A THEOREM ON THE POTENTIAL OF A DOUBLE LAYER

G. Groh

August 1983
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A Theorem on the Potential of a Double Layer

Gabor Groh*

Department of Mathematics and Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

* This work was supported by the Swiss National Science Foundation
and by the Director, Office of Energy Research, Office of Basic
Energy Sciences, Engineering, Mathematical, and Geosciences Division
of the U.S. Department of Energy under contract DE-AC03-76SF00098.

+ Postdoctoral research fellow, Swiss National Science Foundation.
1. Introduction

We study the potential D_u of a double layer with density $\mu \in C^1(S)$ on a closed LYAPUNOV surface S [1]:

$$D_u(P) = \int_{S} \mu(q) \frac{\partial}{\partial n} \left(\frac{1}{|P-q|} \right) \, dS_q.$$ \hspace{100pt} (1)

The letter P denotes (the coordinate vector of) a point in R_+ or R_-, the interior and exterior regions defined by S. The letters p and q are (the coordinate vectors of) surface points. R is a bounded but not necessarily connected region and n_q is the inner unit normal at q. The kernel in Eq. (1),

$$K(q;P) = \frac{\partial}{\partial n_q} \left(\frac{1}{|P-q|} \right) = \frac{n_q \cdot (P-q)}{|P-q|^3} = \frac{\cos \theta}{|P-q|^2},$$

is the potential in the point P of an electric dipole with dipole moment n_q located at q. K is analytic in a neighborhood of $S \times S$ except at $P=p=q$, where it has a weak singularity:

$$|K(q;P)| < \frac{L}{|P-q|^{2-\alpha}} \quad (L>0, 0<\alpha \leq 1).$$ \hspace{100pt} (2)

L and α are the constants in the LYAPUNOV condition for the surface S:

$$\theta = \cos^{-1}(n_p \cdot n_q) \leq L |P-q|^{\alpha} \quad (0 \leq \theta \leq \pi/2).$$ \hspace{100pt} (3)

It is well known that the limiting values of D_u on either side of the
surface S are different in general [1]:

$$\lim_{\varepsilon \to 0} D_u(p \pm \varepsilon n_p) = (D_u)_\pm(p) = D_u(p) \pm \pi \mu(p) (\varepsilon > 0). \quad (4)$$

The purpose of this note is to establish the following theorem describing a similar discontinuous behaviour of the tangential derivatives [2]:

THEOREM: For a closed and bounded LYAPUNOV surface S and a density $\mu \in C^1(S)$ the tangential derivatives of $(D_u)_\pm$ admit the following representation:

$$\nabla(D_u)_\pm(p) = \int_S [\mu(q) - \mu(p)] \nabla K(q;p) dS \pm 2\pi \nabla \mu(p). \quad (5)$$

The integral contains a weak singularity and is therefore absolutely and uniformly convergent.

The theorem is motivated by an application in potential aerodynamics, where it can be used to compute the tangential velocity of an inviscid fluid on the surface of a rigid, impermeable body R_+ (Section 3). Known expressions corresponding to Eq.(5) are not suited for numerical implementation [1, p.76] since $\nabla \mu$ occurs under the integral sign, or they contain a Cauchy principal value integral [3, p.140] which introduced additional errors [2, p.9-10].

Similar applications of Eq.(5) arise in superconductivity (Meissner effect [4]) and in electrostatics.
2. Proof of the theorem

We apply the surface-gradient operator $\vec{\nabla}$ to both sides of Eq. (4) and note that, by assumption, $\vec{\nabla} \mu \in C(S)$:

$$\vec{\nabla}(D\mu)_{\pm}(p) = \vec{\nabla}D\mu(p) \pm 2\pi \vec{\nabla} \mu(p).$$ \hspace{1cm} (6)

The integral at the right side may be written as

$$\vec{\nabla}D\mu(p) = \vec{\nabla} \left[\int [\mu(q) - \mu(p)] K(q;p) dS_p + \vec{\nabla} \mu(p) \int K(q;p) dS_q \right].$$ \hspace{1cm} (7)

Since S is a closed surface, the integral of the kernel is equal to 2π [1, p.36], yielding $2\pi \vec{\nabla} \mu(p)$ for the second term in (7). In the first term we interchange differentiation and integration:

$$\vec{\nabla} \left[\int [\mu(q) - \mu(p)] K(q;p) dS_p \right] = \int \left[[\mu(q) - \mu(p)] K(q;p) \right] dS_q.$$ \hspace{1cm} (8)

We will have to show that this may be done in spite of the singularity at $p=q$. Then Eq. (7) becomes:

$$\vec{\nabla}D\mu(p) = \int \left[[\mu(q) - \mu(p)] K(q;p) \right] dS_q + 2\pi \vec{\nabla} \mu(p)$$

$$= \int \left[- \vec{\nabla} \mu(p) K(q;p) + [\mu(q) - \mu(p)] \vec{\nabla} K(q;p) \right] dS_q + 2\pi \vec{\nabla} \mu(p)$$

$$= -2\pi \vec{\nabla} \mu(p) + \int [\mu(q) - \mu(p)] \vec{\nabla} K(q;p) dS_q + 2\pi \vec{\nabla} \mu(p)$$

$$= \int [\mu(q) - \mu(p)] \vec{\nabla} K(q;p) dS_q.$$
Inserting this expression in Eq. (6) yields the relations (5).

In order to prove Eq. (8), we consider the LYAPUNOV sphere centered at p and adjust its radius d to satisfy $Ld^a<1/2$. Then the portion S_p of the surface S inside the sphere intersects lines parallel to the normal n_p in at most one point, and the intersection of S_p with an arbitrary plane containing n_p is a continuous curve. We define a local coordinate system with origin at p by the orthonormal vectors $e_x, e_y, e_z=n_p$. Let $(S_p)_z$ be the projection of S_p onto the tangential plane $<e_x,e_y>$ spanned by e_x and e_y. Consider further the largest circular disc $(S^p_{\rho_m})$ with radius ρ_m and center p which is contained in $(S_p)_z$. Finally, the portion of S_p inside the circular cylinder with basis $(S^p_{\rho_m})$ and axis e_z is denoted by $S^p_{\rho_m}$. Each point $q\in S^p_{\rho_m}$ may now be represented by cylindrical coordinates (ρ,ϕ,\hat{z}):

$$q=(x,y,z)=(\rho\cos\phi,\rho\sin\phi,\hat{z}(\rho,\phi)) \quad (0\leq\rho\leq\rho_m, 0\leq\phi<2\pi).$$

Since $S^p_{\rho_m}\subset S$, the function \hat{z} has the properties

$$\hat{z}, \frac{\partial^2 \hat{z}}{\partial \rho^2}, \frac{\partial^2 \hat{z}}{\partial \rho \partial \phi} \in C([0,\rho_m] \times [0,2\pi)).$$ \hspace{1cm} (9a,b,c)

In a next step, we define in Eq. (8):

$$f(q;p)=[u(q)-u(p)]K(q;p),$$

and observe that $f, \nabla f \in C((S-S^p_{\rho_m})\times(S-S^p_{\rho_m}))$. Therefore it remains to show that

$$\int_{S^p_{\rho_m}} f(q;p) dS_q = \int_{S^p_{\rho_m}} f(q;p) dS_q.$$ \hspace{1cm} (10)
It is sufficient and convenient to prove the equality of the projections of these vectors with respect to all possible directions e_0:

$$e_0 = (x_0^e, y_0^e, z_0^e) = (\cos \phi_0, \sin \phi_0, 0) \quad (0 \leq \phi_0 < 2\pi).$$

For a differentiable function A on S such a projection may be written as

$$e_0 \cdot \nabla A(p) = \lim_{p_0 \to p} \frac{A(p_0) - A(p)}{\sigma_0} = \frac{dA(p_0)}{d\sigma_0} \bigg|_{p_0 = p}, \quad (11)$$

where $p_0 \in S^p \cap <e_0, e_z>$,

and $p = (x_0, y_0, z_0) = (\rho_0 \cos \phi_0, \rho_0 \sin \phi_0, \hat{z}(\rho_0, \phi_0)) \quad (0 \leq \rho_0 \leq \rho_m)$.

The length σ_0 of the arc σ between p and p_0 on the continuous curve $S^p \cap <e_0, e_z>$ is given by

$$\sigma_0 = \sigma(\rho_0) = \rho_0 \left[1 + \left(\frac{\hat{z}''}{\hat{z}'}\right)^2\right]^{1/2} = \int_0^{\rho_0} \frac{d\sigma(\rho)}{d\rho} \, d\rho.$$

It follows from Eq.(9b) that $\sigma \in C^1([0, \rho_m])$ and, by construction, we have

$$\frac{d\sigma(p_0)}{dp_0} \bigg|_{p_0 = 0} = \frac{d\sigma(0)}{dp_0} = 1.$$

The projection (11) therefore assumes the form

$$e_0 \cdot \nabla A(p) = \left(\frac{\hat{A}(\rho_0, \phi_0)}{\hat{z}'} \frac{d\rho_0}{d\sigma_0}\right) \bigg|_{p_0 = 0} = \left(\frac{\hat{A}(\rho_0, \phi_0)}{\hat{z}'} \frac{d\rho_0}{d\sigma_0}\right) \bigg|_{p_0 = 0} = \left(\frac{\hat{A}(0, \phi_0)}{\hat{z}'} \frac{d\rho_0}{d\sigma_0}\right) \bigg|_{p_0 = 0}.$$
We denote by \(\hat{A} \) the integral on the left side of Eq.(10) which becomes

\[
\hat{A}(\rho_0, \phi_0) = \int f(q; p_0) \, dq \int_0^{2\pi} f(\rho, \phi; \rho_0, \phi_0) \, \rho \, d\rho \, d\phi
\]

The angle \(\theta \) satisfies the LYAPUNOV condition (3) with \(|p - q| = r = [\rho^2 + \rho^2(\rho, \phi)]^{1/2} \).

Note that \(\cos \theta > 7/8 \) since

\[
1 - \cos \theta = 2\left(1 - \frac{\theta^2}{2} + \ldots\right) < \frac{\theta^2}{2} \leq \frac{(L \rho \alpha)^2}{2} < \frac{(L \rho)^2}{2} < \frac{1}{8}.
\]

The singularity of \(\hat{g} \) in \(r_0 = |p_0 - q| = 0 \) is weaker than (2) because of \(v \in C^1(S) \):

\[
|\hat{g}| = |\hat{f}(\rho, \phi; \rho_0, \phi_0)| = \frac{\rho}{\cos \theta} = |\hat{u}(\rho, \phi; \rho_0, \phi_0)| \cdot |\hat{K}(\rho, \phi; \rho_0, \phi_0)| = \frac{\rho}{\cos \theta}
\]

\[
< (H r_0) \cdot \left(\frac{L}{r_0^{2-\alpha}}\right)(\frac{d}{7/8}) = \frac{8HLd}{7r_0^{1-\alpha}} \quad (0 < H < \infty).
\]

Define by \(\hat{B}(0, \phi_0) \) the projection of the right side of Eq.(10) onto \(e_0 \):

\[
\hat{B}(0, \phi_0) = \int_0^{2\pi} f(q; p) \, dq \int_0^{2\pi} \frac{\partial \hat{g}(\rho, \phi; 0, \phi)}{\partial \rho} \, d\rho \, d\phi.
\]

The following estimate holds for the integrand:
\[
\left| \frac{\partial g(\rho, \phi; 0, \phi_0)}{\partial \rho_0} \right| = \left| [\hat{A}(\rho, \phi) - \hat{A}(0, \phi_0)] - \frac{\partial \hat{u}(0, \phi_0)}{\partial \rho_0} \hat{k}(\rho, \phi; 0, \phi_0) \right| \frac{\rho}{\cos \theta}
\]

\[
< \left(H_r \left(\frac{7L}{r^{3-\alpha}} \right) + \frac{\partial \hat{u}(0, \phi_0)}{\partial \rho_0} \right) \frac{L}{r^{2-\alpha}} \right] \frac{8\rho}{7}
\]

\[
= \frac{D_0^\rho}{r^{2-\alpha}} = \frac{D_0 \cos^{2-\alpha} \beta}{\rho^{1-\alpha}} \quad (\rho=r \cos \beta).
\]

Note that \(D_0 > 0 \) is a finite number since \(\mu \in C^1(S) \) and the surface is bounded.

Use has also been made of a Lemma which will be established after this proof, namely:

Lemma:

\[
|\nabla_p \hat{K}(q; p)| < \frac{7L}{r^{3-\alpha}} \quad (r \to 0).
\]

(12)

Eq. (10) has now been reduced to the following scalar identity in \(\phi_0 \):

\[
\left. \frac{\partial \hat{A}(\rho_0, \phi_0)}{\partial \rho_0} \right|_{\rho_0 = 0} \equiv \hat{B}(0, \phi_0) \quad (0 \leq \phi_0 < 2\pi).
\]

Its validity is established if we can prove that

\[
\lim_{\rho_0 \to 0} I(\rho_0, \phi_0) \equiv \lim_{\rho_0 \to 0} \left\{ [\hat{A}(\rho_0, \phi_0) - \hat{A}(0, \phi_0)]/\rho_0 - \hat{B}(0, \phi_0) \right\} \equiv 0. \quad (13)
\]

In the integration domain \((S^p_{\rho_m})_z \), we define a circular disc, with center \(p \) and radius \(2\rho_0 \), which contains the point \(p_0 \) in its interior.
Then $I(\rho_0, \phi_0)$ may be written as

$$I(\rho_0, \phi_0) = \int_0^{2\pi} \int_0^{\rho_0} \left\{ \hat{g}(\rho, \phi; \rho_0, \phi_0) - \hat{g}(\rho, \phi; 0, \phi_0) \right\} / \rho_0 \, d\rho \, d\phi$$

$$- \int_0^{2\pi} \int_0^{\rho_0} \frac{\partial \hat{g}(\rho, \phi; \rho_0, \phi_0)}{\partial \rho} \, d\rho \, d\phi$$

$$+ \int_0^{2\pi} \int_0^{\rho_m} \left\{ \hat{g}(\rho, \phi; \rho_0, \phi_0) - \hat{g}(\rho, \phi; 0, \phi_0) \right\} / \rho_0 - \frac{\partial \hat{g}(\rho, \phi; \rho_0, \phi_0)}{\partial \rho} \right\} \, d\rho \, d\phi. \quad (14)$$

The first integral converges for all $\rho_0 > 0$ and the second integral is bounded by $2^{\alpha+1} - \pi D_0 \rho_0^\alpha$; both integrals vanish for $\rho_0 \to 0$.

We define the function \hat{y} by $\hat{y}(\xi) = \hat{g}(\rho, \phi; \xi, \phi_0)$, $\xi \in [0, \rho_0]$. Note that $\rho \geq 2\rho_0$ and therefore $u \in C^1(S)$ implies $\hat{y} \in C^1([0, \rho_0])$. By the Mean Value Theorem there exists a constant θ ($0 < \theta < 1$) such that

$$\frac{\hat{y}(\rho_0) - \hat{y}(0)}{\rho_0} = \frac{d \hat{y}(\rho_0)}{d \xi}.$$

This leads to the estimate of the last integral in Eq. (14):

$$\int_0^{2\pi} \int_0^{\rho_m} \left| \frac{\partial \hat{g}(\rho, \phi; \rho_0, \phi_0)}{\partial \xi} - \frac{\partial \hat{g}(\rho, \phi; 0, \phi_0)}{\partial \xi} \right| \, d\rho \, d\phi \leq 2\pi (\rho_m - 2\rho_0) \epsilon(\rho_0, \phi_0).$$

$\epsilon(\rho_0, \phi_0)$ denotes an upper bound of the integrand which tends to zero with ρ_0 for all fixed $\phi_0 \in [0, 2\pi)$, by virtue of $\hat{y} \in C^1([0, \rho_0])$.

The weak singularity of the integrand in Eq. (5) follows immediately from the Lemma and the assumption $u \in C^1(S)$. The theorem is proved.
Proof of the Lemma: For \(p \neq q \) the tangential derivative of \(K \) in Eq.(12) may be written as the projection of its gradient onto the tangential plane at \(p \):
\[
\nabla_p K(q;p) = \nabla_p K(q;p) - (n \cdot \nabla_p K(q;p))n_p
\]
\[
= \frac{n_{pq}}{r^3} + \frac{3K(q;p)}{r} [\cos(\gamma - \theta) n_p - e_{pq}],
\]
(15)

where \(r = |p-q| \), \(e_{pq} = (p-q)/r \), and \(n_{pq} = n_q - (n \cdot n_q)n_q \). It is important to note that
\[
|n_{pq}| = \sin \theta.
\]
(16)

Indeed, we have for fixed \(q \) and variable \(p \):
\[
n_{pq} + (n_q \cdot n_p) = n_q = \text{constant vector}.
\]

Moreover, \(n_{pq} \) forms a right angle with \(n_p \). Therefore \(n_{pq} \) describes a certain part of the surface of the sphere centered at \(q + n_q/2 \) with radius 1/2. This geometrical description leads immediately to Eq.(16). Further we have \(\theta < 1 \) for \(r \to 0 \), and since the terms in
\[
\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \ldots
\]

have alternating signs, the sum of the terms following \(\theta \) is negative and hence \(\sin \theta < \theta \). Recalling the LYAPUNOV condition (3) we obtain finally
\[
|n_{pq}| < Lr^a. \text{ Using this estimate, we can project out the strong singularity } O(r^{-3}) \text{ of the normal component } n_p \cdot \nabla_p K(q;p) \text{ in Eq.(15):}
\]
\[
\left| \nabla_p K(q;p) \right| \leq \frac{|n_{pq}|}{r} + \frac{3}{r}|K(q;p)| \cdot |\cos(\gamma-\theta)n_p - e_{pq}|
\]
\[
< \frac{Lr^\alpha}{r^3} + \frac{3}{r}\left(\frac{L}{r^{2-\alpha}}\right)^2 = \frac{7L}{r^{3-\alpha}}.
\]

3. An application in potential aerodynamics

Potential flow in the region \(R_+ \) around a rigid, impermeable body \(R_- \) is described by the well-known Neumann problem for the disturbance potential \(\phi \in C^2(R_-) \) with the boundary condition \([1,2,6]\):

\[
\frac{\partial \phi_-(p)}{\partial n_p} = - \frac{\partial \phi_\infty(p)}{\partial n_p}.
\]

\(V_\infty = \nabla \phi_\infty \) is the velocity of the undisturbed flow (constant in most cases).

\(\phi_\infty \) is basically a harmonic function in a region containing \(R_+ \cup S \) in its interior \([2,5,10]\).

In order to avoid the discretization of the unbounded, 3-dimensional region \(R_- \), this problem is reformulated as an integral equation on the boundary \(S \) \([2,5,6,7,8,9,10,11]\). In one of these formulations \(\phi \) is represented by the potential of a double layer:

\[
\phi(P) = - \frac{1}{4\pi} D\phi_-(P) \quad (P \in R_-).
\] (17)

The total velocity potential \(\phi_- = \phi_\infty + \phi_- \) on \(S \) is the unique solution of the following integral equation on the boundary \(S \) \([2,5]\):
\[\phi_-(p) = \frac{1}{4\pi} \int_{S} \left[\phi_-(p) - \phi_-(q) \right] K(q;p) dS_q + \phi_\infty(p). \]

(18)

An important field quantity in applications is the tangential fluid velocity \(V_\perp = \nabla \phi_\perp \) on \(S \). The exterior jump-relation (5) proved in Section 2 yields an integral formula for \(V_\perp \). Indeed, the density in Eq. (17) is \(\mu = -\phi_\perp /4\pi \) and it has been proved in [2] that \(\phi_\perp \in C^1(S) \):

\[\nabla \cdot \phi_\perp = - \frac{1}{4\pi} \int_{S} \left[\phi_-(q) - \phi_-(p) \right] \nabla_p K(q;p) dS_q + \frac{1}{2} \nabla \cdot \phi_\perp(p). \]

Addition of \(\nabla \cdot \phi_\perp(p) \) on both sides leads to

\[V_\perp(p) = \frac{1}{2\pi} \int_{S} \left[\phi_-(p) - \phi_-(q) \right] \nabla_p K(q;p) dS_q + 2[V_\infty(p) - (n \cdot V_\infty(p)) n_p]. \]

This expression serves as basis for numerical schemes in which the approximating solution of the integral equation (18) is inserted [2,5].

Acknowledgments

This note has been written while the author was a research fellow of the Swiss National Science Foundation at the Department of Mathematics and the Lawrence Berkeley Laboratory, University of California, Berkeley. The financial support of these institutions and the kind hospitality of the Mathematics Department and the Mathematics Group at LBL are greatly appreciated.
References

11. B. Maskew, Prediction of Subsonic Aerodynamic Characteristics:
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.