Lawrence Berkeley National Laboratory
Recent Work

Title
The Synthesis of Choline Chloride and Acetylcholine Chloride Labeled in the Methyl Group with C14

Permalink
https://escholarship.org/uc/item/54v87780

Authors
Christenson, F.
Tolbert, B.M.

Publication Date
1949-07-15
UNIVERSITY OF CALIFORNIA

Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE SYNTHESIS OF CHOLINE CHLORIDE AND ACETYLCHOLINE CHLORIDE
LABELED IN THE METHYL GROUP WITH ^{14}C

F. Christenson and B. S. Tolbert

July 15, 1949

Berkeley, California
THE SYNTHESIS OF CHOLINE CHLORIDE AND ACETYLCHOLINE CHLORIDE
LABELED IN THE METHYL GROUP WITH C14 *

by

F. Christenson and B. M. Tolbert

Radiation Laboratory and Department of Chemistry,
University of California, Berkeley, California

July 15, 1949

ABSTRACT

A method is described for the preparation of choline-methyl-C14
chloride and acetylcholine-methyl-C14 chloride from methyl-C14 iodide
on a semi-micro scale.

* The work described in this paper was sponsored by the Atomic Energy Commission.
THE SYNTHESIS OF CHOLINE CHLORIDE AND ACETYLCHOLINE CHLORIDE
LABELED IN THE METHYL GROUP WITH C\(_{14}\) (*)

by

F. Christenson and B. M. Tolbert

Radiation Laboratory and Department of Chemistry,
University of California, Berkeley, California

Choline has been studied not only as an important factor in fatty acid
and phospholipid metabolism but also as an intermediate in the formation
of acetylcholine, as a component of lecithin and as a source of labile
methyl groups. Because of this biological importance the preparation of
choline and acetylcholine labeled with C\(_{14}\) was undertaken. Practically
quantitative yields of choline have been obtained by condensing trimethyl-
amine with ethylene chlorohydrin (1), but the method is not readily adaptable
to radiosynthesis since neither of the intermediates were available in this
laboratory labeled with C\(_{14}\). However, by the quaternization of \(\beta\)-dimethyl-
aminoethyl alcohol with C\(_{14}\) labeled methyl iodide, which was available, it
appeared possible to prepare choline in good yield and so this method was
studied. The chemical steps are readily adaptable to semi-micro work and
there is no problem in separation of the final product as a pure compound
since there are no important side reactions. The acetylation of the
alcohol is also essentially quantitative and also there are no side pro-
ducts. The steps of the reaction may be represented as follows:

\[\text{---} \]

(*) The work described in this paper was sponsored by the Atomic Energy
Commission.

EXPERIMENTAL

Methyl iodide: Carbon dioxide was catalytically hydrogenated to methyl alcohol at high pressures and iodinated with phosphorus and iodine (2). The yield varied from 80-85%.

Choline-methyl-\(^{14}\)C chloride: One and nine-tenths grams (13.7 mmoles) of methyl-\(^{14}\)C iodide was distilled in vacuo into a reaction tube containing a slight excess of \(\beta\)-dimethylamino ethyl alcohol (1.7 g.) dissolved in 10 ml. absolute ethyl alcohol. The reaction tube was constructed of a Carius tube sealed to a 10 mm. stopcock and connected to the vacuum manifold with a 14/35 standard joint (3). After the methyl iodide was added the stopcock was clamped shut and the tube heated at 60° C for one to one and one-half hours.

After heating the tube it was reconnected to the vacuum line and all the volatile compounds, including the excess tertiary amine, distilled off.

(3) "Isotopic Carbon" by Calvin, Heidberger, Reid, Tolbert and Yankwich, p. 142 and 170, John Wiley and Sons, Inc., New York, 1949,
The non-volatile residue was washed with water into a 50 ml. beaker, which solution was chilled in an ice-bath and 5 g. silver oxide added slowly and the mixture thoroughly stirred. The excess silver oxide and the silver iodide was filtered off and the filtrate and wash water combined and titrated to pH 7.4 with N hydrochloric acid. The choline chloride was concentrated to a syrup in vacuo and was then twice crystallized from an absolute alcohol-ether mixed solvent. The recrystallized choline chloride was dried in vacuo.

The calculated specific activity of the choline chloride based on the specific activity of the barium carbonate used to begin the synthesis was 9175 x 10^4 dis./min./mg; the observed specific activity of the product was 9.7 ± 0.3 x 10^4 dis./min./mg. The yield based on C^{14}H_{3}I was 87.0%.

Anal. Caled for C_{5}H_{14}OCl: C, 43.0; H, 10.0; Cl, 24.5. Found: C, 43.13; H, 10.11; Cl, 24.96.

Acetylcholine-methyl-C^{14} chloride: Approximately one gram anhydrous choline chloride labeled in the methyl group was placed in an ignition tube with 1.5 ml. acetic anhydride. The tube was sealed and heated on the steam bath for two hours. The tube was then cooled, opened and transferred with an excess of absolute ethyl alcohol to a small flask equipped with a condenser and refluxed for one hour. The volatile compounds were evaporated off and the syrup dried in vacuo. The acetylcholine chloride was then crystallized from dry acetone. First crop yield was 42% based on choline chloride.

The calculated specific activity based on the specific activity of
the choline chloride was $7.7 \pm 0.5 \times 10^4$ dis./min./mg; the observed specific activity of the product was $8.7 \pm 0.5 \times 10^4$ dis./min./mg. Anal. Caled for C$_7$H$_{16}$O$_2$NCl: C, 46.2; H, 8.85; Cl, 19.6. Found: C, 45.43; H, 8.94; Cl, 19.2.

Acknowledgment: - The authors would like to thank Prof. M. Calvin for his encouragement in this work.

SUMMARY

A method is described for the preparation of choline-methyl-14C chloride and acetylcholine-methyl-14C chloride from methyl-14C iodide on a semi-micro scale.