sun Power Systems, Inc.
Lou Sabattini, Treasurer
1121 Lewis Avenue
Sarasota, Florida

T & C Manufacturing Company
H. Thornsbery, President
P.O. Box 1934
Modesto, California
Terraphysics
Aldo T. Mazzella, President
815 South 10th Street, Suite 11A
Richmond, California

Tillie Lewis Foods, Inc.
C. A. Weast, Ph.D., Vice President
P. O. Drawer J
Stockton, California

Trico Superior, Inc.
Jerry M. Edmondson
P. O. Box 22200
Los Angeles, California

TRW, Inc.
Russell O. Pearson, Chief Engineer - Geothermal
E. Lee Leventhal, Electrical Power Systems
1 Space Park
Redondo Beach, California

U and I Company - Sugar Processing
Mr. Vaughn Hubbard, President
Walla Walla, Washington

University of California
Department of Earth Sciences
M. J. Pasqualetti, Research Associate
Riverside, California

U. O. P., Inc.
Fluid Systems Division
S. S. Kremen, Ph.D., Technical Director
2980 North Harbor Drive
San Diego, California

U. S. Bureau of Reclamation
Hibbard E. Richardson, Head Ground Water Section,
Geology Branch
2800 Cottage Way
Sacramento, California

Van Camp Sea Food Company
Division of Ralston Purina Company
Robert E. Diehl, Manager - Engineering
11555 Sorrento Valley Road
San Diego, California
Rotoflow Corporation
 John Holm, Director of Sales
 2235 Carmelina Avenue
 Los Angeles, California

Safeway Stores, Inc.
 Wilfred H. Braunle, Chief Utilities Engineer
 Philip M. Ashworth, Chief Mechanical Engineer
 T. S. Spahr, Chief Mechanical Engineer
 Store Design Department
 425 Madison Street
 Oakland, California

San Diego Cooperative Poultry Association
 Louis F. Nicholas, General Manager
 2121 Imperial Avenue
 San Diego, California

Sebastopol Co-operative Cannery
 William G. Overstreet, General Manager
 6782 Sebastopol Avenue
 Sebastopol, California

Stanislaus Food Products Company
 Jim Abbey, Plant Manager
 12th and D Streets
 Modesto, California

Stokely - Van Camp, Inc.
 G. M. Clark, Plant Manager
 1175 - 57th Avenue
 Oakland, California

Sun Harbor Industries
 Ray A. Little, Manager/Project Engineering
 1995 Bay Front
 San Diego, California

Sun Power Systems, Inc.
 Lou Sabattini, Treasurer
 1121 Lewis Avenue
 Sarasota, Florida

T & C Manufacturing Company
 H. Thornsberry, President
 P.O. Box 1934
 Modesto, California
Terraphysics
 Aldo T. Mazzella, President
 815 South 10th Street, Suite 11A
 Richmond, California

Tillie Lewis Foods, Inc.
 C. A. Weast, Ph.D., Vice President
 P. O. Drawer J
 Stockton, California

Trico Superior, Inc.
 Jerry M. Edmondson
 P.O. Box 22200
 Los Angeles, California

TRW, Inc.
 Russell O. Pearson, Chief Engineer - Geothermal
 E. Lee Leventhal, Electrical Power Systems
 1 Space Park
 Redondo Beach, California

U and I Company - Sugar Processing
 Mr. Vaughn Hubbard, President
 Walla Walla, Washington

University of California
 Department of Earth Sciences
 M. J. Pasqualetti, Research Associate
 Riverside, California

U.O.P., Inc.
 Fluid Systems Division
 S. S. Kremen, Ph.D., Technical Director
 2980 North Harbor Drive
 San Diego, California

U.S. Bureau of Reclamation
 Hibbard E. Richardson, Head Ground Water Section,
 Geology Branch
 2800 Cottage Way
 Sacramento, California

Van Camp Sea Food Company
 Division of Ralston Purina Company
 Robert E. Diehl, Manager - Engineering
 11555 Sorrento Valley Road
 San Diego, California
Ventura Department of Agriculture
Ted Kowallis, Inspector
1585 Acadia Street
Simi Valley, California

Western Pacific
Al Victors, President, Industrial Development
526 Mission Street
San Francisco, California

Weyerhaeuser Company
Robert L. Jamison, Director of Energy Management
Tacoma, Washington

Wilcox Manufacturing Company
L. R. Smida, President
Raymond J. Ghio, Director of Sales
Food Processing Machinery
Wilcox and Waterloo Roads
Stockton, California
Reference Group II

California Agriculture, California Principle Crop and Livestock Commodities, Department of Food and Agriculture (1975).

Dairy Institute of California, Sacramento.

Director of Nurserymen, State of California, Department of Food and Agriculture.

"Energy Requirements for Agriculture in California — Joint Study," California Department of Food and Agriculture, University of California, Davis (January 1974).

National Canners Association Bulletin 26L.

Reference Group III

"Ag-Alert," published by California Farm Bureau Federation, Don Fitzhugh, Managing Editor, article in 4th Quarter, 1976.

"The Farmers Corner," Leland H. Ruth, Executive Vice President, Agricultural Council of California, Calvin E. Adams, Director of Programs, News Service, P.O. Box 1712, Sacramento, California (May 27, 1976).

Canners League of California, James W. Bell, President, Sacramento, Mailing List of California Canners.

Economics of a Single Production Well

At the onset of this study, each industry's total heat requirements were unknown. In an attempt to cover large and small industries, it was felt that a look at the economics of a single production well would offer ball park figures.

Recognizing that technological development (down-hole pumps and other hardware) could result in higher or lower costs, the numbers are considered subject to change. Other factors, such as depletion allowance for geothermal development, are not included. However, the changes would not significantly alter the economics.

It is considered that the economics presented here are conservative, and current rising fuel costs would enhance the favorable economics of the geothermal role.
ENERGY ECONOMICS FOR ONE GEOTHERMAL PRODUCTION WELL

1. Production Well Cost
 $100/ft \times 5000 \text{ ft} = $500,000
 (Amortized for 20 years @ 10% interest)

 $500,000 \begin{bmatrix} 0.1 & (1.1)^{20} \\ (1.1)^{20} & -1 \end{bmatrix}

 $500,000 \times 0.1175 \approx \$58,730/\text{yr}$

2. Additional Wells Drilled
 - Success ratio in a proven area (1 in 2)
 - One replacement well in 20 years
 - Use dry well for injection

 $2(\$58,730) = \$117,460/\text{yr}$

3. Pump-Down Hole
 - Pump cost $50,000
 (Amortized for 5 years @ 12%)
 $50,000 \times 0.2774 \approx \$13,870/\text{yr}$
 - Pumping power cost
 (Use turbine drive from geo-heat) = $0/\text{yr}$

4. Pump Injection
 - Pump cost $30,000
 $30,000 \times 0.2774 = \$8,320/\text{yr}$
 - Pumping power costs = $3,000/\text{yr}$

5. Piping Costs
 Assume $40/\text{ft}$ for pipe
 1-well/20 acres - 16 wells
 Mean distance to a well $- 1375'$

 $40 \times 1375' \times 2^* = $110,000
 (Amortized for 20 years @ 10%)
 $110,000 \times 0.1175 \approx \$12,920/\text{yr}$

*One production well, one injection well
6. Operation and Maintenance
 Assume 5%/yr of well cost
 \[0.05 \times \$500,000 = \$25,000/yr \]

7. Insurance
 Assume 1%/yr of well cost
 \[0.01 \times \$500,000 = \$5,000/yr \]

8. Lease Royalties
 Assume 10% of yearly energy value
 \[0.10 \times \$250,000 = \$25,000/yr \]

9. TOTAL Yearly Costs = \$269,300/yr

10. Process Heat Exchanger
 Assume transfer of 180°C (356°F) down to 100°C (212°F).
 Yields 148 Btu/lb available (across heat exchanger)

11. \[148 \text{ Btu/lb} \times (200,000 \text{ lb/hr/well}) \times (8760 \text{ hr/yr}) \times (0.70 \text{ capacity}) = 182,000 \text{ MBtu/well/yr} \]

12. \[269,300/yr \div 182,000 \text{ MBtu/yr} = \]
 - Cost of geothermal energy = \$ 1.48/MBtu
 - Imperial Valley existing KGRA
 (known geothermal resources area)
Fuel Oil Comparison

\[
\begin{align*}
\left(\frac{12}{\text{bb1}} \div 5.8 \text{ MBtu/bbl} \right) &= \$2.07/\text{MBtu} \\
\left(\frac{2.07}{\text{MBtu}} \right) \div (0.80 \text{ boiler efficiency}) &= \$2.59/\text{MBtu} \\
\left(\frac{2.59}{\text{MBtu}} \right) \times (182,000 \text{ MBtu/yr}) &= \$470,690/\text{yr}
\end{align*}
\]

Natural Gas Comparison

\[
\begin{align*}
\left(\frac{0.15}{100,000 \text{ Btu(therm)}} \right) \left(\frac{10 \text{ therms}}{\text{MBtu}} \right) &= \$1.50/\text{MBtu} \\
\left(\frac{1.50}{\text{MBtu}} \right) \div (0.80 \text{ boiler efficiency}) &= \$1.88/\text{MBtu} \\
\left(\frac{1.88}{\text{MBtu}} \right) \times (182,000 \text{ MBtu/yr}) &= \$341,250/\text{yr}
\end{align*}
\]

Energy Expenditures per well for 20 years

(escalation per year @ 7%)

- **Fuel oil**
 - $20.6 Million
- **Geothermal**
 - $6.8 Million
- **Savings**
 - $13.8 Million/well

- **Natural gas**
 - $15.0 Million
- **Geothermal**
 - $6.8 Million
- **Savings**
 - $8.2 Million/well
Acknowledgments

The author would like to thank the many private business leaders and the private, state, and Federal agencies mentioned in this report. Without exception they all gave their complete cooperation as well as their candid opinions that gave direction to this survey. It is our hope that further thanks will be in the rewards shared by all in the development of geothermal power as an alternative or supportive energy source that can absorb a significant fraction of our future energy needs.
This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.