Title
ASYMPTOTIC BEHAVIORS AND ELECTROPRODUCTION AMPLITUBES

Permalink
https://escholarship.org/uc/item/54695382

Authors
Matsuda, Satoshi
Suzuki, Mahiko.

Publication Date
1969-08-01
ASYMPTOTIC BEHAVIORS AND ELECTROPRODUCTION AMPLITUDES

Satoshi Matsuda and Mahiko Suzuki

August 1969

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ASYMPTOTIC BEHAVIORS OF ELECTROPRODUCTION AMPLITUDES

Satoshi Matsuda
California Institute of Technology
Pasadena, California

and

Mahiko Suzuki
Department of Physics and Lawrence Radiation Laboratory
University of California, Berkeley, California

August 1969

ABSTRACT

Asymptotic behaviors for deep inelastic electroproduction
and electroproduction of one hadron in the limit of $q^2 \to \infty$
(spacelike) with $(\text{laboratory energy})/q^2$ fixed large are derived
by means of the Bethe-Salpeter equation which takes account of
the vector property of the photon.

The structure functions of inelastic electron-nucleon scattering have
become of considerable experimental and theoretical interest. Bjorken\(^1\) has
put forth conjectures on the asymptotic behaviors of these functions in accord
with the experimental measurement.\(^2\) Combining his conjectures with Regge
asymptotic behaviors, Abarbanel, Goldberger and Treiman\(^3\) have argued that the
Pomeranchon in the Regge asymptotics also dominates in the Bjorken limit\(^4\) with
mv/q^2 fixed large, where q^2 and v are the squared four momentum and the
laboratory energy of the photon, respectively.

Our purpose here is twofold:

(1) To confirm the scale invariance and the Pomeranchon dominance in the
W_2 amplitude and to derive the asymptotic behavior of the W_1 amplitude,
and further
(ii) To predict the behaviors of two-body electroproduction processes (like \(e + N \rightarrow e + N + \pi \)) in the same asymptotic limit and to show by unitarizing them that they are consistent with the behaviors of \(W_1 \) and \(W_2 \).

Our results are derived through the parametric representation of the solution to the Bethe-Salpeter equation with a scalar particle exchange in the ladder approximation which takes proper account of the vector property of the photon. The B-S equation we use is rather a simplified one, but the conclusions seem to remain valid even in more general cases.

We begin with the B-S equation of scalar rungs as drawn in Fig. 1a.

\[
(m^2 + k_{12}^2)(m^2 + k_{22}^2)f(k_{12}^2, k_{22}^2, s) = \frac{1}{\mu^2 - s - i\epsilon} + \frac{\lambda^2}{\pi i} \int_0^1 d\xi \frac{f(k_{12}^2, k_{12}^2, (p_1 + k_1')^2)}{\mu^2 + (k_1 - k_1')^2 - i\epsilon}
\]

where

\[
p_1^2 = p_2^2 = -m^2, \quad s = -(p_1 + k_1)^2
\]

and the dependence on the variable \(t = -(k_1 - k_2)^2 \) is suppressed. The solution is not obtained explicitly, but it is known to satisfy the following integral representation

\[
f(k_{12}^2, k_{22}^2, s) = \int_0^1 dy \int_{-1}^1 dz \int_0^\infty dy \phi(y, z, \gamma)
\]

\[
\times \left\{ \gamma + (1-y)\left[\frac{1}{2}(1+z)(k_{12}^2 + m^2) + \frac{1}{2}(1-z)(k_{22}^2 + m^2)\right] - y(s-m^2) - i\epsilon \right\}^{-3}
\]

where it is worth noting that the spectral function \(\phi(y, z, \gamma) \) does not depend on any of \(s, k_{12}^2 \) and \(k_{22}^2 \), but on \(t \). The function \(\phi(y, z, \gamma) \) satisfies an
integral equation\(^5\) which we shall not write down here. We find from the analytic property of the kernel of the integral equation for \(\phi(y,z,\gamma)\) that

(i) \(\phi(y,z,\gamma)\) is singular at \(y = 0\) like \([(1 - z^2)/y]^{\alpha(t)+1}\), if a Regge pole exists at \(\alpha(t)\),

(ii) it is regular elsewhere in \(y\) and \(z\) for \(y \in [0,1]\) and \(z \in [-1,1]\), and

(iii) it falls off rapidly like \(1/y\) as \(\gamma \to \infty\).

To construct the virtual Compton scattering amplitude out of \(f(k_1^2, k_2^2, s)\), we add one more rung, affix the photon lines to the extreme ends (see Fig. 1b) and supplement the Born terms and a possible seagull term. The forward scattering amplitude \((q_1 = q_2 = q, \quad p_1 = p_2 = p)\) thus obtained turns out to be, apart from the Born and seagull terms,

\[
T^{A}_1 = T_1(q^2, \nu)
\left(\delta_{\lambda\mu} - \frac{q_\lambda q_\mu}{q^2}\right) + \frac{T_2(q^2, \nu)}{m^2} \left(\frac{p_\lambda + \frac{\nu}{q^2} q_\lambda}{p_\mu + \frac{\nu}{q^2} q_\mu}\right),
\]

\[
T_1(q^2, \nu) = \int_0^1 dx \int_0^1 dy \int_{-1}^1 dz \int_0^\infty d\gamma (1 - x)^2 \phi(y,z,\gamma)(Q - i\epsilon)^{-1},
\]

\[
T_2(q^2, \nu) = m^2 \int_0^1 dx \int_0^1 dy \int_{-1}^1 dz \int_0^\infty d\gamma 2y^2(1-x)^4 \phi(y,z,\gamma)(Q - i\epsilon)^{-2},
\]

\[
Q = (1-x)y + x m^2 + (1-x)^2 y \mu^2 + (1-x)^2 (1-y) \mu^2 m^2
\]
\[
+ x(1-x)[(1-y)(q^2 + m^2) - y(s - \mu^2)],
\]

where \(\nu = -(pq)/m\), and \(T_1\) and \(T_2\) may be understood as amplitudes averaged over the nucleon target spin according to a remark in Footnote 6.
Since we are working in the ladder approximation which does not preserve the
gauge invariance properly, we have picked up only the gauge invariant
amplitudes above.

In the high-energy limit of $v \to \infty$ with q^2 fixed, T_1 and T_2
exhibit the usual Regge asymptotic behaviors of v^α and $v^{\alpha-2}$, respectively.
The main contribution to the integral in this limit comes from the region
$y \approx 0$.

We now go to the limit of $q^2 \to \infty$ with mv/q^2 fixed large.
Watching carefully the function Q and keeping in mind the analytic
property of $\phi(y,z)\gamma$ listed above, we find that the leading asymptotic
behavior in this limit again comes out of the integration over y near
$y = 0$. This implies that the leading Regge singularity still dominates in
this asymptotic region. Carrying out the integrations over the parameters
in Eqs. (4) and (5) and adding up the crossed ladder, we are led finally to

$$T_1(q^2, v) \sim \sum_i \frac{C_i}{q^2} \left(\frac{mv}{q^2}\right)^{\alpha_i^1} + o\left(\frac{1}{v}\right),$$ \hspace{1cm} (7)

$$T_2(q^2, v) \sim \sum_i \frac{D_i}{q^2} \left(\frac{mv}{q^2}\right)^{\alpha_i^2} + o\left(\frac{1}{v^2}\right),$$ \hspace{1cm} (8)

where α_i^1 is the intercept at $t = 0$ of the ith Regge trajectory, and
C_i and D_i are constants independent of q^2 and v. The integrations
over x near $x = 0$ and over y near $y = 0$ give rise to $1/q^2$ and
the fractional powers of mv/q^2, respectively. Equation (8) confirms the
previous conjecture1,3
\[v W_2(q^2, v) \sim \left(\frac{mv}{q^2} \right)^{\alpha_T-1} \]
\[\sim \text{const.,} \]

where \(W_i = \text{Im} \ T_i \) \((i = 1, 2)\) and \(P \) stands for the Pomeranchon. We thus find that the scale invariance holds for \(W_2 \) in agreement with Bjorken\(^1\) and also with the vector-meson dominance model by Sakurai.\(^8\) On the other hand Eq. (7) does not satisfy the scale invariance of Bjorken. This is in disagreement with the result of Abarbanel, Goldberger and Treiman.\(^3\) However, the appearance of the factor \(1/q^2 \) in front is not merely kinematical, but deeper in origin. We therefore take seriously Eq. (7) as well as Eq. (8).

Comparing them with the formulas

\[
W_1(q^2, v) = \frac{1}{4\pi \alpha} \left(v - \frac{q^2}{2m} \right) \sigma_T(q^2, v),
\]

\[
W_2(q^2, v) = \frac{1}{4\pi \alpha} \left(v - \frac{q^2}{2m} \right) \frac{q^2}{v^2 + q^2} \left[\sigma_T(q^2, v) + \sigma_L(q^2, v) \right],
\]

where \(\sigma_T \) and \(\sigma_L \) stand for the usual transverse and longitudinal cross sections, respectively, Eq. (7) and Eq. (8) lead us to

\[
\sigma_T(q^2, v) \sim \mathcal{O}\left(\frac{1}{q^2}\right)^2,
\]

\[
\sigma_L(q^2, v) \sim \mathcal{O}\left(\frac{1}{q^2}\right),
\]

in the limit of \(q^2 \to \infty \) with \(mv/q^2 \) fixed large.

Encouraged with the result for \(W_2 \) we proceed to analyze processes in which two hadrons come out in the final state, for instance,

\(\gamma(\text{virtual}) + N \to N + \pi \). It is of much theoretical interest to explore the
asymptotic behaviors of these processes in the sense that they are
intermediary between purely hadronic processes and the virtual Compton
scattering. Since we have no chance to make use of current algebra techniques
in processes where only the incident is highly virtual, our investigation
using the Bethe-Salpeter equation would make the most sense here.

The calculation goes through in the same way except that only one
photon should be affixed to the end and that \(q_2^2 \) should be put on the
mass-shell of a produced hadron. With the definition of the electro-pion-
production amplitudes from a target with spin averaged as

\[
M_\mu = M_1(q_1^2, \nu, t) \left(q_{2\mu} - \frac{(q_1 \cdot q_2)}{q_1^2} q_{1\mu} \right) + M_2(q_1^2, \nu, t) \left(p_\mu - \frac{(q_1 \cdot p)}{q_1^2} q_{1\mu} \right)
\]

(14)

where \(p_\mu = (p_1 + p_2)_\mu / 2 \), we obtain the asymptotic behaviors like

\[
M_1(q_1^2, \nu, t) \sim \sum_i \tilde{c}_i(t) \left(\frac{mv}{2q_1} \right)^{\alpha_i(t)} + O\left(\frac{1}{\nu^2} \right)
\]

(15)

\[
M_2(q_1^2, \nu, t) \sim \sum_i \tilde{d}_i(t) \left(\frac{mv}{2q_1} \right)^{\alpha_i(t)-1} + O\left(\frac{1}{\nu^2} \right)
\]

(16)

where \(\tilde{c}_i(t) \) and \(\tilde{d}_i(t) \) are functions of \(t \). In terms of the transverse
and longitudinal cross sections defined by Hand\(^{10}\) they are written as

\[
\sigma_T(q_1^2, \nu) \sim O\left[\left(\frac{1}{q_1^2} \right)^4 \left(\frac{mv}{2q_1} \right)^{2\alpha(0)-2} \right],
\]

(17)

\[
\sigma_L(q_1^2, \nu) \sim O\left[\left(\frac{1}{q_1^2} \right)^3 \left(\frac{mv}{2q_1} \right)^{2\alpha(0)-2} \right],
\]

(18)
in the limit of $q_1^2 \to \infty$ with mv/q_1^2 fixed large and with t integrated over. The leading trajectory depends on a hadron produced in the final state. These will soon be tested with experiments now under preparation.

If one connects M_1 and M_2 by unitarity, one would obtain the lower bounds of W_1 and W_2, which are given for a large mv/q^2 as

$$W_1(q^2, v) \sim \left(\frac{1}{q^2} \right)^3 \left(\frac{mv}{q^2} \right)^{2\alpha_p - 1}$$

$$W_2(q^2, v) \sim \left(\frac{1}{q^2} \right)^3 \left(\frac{mv}{q^2} \right)^{2\alpha_p - 3}$$

apart from possible logarithmic factors. We find that these are consistent with Eqs. (7) and (8), respectively.

Finally we would like to make a few remarks in connection with the existing theoretical arguments. The asymptotic behaviors of σ_T and σ_L in Eqs. (12) and (13) are to be compared with the Callan-Gross predictions based on the equal-time commutators. Our asymptotic behaviors turn out to be consistent with the algebra of fields ($q^2 \sigma_T \to 0$), but not with the quark algebra ($q^2 \sigma_L \to 0$). The present results look quite similar to those of the vector-meson dominance model proposed by Sakurai\cite{8} at least in the high q^2 region, but they are quite different in origin. Our arguments are free from ambiguities in the mildness assumption which are inherent to the vector-meson dominance model.

We remark that the contributions from the "ordinary" trajectories fall off as slowly as that of the Pomeranchon when $q^2 \to \infty$. It has been argued by Harari\cite{12} that, since the finite-energy sum rules relate those ordinary trajectories to low-energy resonances which fall off rapidly
as $q^2 \to \infty$, the ordinary trajectory contributions must also fall off rapidly, say, like the square of the electromagnetic form factor. However, we are able to avoid this difficulty in the following way. When we write a finite-energy sum rule, we choose m_{cut}/q^2 as a large finite number, say, L to assure the dominance of a few leading Regge exchanges. For a small value of q^2, $v_{\text{cut}} = q^2 L/m \nu$ is not very large. But, as q^2 increases, we must choose larger and larger values of v_{cut} in order to maintain the same accuracy for the finite-energy sum rule. Since $s = 2m\nu - q^2 + m^2$, higher resonances contribute to the sum rule more and more as v_{cut} increases. The transition form factors from the nucleon to higher resonances may be well expected to damp mildly enough to be consistent with our predictions. In the other way around, if one increases q^2 alone with v_{cut} fixed in the sum rule, exchanges of lower Regge trajectories become more and more important so that the q^2 dependence of a single Regge term does not describe that of the whole amplitude. If this interpretation is correct, there is no need to modify the Adler—Dashen—Gell-Mann—Fubini sum rule either.

We would like to thank Professor G. F. Chew for the kind hospitality of the theoretical group at the Lawrence Radiation Laboratory. One of us (M. S.) is grateful to Professor S. Mandelstam for the hospitality at the Department of Physics, University of California at Berkeley, and to his colleague for helpful conversations at the Department of Physics, University of Tokyo.
FOOTNOTES AND REFERENCES

** On leave from University of Tokyo, Tokyo, Japan. Address after September 20, 1969: Department of Physics, Columbia University, New York, N. Y. 10027.

5. Among others we shall use the representation by Nakanishi which is proved to hold to all orders of perturbation expansion. N. Nakanishi, Phys. Rev. 133, B214 (1964).

6. The nucleon is treated as a scalar particle while the photon as a vector particle. Strictly speaking, therefore, our conclusions apply to the virtual Compton scattering with, for instance, a pion target. But, when we are interested in amplitudes averaged over the target spin, we expect that this simplification will not affect our main conclusion.

7. This is explicitly confirmed in a more simplified version of the ladder model. See N. Nakanishi, Phys. Rev. 135, B1430 (1964).

9. The remark in Footnote 6 again applies here.

10. L. N. Hand, Phys. Rev. 129, 1834 (1963). Our $\sigma_T(q^2, \nu)$ and $\sigma_L(q^2, \nu)$ correspond to $\sigma_{\text{transverse}}(q^2, K)$ and $\sigma_{\text{scalar}}(q^2, K)$, respectively.

12. H. Harari, Phys. Rev. Letters 22, 1078 (1969). This also has suggested the Pomeranchon dominance in νW_2 in the limit of $q^2 \to \infty$ with $m\nu/q^2$ fixed.

FIGURE CAPTIONS

Fig. 1a. Ladder diagram of Feynman amplitude for hadron-hadron scattering.

Fig. 1b. Virtual Compton scattering.
Fig. 1a-1b.
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.