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Deletion diagnostics for the generalised
linear mixed model with independent
random effects
B. Ganguli,a*† S. Sen Roy,a M. Naskar,b E. J. Malloyc and
E. A. Eisend

The Generalised linear mixed model (GLMM) is widely used for modelling environmental data. However, such
data are prone to influential observations, which can distort the estimated exposure–response curve particularly
in regions of high exposure. Deletion diagnostics for iterative estimation schemes commonly derive the deleted
estimates based on a single iteration of the full system holding certain pivotal quantities such as the information
matrix to be constant. In this paper, we present an approximate formula for the deleted estimates and Cook’s
distance for the GLMM, which does not assume that the estimates of variance parameters are unaffected by dele-
tion. The procedure allows the user to calculate standardised DFBETAs for mean as well as variance parameters.
In certain cases such as when using the GLMM as a device for smoothing, such residuals for the variance param-
eters are interesting in their own right. In general, the procedure leads to deleted estimates of mean parameters,
which are corrected for the effect of deletion on variance components as estimation of the two sets of parameters
is interdependent. The probabilistic behaviour of these residuals is investigated and a simulation based proce-
dure suggested for their standardisation. The method is used to identify influential individuals in an occupational
cohort exposed to silica. The results show that failure to conduct post model fitting diagnostics for variance com-
ponents can lead to erroneous conclusions about the fitted curve and unstable confidence intervals. Copyright ©
2015 John Wiley & Sons, Ltd.

Keywords: Cook’s distance; deletion diagnostics; DFBETAs; exposure–response; generalised linear mixed
models.

1. Introduction

1.1. Influential observations in environmental epidemiology

The motivation for this paper arises out of the need to simultaneously address the twin issues of modelling
nonlinear exposure–response relationships while discounting the effect of influential observations for a
cohort study of lung cancer and silica exposure [1].

Heterogeneity in response commonly leads to unusual shapes of the dose response in survival analy-
sis [2]. Concurrently, smoothing methods have become also common for analyzing such data. Smoothing
is particularly appropriate for survival analysis of large occupationally exposed cohorts because the
exposure–response relationship is often attenuated with a rising relative risk that flattens or declines at
the highest exposures [3]. The impact of observations with the highest values of exposure on the shape of
the dose response curve is of great interest because a plateau or decline in risk at high levels may appear
to undercut evidence for a causal relationship. Ad hoc procedures such as omitting the highest percentiles
of the exposure are common but as our application section shows, influential values need not be restricted
to the highest exposures. Residual analysis methods are sometimes used but are often inconclusive and
not sufficiently well developed for many common models for environmental data. In a previous paper
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Figure 1. Plot of the estimated log hazard ratio from the motivating silica dataset, including fits from the full
dataset and after exclusion of the highest exposures.

Ganguli et al. [4], the authors have shown that application of different ad hoc diagnostic procedures can
lead to conflicting conclusions about the functional form of the log hazard ratio for silica exposure.

In a previous reanalysis of the motivating data [5], penalized splines were used in a Cox model
framework to estimate the exposure–response relationship. As shown in Figure 1, the selected curve
rose to a maximum hazard at 10 mg/m3-years, and then after a long plateau, gradually declined. Infor-
mal regression diagnostics revealed that the subject with the highest exposure at the end of follow-up
(62 mg/m3-years) appeared in 72 of the risk sets defined for the 77 lung cancer cases. The removal
of the subject truncated the upper half of the exposure range beyond 40 mg/m3-years , and with it,
removed most of the decline in the fitted curve. The post model fitting deletion methods developed in
this paper are applied to the same occupational cohort study of silica [1] that provided the basis for the
earlier analysis.

1.2. Literature review

Post model fitting deletion diagnostics [6] using criterion-based methods such as Cook’s distance [7]
offer a relatively objective means to identify influential data points.

An alternative class of methods for identification of influential points focuses on measurement of local
influence [8–13]. As is evident from the name, these methods provide an estimate of local influence in
response to small perturbations of the model. They require the user to specify a priori null and alternative
hypotheses about the nature of influence. By contrast, Cook’s distance is better suited for exploratory
analysis of influence and detection of gross violations.

Much of the literature on criterion-based methods has focused on the classical linear model, an attrac-
tive feature of which is that well-known matrix identities can be used to derive explicit expressions for
the ‘deleted’ estimates. Outside the realm of the linear model, Fung et al. [14] derives Cook’s distance
for a class of semiparametric models, while Barlow [15] derives the distance for the proportional haz-
ards model. Preisser and Qaqish [16] considers deletion diagnostics for generalised estimating equations.
A particularly simple and elegant framework for deletion diagnostics for linear mixed models is pro-
vided by Haslett and Hayes [17] and Haslett [18] where the authors show that the best linear unbiased
predictor after deletion of an observation is equivalent to the best linear unbiased predictor from the com-
plete subset with the deleted observation replaced by its predictor based on the remaining data points.
However, each of these make the assumption that deletion of an individual does not affect the estimate
of the variance components. While Haslett and Dillane [19] derives separate deletion diagnostics for
variance parameters, the authors recognise that estimation of mean and variance parameters are inter-
linked and that one should really derive deleted estimates of regression coefficients, which have been
corrected for any changes to estimated variances as a result of deletion. Welsch [20] argues that the esti-
mate of a regression parameter is only meaningful in the context of a standard error estimate, which in
turn requires deletion diagnostics for variance parameters. This is particularly true when variance com-
ponents are used as a device for smoothing [21]. Therneau and Grambsch [22] points out that failure to
re-estimate the variance can lead to underestimation for larger influence points. Sen Roy and Guria [23]
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shows that a proper combination of the full set and deleted set estimators leads to a smaller estimate
of the standard error and hence to more efficient estimation. Ganguli et al. [4] reviews the application
of existing diagnostic methods for Cox models and finds them inadequate when splines are included
as regressors.

Our objective in this paper is to develop an approximation for Cook’s distance for a particular class of
GLMMs considered by Breslow and Clayton [24] with independent random effects. While our primary
focus is on using GLMMs as a device for penalised smoothing, the GLMM with independent random
effects has a vast scope including random intercept modelling, correlated errors, clustering, spatial mod-
eling, censored data modelling and combinations of the aforementioned. This has been discussed by
Ruppert et al. [21]. The proposed method enables the user to study the impact of deletion on point esti-
mates of the fixed and random coefficients as well as on corresponding confidence/prediction intervals. In
general, influence detection when the underlying relationship is non-linear is a tricky problem and some
of the pertinent issues have been discussed by Manchester and Blanchard [25]. However, the GLMM
provides a particularly convenient framework for modelling a non-linear dose response relationship and
the interested reader is referred to [21] and [26].

2. Methodology

2.1. Model

Our underlying model is a special case of the GLMM of Breslow and Clayton [24], which assumes
independence of random effects. For each of n individuals, we observe an outcome yi together with p
covariates xi associated with fixed effects. The random effects are components of the r−dimensional
vector, b partitioned as b = (bT

1 ,… ,bT
k )

T , with bj being of dimension rj, j = 1,… , k and r =
∑k

j=1 rj. The
corresponding coefficients are denoted by zi = (zT

i1,… , zT
ik)

T , where zij = (zij1,… , zijrj
)T . Conditioning

on the r−dimensional vector of random effects, we have,

E(yi|b) = 𝜇i and Var( yi|b) = 𝜙aiv(𝜇i), i = 1,… , n. (1)

The ai ’s are known scalars, and v(⋅) is a known function. The unknown parameter 𝜙 accounts for
overdispersion. Here, 𝜇i is related to a linear predictor 𝜂i via the relationship,

g(𝜇i) = 𝜂i = xi
T
𝜶 + zi

Tb

for some known function g(⋅). We assume that b ∼ Nr(0,D) where D = ((𝜎j
2Irj

))
j=1,…,k

. Explicit expres-
sions for parameter estimates are not available and 𝜶, b and D are estimated from an iterative system of
equations. Restricted maximum likelihood (REML) estimating equations [27] are used for the variance
parameters. Writing y = (y1,… , yn)T , X = (x1,… , xn)T and Z = (z1,… , zn)T , the equations are,[

XTWX XTWZ

ZTWX ZTWZ + D−1

][
𝜶

b

]
=

[
XTWY

ZTWY

]
, (2)

and

YTQZjZj
TQY = trace

(
QZjZj

T) . (3)

Here, Y = 𝜼 + (y − 𝝁) ∗ g
′ (𝝁), and assuming a canonical link

W = diag
((
𝜙aig

′ (𝜇i)
))

,

V = W−1 + ZDZT = W−1 +
∑k

j=1
𝜎j

2ZjZj
T ,

and Q = V−1 − V−1X
(
XTV−1X

)−1
XTV−1,

with ∗ representing component-wise multiplication and Z partitioned as [Z1,… ,Zk] corresponding to
the k sets of independent random effects.
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Our application is based on the approximation of a Cox model with nonlinear log hazard ratios by a
GLMM as illustrated by Therneau and Grambsch [22], and Ganguli and Wand [28]. The use of GLMMs
as a device for scatterplot smoothing and penalised regression is well known and has been elaborated
upon by Ruppert et al. [21], Speed [29], Wahba [30], and Babette and John [31]. The essence of the idea
is to use a flexible set of basis functions corresponding to a fixed number of knots as explanatory vari-
ables, which can model nonlinearity, and the distributional assumption on the coefficients of these basis
functions serves as a device for smoothing. Best linear unbiased prediction can be used to derive the fit-
ted model [32]. The principle of best prediction can be extended in several ways, for example, as a device
for penalised log likelihood-based estimation for generalised responses belonging to the one parameter
exponential family [33] and as a device for kriging in case of geospatial data [34]. Extensive discussion
on technical issues such as knot selection, alternative choices of basis functions, integral evaluation and
so on has been provided by Ruppert et al. [21]. Therneau and Grambsch [22] further extends this to mod-
elling censored data with nonlinear log hazard ratios by using the counting process representation of Cox
models. By introducing an approximation to the baseline hazard function, the authors are able to reduce
the model to an approximate Poisson GLMM.

2.2. Deletion estimates

A first set of deleted estimates can be obtained by application of the results of Haslett and Hayes, and
Hayes and Haslett [17, 35], viz.:

𝜶̂
(i,0) = 𝜶̂n − Biẽi,

b̂
(i,0) = b̂n − 𝝉̂ZTQiẽi,

where

𝝉̂ = diag
(
𝜏1,… , 𝜏k

)
= diag

(
𝜎̂2

1 ,… , 𝜎̂2
k

)
B =
(
XTV−1X

)−1
XTV−1 =

[
B1,… ,Bn

]
Q =
[
Q1,… ,Qn

]
= ((qij))i,j=1,…,n

ẽi = qii
−1Qi

TY,

and 𝜶̂n and b̂n represent the estimates from the full dataset. Similarly, estimates of the variance parameters
after deletion can be approximated using the results of Haslett and Dillane [19], viz.

T𝝉̂ (i,0) = s̃(i), (4)

where

T =
((

traceZlZ
T
l QZjZ

T
j Q
))

l,j
,

s̃(i) = YPiQZZTQPiY + qii
−1
((

traceQZjZ
T
j QEi

))
.

Here, Pi = In − qii
−1EiQ, and Ei is the ith unit vector of order n.

Unfortunately, the results of Haslett and Hayes [17], and Hayes and Haslett [35] cannot be applied to
subsequent iterations to arrive at the deleted estimates as the ith iteration equation post deletion is not
directly related to the ith iteration equation of the full model. Instead, we consider the systems (2) and
(3) at convergence and denote by 𝜶̂n, b̂n and D̂n the estimators computed from the full system based on n
observations. At the next iteration of the deleted system, the quantities Y,𝝁, 𝜼,V,W and Q are updated
using the first step deleted estimates 𝜶̂(i,0), b̂

(i,0)
and 𝝉̂

(i,0) to obtain the next set of iterative equations,[
X(i)TW(i,0)X(i) X(i)TW(i,0)Z(i)

Z(i)TW(i,0)X(i) Z(i)TW(i,0)Z(i) + D(i,0)−1

][
𝜶

b

]
=

[
X(i)TW(i,0)Y(i)

Z(i)TW(i,0)Y(i)

]
, (5)

where X(i) and Z(i) are the design and variance matrices constructed after deletion of the ith individual and
D(i,0) and W(i,0) are variance matrices constructed based on 𝜶̂

(i,0), b̂
(i,0)

and 𝝉̂
(i,0). As the one-step deleted

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1488–1501
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estimates 𝜶̂(i,0), b̂
(i,0)

and 𝝉̂
(i,0) usually constitute small corrections and are often under estimates [22], we

make the assumption that the solution to the full system corresponding to (5) may be approximated by
𝜶̂
(i,0), b̂

(i,0)
and 𝝉̂

(i,0). Then by a reapplication of the results of Haslett and Hayes [17], and Hayes and
Haslett [35], improved deleted estimates are given by

𝜶̂
(i) = 𝜶̂n − Biẽi − Bi

∗ẽi
∗,

b̂
(i) = b̂n − 𝝉̂ZTQiẽi − 𝝉∗ZTQi

∗ẽi
∗

where the superscript ∗ denotes that these quantities were calculated based on 𝜶̂
(i,0), b̂

(i,0)
and 𝝉̂

(i,0).
Using a Taylor series expansion,we can linearise 𝜶̂

(i) as

𝜶̂
(i) = 𝜶̂n − Biẽi − Bi

∗ẽi
∗

≃ 𝜶̂n − Biẽi −
⎧⎪⎨⎪⎩Biẽi +

(
𝛿ẽiBi

𝛿𝜶T

𝛿ẽiBi

𝛿bT

𝛿ẽiBi

𝛿𝝉T

) ⎛⎜⎜⎜⎝
𝜶̂
(i,0) − 𝜶̂n

b̂
(i,0) − b̂n

𝝉̂
(i,0) − 𝝉̂n

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ .

Hence,

𝜶̂
(i) − 𝜶̂n = −2ẽiBi −

(
𝛿ẽiBi

𝛿𝜶T

𝛿ẽiBi

𝛿bT

𝛿ẽiBi

𝛿𝝉T

) ⎛⎜⎜⎜⎝
𝜶̂
(i,0) − 𝜶̂n

b̂
(i,0) − b̂n

𝝉̂
(i,0) − 𝝉̂n

⎞⎟⎟⎟⎠ (6)

= f
𝜶

(
𝜶̂n, b̂n, 𝝉̂n, ẽi

)
, (7)

where, as shown in Appendix A1,

𝛿ẽiBi

𝛿𝜶T
= −ẽiB

𝛿V
𝛿𝜶T

(
Qi ⊗ Ip

)
+ Biqii

−1QT
i
𝛿V
𝛿𝜶T

{(
ẽiQi − QY

)
⊗ Ip

}
,

𝛿ẽiBi

𝛿bT
= −ẽiB

𝛿V

𝛿bT

(
Qi ⊗ Iq

)
+ Biqii

−1QT
i
𝛿V

𝛿bT

{(
ẽiQi − QY

)
⊗ Iq

}
,

𝛿ẽiBi

𝛿𝝉T
= −ẽiB

𝛿V
𝛿𝝉T

(
Qi ⊗ Ik

)
+ Biqii

−1QT
i
𝛿V
𝛿𝝉T

{(
ẽiQi − QY

)
⊗ Ik

}
,

and f
𝜶
(⋅) is defined in (6) and (7). Note that this enables us to approximate 𝜶̂

(i) in terms of quantities
obtained from the full model fit. Similarly, we can obtain expressions for the DFBETAs,

b̂
(i) − b̂n = fb

(
𝜶̂n, b̂n, 𝝉̂n, ẽi

)
, (8)

𝝉̂
(i) − 𝝉̂n = f

𝝉

(
𝜶̂n, b̂n, 𝝉̂n, ẽi

)
(9)

as well as similar expressions for DFFIT residuals in terms of the output of the full model fit.

2.3. Standardisation and critical values

The next step is to derive a suitable standardisation factor for the differences in (6) and (8). The usual
approach in the literature is to standardise these by a positive definite matrix, which can be chosen to
reflect specific concerns [36]. A standard procedure following Cook [7] is to use the variances of the
corresponding parameters from the full model for standardisation and the percentage points of the F
distribution as a critical value. In this case, the corresponding ‘p value’ gives the level of the smallest
confidence ellipsoid based on the full data that contains the estimate.

However, there has been some discussion in the literature regarding the choice of the norming matrix
to be used for standardisation. Beckman and Cook [6] argues that it should not depend on i, whereas the
norm suggested by Belsley et al. [37] does so. Dempster and Gasko [36] provides an interesting geometric
perspective on various alternative standardisation criteria and their connection with residual analyses.
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Our approach is based on the result,

f
𝜶

(
𝜶̂n, b̂n, 𝝉̂n, ẽi

)
− f

𝜶

(
𝜶̂n, b̂n, 𝝉̂n, qii

−
1
2 Z

)
P
→ 0

fb
(
𝜶̂n, b̂n, 𝝉̂n, ẽi

)
− fb

(
𝜶̂n, b̂n, 𝝉̂n, qii

−
1
2 Z

)
P
→ 0

f
𝝉
(𝜶̂n, b̂n, 𝝉̂n, ẽi) − f

𝝉

(
𝜶̂n, b̂n, 𝝉̂n, qii

−
1
2 Z

)
P
→ 0,

(10)

where Z is a standard normal deviate. This result has been proved in Appendix (A2). The implication of
this is that we can generate K standard normal deviates {Zk, k = 1,… ,K} and estimate the covariance

matrix of say, f
𝜶
(𝜶̂n, b̂n, 𝝉̂n, ẽi), by the empirical covariance of f

𝜶
(𝜶̂n, b̂n, 𝝉̂n, qii

−
1
2 Zk), k = 1,… ,K, which

can then be used to standardise the residuals f
𝜶
(𝜶̂n, b̂n, 𝝉̂n, ẽi). Similar approaches can be used for the

random effects b and the variance components 𝝉 as well as for the DFFITs 𝜂i − 𝜂i
(i). Simulation based

critical values can also be derived for each of the quantities based on the results in (10).

3. Application

3.1. Application to the silica exposure dataset

In this section, we apply our methods to the motivating dataset. The connection between Cox models and
Poisson regression is well established [38, 39]. Here, we use the equivalence discussed by Therneau and
Grambsch [22], and Ganguli and Wand [28] who approximate a Cox proportional hazards model with a
non linear log hazard ratio by a Poisson mixed effects model. We fit a model of the form,

𝜆(t|x) = 𝜆0(t) exp{𝛽0HISP + f (x(t))}, (11)

where t is the age at which a subject dies from lung cancer, HISP is an indicator for whether or not
a subject is Hispanic and x(t) is cumulative silica exposure at time t. The function f (⋅) is unknown but
assumed to be smooth.

Using I as the indicator function and 𝛿 as the censoring indicator (1, if uncensored and 0, if cen-
sored) and writing N(t) = I(T ⩽ t, 𝛿 = 1), it follows from Ganguli and Wand [28] that (11) can be
approximated as,

E(N(t)|b) = exp

{
𝛽0HISP + 𝛽1x(t) +

K∑
k=1

bk|x(t) − 𝜅k|3} Λ̂, (12)

where the 𝜅k’s are a set of K quantiles of x and the components of b = (b1,… ,bK) ∼ i.i.d.N(0, 𝜎b
2) and

Λ̂, is the estimator of the cumulative hazard function of the standard Cox model with log linear hazard.
Following Ganguli and Wand [28], and Therneau and Grambsch [22], this can be approximated by a

GLMM with a log-linear link function,

log {E(N(t)|b)} = log(Λ̂) + 𝛽0HISP + 𝛽1x(t) +
K∑

k=1

bk|x(t) − 𝜅k|3,
where Λ̂, the estimated cumulative hazard from a standard Cox model assuming a linear log hazard
function for cumulative silica hazard, serves as an approximate offset.

Figure 2 shows the DFFITs in panel (a) and DFBETAs for the variance component 𝜎b
2 in panel

(b). Panels (c) and (d) show the estimates of the log hazard function after excluding subjects identi-
fied as influential in panel (a) and after excluding subjects identified as influential based on both panels
(a) and (b), respectively. Subjects were considered to be influential if their standardised DFBETA or
DFFIT values exceeded the simulation based benchmark described in Section 2.3. We can make the
following observations:

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1488–1501
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Figure 2. Influence diagnostics for the silica data. The horizontal axis represents cumulative silica exposure
(mg∕m3 − yr). Panel (a) shows DFFITs and panel (b) shows DFBETAs for the variance component. Panels (c)
and (d) give the estimated log hazard function after excluding observations identified as influential only in panel
(a) and in both panels (a) and (b), respectively. Thick solid and dotted lines correspond to fitted values and 95%
confidence intervals from the complete dataset. Thin solid and dotted lines correspond to estimates after deletion

of influential subjects.

• The log hazard continues to dip beyond an exposure of 50 mg/m3-year in the first case but approaches
a plateau in the second.

• The two figures (Figure 2 (c)–(d)) show a remarkable contrast. In the former case (Figure 2(c)),
deletion does not affect the shape of the dose response curve significantly although it does attenuate
the response by about 50% at 30 mg/m3-years. However, in the latter case (Figure 2(d)), deletion
appears to have a more dramatic effect and leads to a different shape of the dose response curve. The
results suggest that the curve based on the full dataset might be picking up spurious structure at the
upper range of exposures.

• The 95% pointwise confidence intervals are indicated using bold lines for the full dataset and dotted
lines corresponding to post-deletion. The results make a strong case for conducting post model fit-
ting deletion diagnostics for variance components as the confidence intervals obtained by dropping
observations with influential DFFIT values only is very wide. Note that individuals who are influ-
ential for variance component estimation are still included for estimation in panel (c) and it appears
that the inclusion of these observations leads to an unstable estimate of the variance components and
hence to an unreliable confidence interval. By contrast, the confidence intervals obtained in panel
(d) are tighter.

Our learning from this application is firstly that influential observations need not occur at the high-
est extremes of exposure. Second, we can distinguish between observations, which are influential for
the shape of the estimated dose response curve and those which impact its value but not its shape. The
individual with the highest exposure is influential for the estimated shape of the log hazard ratio. The
optimum degrees of freedom estimate decreases from approximately three to two as a result of drop-
ping the individual with the highest exposure. Finally, we note that failure to conduct post model fitting
diagnostics for variance components can lead to erroneous and unstable confidence interval estimation.

3.2. Performance on simulated datasets

In this section, we demonstrate the performance of the method on three different applications all of which
may be fitted using GLMMs.

3.2.1. Clustered data. We simulate clustered count data using the model:

yij ∼ Poisson(𝜇ij); i = 1, 2… , k; j = 1, 2,… , ni,
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Figure 3. Plot of standardized DFBETAs of fixed effects for clustered Possion counts with all observation in
cluster 3 as influential.

with k being the number of clusters. All observations from the ith cluster share a common random inter-
cept, bi specified by log(𝜇ij) = bi+𝛽xij, where xij is a subject specific covariate, and 𝛽 is the corresponding
log rate ratio. For the purpose of simulation, we set 𝛽 = 0.5, k = 9 and ni = 100. The bi, i = 1, 2,… , 9,
are generated from a N(0, 0.5) distribution, and xij’s are obtained from a sequence of (k × ni) = 900 val-
ues generated from a U[0, 1] distribution. We introduce an influential subject (here cluster) by replacing
all observations in cluster 3 by counts corresponding to 𝜇ij = 20.

Figure 3 shows the corresponding standardized residuals, which clearly identify observations belong-
ing to cluster 3 as influential in terms of high residual values. It is noteworthy that inclusion of the outlying
cluster forces the regression line to have a negative slope, whereas the true slope coefficient is positive.
Note that the estimates of the variance component are 3.544 and 0.301 corresponding to inclusion and
exclusion of the outlying cluster, respectively.

3.2.2. Binary generalized additive model. We generate data from a binary model with a nonlinear dose
response, which is modelled using a generalized additive model specified by:

y ∼ Binary(p) where logit(p) = 𝛽0 + f (x). (13)

We set 𝛽0 = 0.5 and f (x) = 1.5x − 2.5x2. We first generate the xi, i = 1, 2… , n = 1500 from the
uniform[0, 1] distribution and then generate the binary yi, i = 1, 2,… , n = 1500 using (13). There-
after, we introduce influential values by sorting the x values and replacing all the 0 responses between
observations 1480–1495 by 1’s.

Following Ruppert et al. [21], the model in (13) can be represented as a GLMM as follows:

logit(p|b) = 𝛽0 +
K∑

k=1

bk|x − 𝜅k|3. (14)

Here, the 𝜅k’s are a set of K quantiles of x and the components of b = (b1,… ,bK) ∼ i.i.d.N(0, 𝜎b
2). This

model can be fitted using the glmmPQL routine in R. Note that K is set at 15 following the guidelines
provided by Ruppert et al. [21].

A plot of the estimated log-odds ratio along with point-wise 95% confidence invervals (Figure 4)
suggests spurious structure of the esimated function when computed from the full dataset, whereas the
functional form based on the deleted estimates indicates a smoother fit. Note that the REML based
estimates of the degrees of freedom based on all and non-influential observations only were 4.5 and
2.8, respectively.

3.2.3. Geostatistical data. We consider here a simulated example from the following geostatistical
model:

yi ∼ Poisson(𝜇), where log(𝜇) = s(x), (15)
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Figure 4. True (continuous line), estimated (dotted lines) and 95% point-wise confidence interval (thick dashed
line) of log odds f (x) for a simulated binary generalized additive model (GAM). (a) is obtained by including all

observations and (b) by excluding observations flagged as influential.

Figure 5. Contour plots showing a comparison of the true and estimated functional forms with and without inclu-
sion of the influential point. DFBETAs for the variance component are overlaid on the estimated surface and the

size of the solid circle corresponds to the magnitude of influence.

with s(⋅) being a bivariate function of x = (x1, x2)T , which we set as

s(x1, x2) =
0.6

2𝜋𝜎1𝜎2
× e

− (x1−0.2)2

𝜎1
2 − (x2−0.3)2

𝜎2
2 + 0.4

2𝜋𝜎1𝜎2
× e

− (x1−0.7)2

𝜎1
2 − (x2−0.8)2

𝜎2
2 ,

where 𝜎1 = 0.3, and 𝜎2 = 0.4. Five hundred sets of x were independently generated from the uniform
[0, 1] distribution and based on these, y′s were generated using (15). We replaced the 500th observation
with a relatively high value to induce an influential observation. Following Kammann and Wand [34], a
low rank model formulation is given by,

logE(yi|b) = 𝛽0 + 𝛽1x1 + 𝛽2x2 +
K∑

k=1

bk|xi − 𝜿k|3. (16)

Here, the 𝜿k’s are a set of K knots chosen by applying a space-filling algorithm to the xi’s and the
components of b = (b1,… ,bK) ∼ i.i.d.N(0, 𝜎b

2).
Results are plotted in Figure 5. The estimated d.f. with and without influential observations were 23.3

and 21.75, respectively. The influential point was correctly identified, and the estimated functional form
after dropping the influential point was similar to the true functional form.

4. Discussion

In this paper, we have developed Cook’s distance for fixed and random effects parameters as well as for
variance component estimates for the generalised linear mixed model with independent random effects.
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Given the wide applicability of the model, these diagnostics have far reaching scope. The simulations and
application presented make a strong case for conducting post model fitting deletion diagnostics. First,
influential observations need not occur at the highest extremes of exposure. Second, we can distinguish
between influential observations, which only modestly influence the values of the log hazard over local
regions, and those which influence the shape of the exposure-response curve. Third, observations influ-
ential for the variance component estimate occurred at the highest levels of exposure and the deletion
of these outliers had more influence on the shape of the curve. In the silica application, when the high-
est exposed subject was removed, the optimum degrees of freedom dropped from three to to. Using the
full dataset leads to overfitting in regions of high cumulative exposure. This is common for exposure-
response modelling and possible reasons include the saturation of biological processes, misclassification
of exposure at high levels and the healthy worker effect [3,5,40]. For the silica dataset, the main problem
is the sparsity of data and few cases in the regions of high cumulative exposure.

Empirical observations from the authors suggest that the performance of the method is driven by a
combination of the degree of nonlinearity in the exposure–response relationship and the local density of
data points. The method performs well in presence of moderate nonlinearity even in regions of sparse
data but will tend to spuriously identify influential observations in regions of high nonlinearity. We have
also informally compared the performance of the method on simulated datasets with Poisson and binary
outcomes and observed that for the same degrees of nonlinearity and data density, influential values are
identified more accurately for Poisson outcomes. Further extensions of the method should accomodate
deletion of a subset of observations. Note that in our application to the silica data, which has time-varying
exposures, we have considered detection of influential exposures and considered an individual as influ-
ential if at least one of his observations has been classified as influential. We have assumed throughout
the paper that the random effects are independent. While such an assumption is typically made for cases
such as our motivating example, where the variance components model serves as a device for smooth-
ing, non-spherical variance structures are commonly used when random effects are used to model subject
specific effects or overdispersion. As additional covariance parameters are also estimated by REML and
the results of Haslett and Hayes, and Hayes and Haslett[17, 35] continue to be valid, our method can, in
theory, be extended to accomodate non-spherical variance structures although at a cost of added com-
putational complexity. Additional research that could be spurred by this paper include the development
of models, which include explanations for the occurence of influential observations such as population
heterogenity, but it is clear that such research requires considerable substantive knowledge.

Appendix

A.1. Derivation of the expression for the derivatives in (6):

We have

𝛿ẽiBi

𝛿𝜶T
=

𝛿Bi

𝛿𝜶T
ẽi ⊗ Ip + Bi ⊗ Ip

𝛿ẽi

𝛿𝜶T
.

To calculate the derivatives, first note that writing C =
(

0p×p XT

X V

)
,

B =
(

Ip 0p×n

)( 0p×p XT

X V

)−1(
0p×n
In

)
=
(

Ip 0p×n

)
C−1

(
0p×n
In

)
,

so that

𝛿B
𝛿𝜶T

=
{(

Ip0p×n

)
⊗ Ip

}
𝛿C−1

𝛿𝜶T

{(
0n×pIn

)T
⊗ Ip

}
= −
{(

Ip 0p×n

)
⊗ Ip

}
C−1 𝛿C

𝛿𝜶T
C−1

{(
0n×p In

)T
⊗ Ip

}
Noting that
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𝛿C
𝛿𝜶T

=
(

0 0T

0 𝛿V
𝛿𝜶T

)
and that

𝛿V
𝛿𝜶T

=

⎡⎢⎢⎢⎢⎣
𝜙a1

g′′(𝜇1)
g′(𝜇1)

x1
T 0T … 0T

⋮ ⋮ ⋮ ⋮

0T 0T … 𝜙an
g′′(𝜇n)
g′(𝜇n)

xn
T

⎤⎥⎥⎥⎥⎦
,

we obtain, after some simplification,

𝛿Bi

𝛿𝜶T
= −B

𝛿V
𝛿𝜶T

(
Qi ⊗ Ip

)
.

Similarly,

𝛿Qi

𝛿𝜶T
= −Q

𝛿V
𝛿𝜶T

(
Qi ⊗ Ip

)
,

and
𝛿qii

𝛿𝜶T
= −Qi

T 𝛿V
𝛿𝜶T

(
Qi ⊗ Ip

)
.

Also, using the fact that

𝛿ẽi

𝛿𝜶T
= qii

−1Qi
T 𝛿V
𝛿𝜶T

{(
ẽiQi − QY

)
⊗ Ip

}
,

we obtain the expression for 𝛿ẽiBi

𝛿𝜶T
. Expressions for 𝛿ẽiBi

𝛿bT and 𝛿ẽiBi

𝛿𝝉T
can be similarly found.

A.2. To prove (10):

We make the following three assumptions:

(1). n−1

[
XTWX XTWZ
ZTWX ZWZ + D−1

]
→ 𝚺, which is positive definite.

(2). W and ZDZT have finite elements with W > 0 and/or the elements of Z and D finite.

(3). ai = 𝜙
g
′′ (𝜇i)

g′ (𝜇i)
≤ c, i = 1,… , n for some constant c.

Note that f𝛼(𝛼̂n, b̂n, 𝝉̂n, ẽi) − f𝛼(𝛼̂n, b̂n, 𝝉̂n, qii
−

1
2 Z) can be expressed as

−2

(
ẽi − qii

−
1
2 Z

)
Bi+
(

A1 − C1 A2 − C2 A3 − C3

) ⎛⎜⎜⎝
B1
B2
B3

⎞⎟⎟⎠+
(

C1 C2 C3

) ⎛⎜⎜⎝
B1 − D1
B2 − D2
B3 − D3

⎞⎟⎟⎠ . (A.1)

Consider the first term in (A.1). By the normal theory model applied to the constructed variable Y,

ẽi
asy∼ N
(
1∗Qi

TX𝜶, qii
−2Qi

TVQi

)
= N
(
0, qii

−1
)

, so that ẽi − qii
−

1
2 Z

P
→ 0.

Also,

Bi =
1√
n

(1
n

XTV−1X
)−1 1√

n
XTViẽi → 0 as n → ∞.
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Here, Vi is the ith column of V−1. Now,

A1 − C1 =

−
(

ẽi − qii
−

1
2 Z

)
B 𝛿V

𝛿𝜶T

(
Q ⊗ Ip

)
+ Biqii

−1Qi
T 𝛿V
𝛿𝜶T

{(
ẽi − qii

−
1
2 Z

)
Qi ⊗ Ip

}
= −
(

ẽi − qii
−

1
2 Z

)
BAQ∗X + Biqii

−1Qi
T

(
ẽi − qii

−
1
2 Z

)
AQ∗X − Biqii

−1QiAqii

(
ẽi − qii

−
1
2 Z

)
EiX

⩽
(

ẽi−qii
−

1
2 Z

){
−
(

XT V−1X
n

)−1 (
XT V−1X

n

)
+
(

XT V−1X
n

−1
)(

1
n
XTVi1X

)
−
(

XT V−1X
n

−1
)(

1
n
XTVi1X

)}
= o(1)O(1) = o(1),

and B1 =
(

1
n
XTV−1X

)−1
1√
(n)

XTVi 1√
n
ẽ1 = O(1)O(1)o(1) by assumptions 1–3, so that

B1(A1 − C1) = o(1).

Similarly, B2(A2 − C2) = o(1). Note that

A3 − C3

=
(

ẽi − qii
−

1
2 Z

)
BZD∗ (ZTQi ⊗ Ik

)
+ Biqii

−1Qi
T

(
ẽi − qii

−
1
2 Z

)(
ZTQi ⊗ Ik

)
− Biqii

−1Qi
Tqii

(
ẽi − qii

−
1
2 Z

)(
ZT ⊗ Ik

)
= o(1)O(1)O(1) + O(1)o(1) − O(1)o(1) = o(1),

and that B3 = ((trace 1
n2

(
Zl

TQZj

) 1
n2

(
ZjQZl

)
))
−1

= O(1)o(1) = o(1), so that B3(A3 − C3) = o(1).
Similarly,

C1 =
(

1
n
XTV−1X

)−1
1√
n
XTVi

(
ẽi − qii

−
1
2 Z

)
,

and

(B1 − D1) =
(

1√
n
qii

−
1
2 Z

)(
1
n
XTV−1X

)−1 (
1
n
XTV−1AQi

TX
)

+
(

1
n
XTV−1X

)−1
{

1
n
XTViQi

T

(
qii

−
1
2 Z∕n

)
AQi

TX
}

−
(

1
n
XTV−1X

)−1
{

1
n
XTViqii

−1Qi
TAqii

(
qii

−
1
2 Z√

(n)

)
EiX
}

,

so that

C1(B1 − D1) = [O(1)]O(1)O(1)o(1) = o(1)
Similarly, we can show that C2(B2 − D2) = o(1).

Finally, note that,

C3√
n
= −
(

1√
n
qii

−
1
2 Z

)(
1
n
XTV−1X

)−1 (
1
n
XTV−1Z

)
D∗ (ZTQi

T ⊗ Ik

)
+
(

1
n
XTV−1X

)−1
1√
n
XViqii

−1Qi
T

(
1√
n
qii

−
1
2 Z

)(
ZTQi ⊗ Ik

)
−
(

1
n
XTV−1X

)−1
1
n
XTViQi

T

(
1√
n
qii

−
1
2 Z

)(
ZT ⊗ Ik

)
,
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so that C3

(
B3 − D3

)
= O(
√

n)O(n−1) = o(n−
1
2 ) = o(1). This completes the proof. In case V is replaced

by a consistent estimator V̂, we require an additional set of conditions:

1
n
XT
(

V̂
−1

− V−1
)

X
P
→ 0

1
n
XT
(

V̂
−1

− V−1
)

Z
P
→ 0

1
n
XT
(

V̂
−1

− V−1
)

ẽi

P
→ 0

1
n
ZT
(

V̂
−1

− V−1
)

ẽi

P
→ 0

In case the application is to clustered data, we would require the aforementioned set of conditions to
hold for each cluster.
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