Title
MEASUREMENT OF A QUADRUPOLE TRANSITION MOMENT BY INTERFERENCE OF QUADRUPOLE AND DC-FIELD-INDUCED SUM-FREQUENCY GENERATION

Permalink
https://escholarship.org/uc/item/55v439wz

Author
Bethune, Donald S.

Publication Date
1977
MEASUREMENT OF A QUADRUPOLE TRANSITION MOMENT BY INTERFERENCE OF QUADRUPOLE AND DC-FIELD-INDUCED SUM-FREQUENCY GENERATION

Donald S. Bethune, Robert W. Smith, and Y. R. Shen

January 1977

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MEASUREMENT OF A QUADRUPOLE TRANSITION MOMENT
BY INTERFERENCE OF QUADRUPOLE AND DC-FIELD-INDUCED
SUM-FREQUENCY GENERATION

Donald S. Bethune, Robert W. Smith, and Y. R. Shen

Department of Physics, University of California
Berkeley, California 94720

and

Materials and Molecular Research Division,
Lawrence Berkeley Lab
Berkeley, California

JANUARY 1977

ABSTRACT

We show that, by measuring the interference between quadrupole and dc-field-induced sum-frequency generation, both the magnitude and the sign of a quadrupole matrix element can be obtained relative to the dipole matrix elements in atomic transitions. We use the measurement of $<3s|zz|4d>$ of sodium to demonstrate the technique.
In recent years, there have been a number of calculations of atomic quadrupole transition moments.1-4 The corresponding experimental work is however extremely rare. Bogaard and Orr3 have proposed measuring the quadrupole moments by observing the field-induced birefringence of an atomic vapor in a strong electric field gradient, but concluded the effect is much too small to allow a decent signal-to-noise ratio. Lambropoulos et al.5 have reported the observation of a multiphoton ionization process involving a quadrupole transition. By comparing the ionization rate of the \((3s \rightarrow 3p \rightarrow 4f \rightarrow \text{continuum})\) process with that of the \((3s \rightarrow 3p \rightarrow 4d \rightarrow \text{continuum})\) process, they were able to deduce the \(3p \rightarrow 4f\) quadrupole moment. The accuracy, however, depends critically on the dipole matrix elements of \(3p \rightarrow 4d, 4d \rightarrow \text{continuum},\) and \(4f \rightarrow \text{continuum}.\) In this letter, we propose and demonstrate a new nonlinear optical technique to measure quadrupole transition moments relative to the known dipole matrix elements. The technique is based on the interference between quadrupole6 and dc-field-induced7 sum-frequency generation. It gives not only the magnitude but also the sign of the quadrupole matrix elements and has an inherently high accuracy. As a preliminary example, we have measured \(3s \rightarrow 4d\) quadrupole moment of sodium.

The idea is simple. Let \(E_1\) at \(w_1\) and \(E_2\) at \(w_2\) be the incoming pump fields. The nonlinear polarization \(P^{NL}\) responsible for the sum-frequency generation at \(w_3 = w_1 + w_2\) near a quadrupole resonance is given by6

\[
P^{NL}(w_3) = \left[-i k_3 \cdot \chi_Q^{(2)} + \chi_Q^{(3)} \cdot E_0 \right] \cdot E_1 E_2
\]

(1)

where \(E_0\) is the applied dc field, \(\chi_Q^{(2)}\) is the quadrupole second-order
nonlinear susceptibility, and $\chi^{(3)}$ is the third-order nonlinear susceptibility. Since the sum-frequency signal is proportional to $|p^{NL}(\omega_3)|^2$, variation of the sum-frequency signal resulting from variation of E_0 should yield a value for the ratio $\chi^{(2)}/\chi^{(3)}$, from which the particular quadrupole matrix element can be deduced in terms of dipole matrix elements.

More specifically, consider the case of sodium vapor with ω_1 close to ω_{3p} and $\omega_1 + \omega_2$ resonant with ω_{4d}. Insertion of the microscopic expressions for $\chi^{(2)}$ and $\chi^{(3)}$ in Eq. (1) leads to

$$p^{NL}(\omega_3) \approx \frac{Ne^3}{\hbar^2} \left[- i \sum_{M_Q} \cdot M_Q + \sum_{M_D} \cdot E_0 \right] \times \frac{\langle 4d|\hat{r}|3p\rangle\langle 3p|\hat{r}|3s\rangle}{(\omega_1 - \omega_{3p})(\omega_3 - \omega_{4d}) + i\Gamma}$$

where $M_Q = \langle 3s|\frac{1}{2} \hat{r} \cdot \hat{r}|4d\rangle$ and

$$M_D = e \sum_{np} \left\{ \frac{-\langle 3s|\hat{r}|np\rangle\langle np|\hat{r}|4d\rangle}{\hbar(\omega_3 - \omega_{np})} + \frac{\langle np|\hat{r}|4d\rangle\langle 3s|\hat{r}|np\rangle}{\hbar\omega_{np}} \right\}.$$ (2)

If we use the noncollinear geometry for sum-frequency generation shown in Fig. 1 with \hat{k}_1 and \hat{k}_2 in the $x - \hat{z}$ plane, \hat{k}_3 along \hat{z}, \hat{E}_0 and \hat{E}_1 along \hat{y}, and $\hat{E}_2 = (\hat{x} \cos \theta_2 + \hat{z} \sin \theta_2)E_{2h} + \hat{y} E_{2y}$, then from symmetry arguments, we can write

$$p^{NL}_{x}(\omega_3) = (M_D)_{xy} F_{yx} E_{0} E_{1} E_{2h} \cos \theta_2$$

$$p^{NL}_{y}(\omega_3) = \left[-ik_3(M_Q)_{yz} F_{yz} \sin \theta_2 + (M_D)_{yy} F_{yy} E_{0}(E_{2y}/E_{2h}) \right] E_{1} E_{2h}$$ (3)
where

\[F_{yx} = \frac{N e^3}{\hbar^2} \frac{\langle 4d|y|3p\rangle\langle 3p|x|3s\rangle}{(\omega_1 - \omega_3)(\omega_3 - \omega_4 + i\Gamma)} \]

\[F_{yz} = (\sqrt{3}/2)F_{yy} = (\sqrt{3}/2)F_{zz} \]

\[(M_D)_{zz} = (M_D)_{yy} = (2/\sqrt{3})(M_D)_{xy}, \quad (M_Q)_{zz} = (2/\sqrt{3})(M_Q)_{yz}. \]

The sum-frequency field \(E_3(\omega_3) \) is now directly proportional to \[\hat{x} P_{x}^{NL}(\omega_3) + \hat{y} P_{y}^{NL}(\omega_3) \]. Thus, if \(E_2 \) is circularly polarized so that \(E_{2y}/E_{2h} = \pm i \), then the \(\hat{y} \) component of the output \(E_3(\omega_3) \) will vanish when

\[E_0 = \pm (3/4)k_3(M_Q)_{zz} \sin \theta_2/(M_D)_{zz}. \]

If \(E_2 \) is linearly polarized in the \(\hat{x} - \hat{z} \) plane, then the output \(E_3 \) becomes circularly polarized when

\[E_0 = \pm k_3(M_Q)_{zz} \tan \theta_2/(M_D)_{zz}. \]

In either case, from the measured value of \(E_0 \), we can deduce the ratio \((M_Q)_{zz}/(M_D)_{zz} \) including the sign.

We have conducted an experiment to verify the above theoretical prediction. Our experimental setup was the same as the one described in Ref. 6 except that a pair of 1.8 cm. \(\times \) 3.8 cm. stainless steel plates separated by 0.095 cm were inserted in the heat pipe as electrodes. The dc voltage applied to the electrodes was in the form of a 10 \(\mu \)sec
square pulse synchronous to the 0.5 μsec dye laser pulses at $\omega_1 = 16900 \text{ cm}^{-1}$ and $\omega_2 = 17649 \text{ cm}^{-1}$. We operated the heat pipe at a vapor pressure of 1 torr. In order to avoid heavy ionization of Na by resonant three photon ionization processes, we limited the peak laser power at ω_1 to ~ 10 watts and that at ω_2 to ~ 100 watts. At these power levels, ionization of Na was less than 1% as judged from the induced current between the two electrodes. However, with the angle between \hat{k}_1 and \hat{k}_2 adjusted to phase matching for sum-frequency generation ($\theta_1 \approx \theta_2 = 13 \text{ mrad}$), the output signal at $E_0 = 0$ still had a peak power of $\sim 1 \text{ mW}$ and could easily be detected.

Our results with E_2 linearly polarized in the $\hat{x} - \hat{y}$ plane are shown in Fig. 2 as $I_x(\omega_3)/I_y(\omega_3)$ versus E_0, where $I_x(\omega_3)$ and $I_y(\omega_3)$ are the sum-frequency output intensities polarized along \hat{x} and \hat{y} respectively. Following Eq. (3), we should have

$$I_x(\omega_3)/I_y(\omega_3) = |(M_x^D)_{zz} E_0/k_3(M_Q^0)_{zz} \tan \theta_2|^2 \quad (7)$$

which becomes unity when E_0 satisfies Eq. (6). When $I_x/I_y = 1$, the output should be circularly polarized. We found experimentally that this was indeed the case. In the absence of a uv circular polarizer, we did not analyze the handedness of the circular polarization. Using Eq. (7) to fit the data points in Fig. 2, we obtained $|(M_Q^0)_{zz}/(M_D^0)_{zz}| = (4.4 \pm 0.4) \times 10^{-4}$ statvolts. The uncertainty was mainly due to laser power fluctuations.

We also used a Polaroid circular polarizing sheet to left circularly
polarize E_2, so that $E_{2y}/E_{2h} \approx -i$, and measured $I_y(\omega_3)$ as a function of E_0. According to Eq. (3), we should have

$$I_y(\omega_3) \propto |(3/4)k_3(M_Q)_{zz} \sin \theta_2/(M_D)_{zz} + E_0|^2.$$ \hspace{1cm} \text{(8)}$$

As E_0 increases to positive values from 0, $I_y(\omega_3)$ should first decrease if $(M_Q)_{zz}/(M_D)_{zz}$ is negative. This was the case we found experimentally. Since the circular polarizer we used was not perfect, we did not have $I_y(\omega_3)$ go exactly to zero at a certain value of E_0 as predicted by Eq. (8), but if we assume E_0 of Eq. (5) corresponds to the observed minimum of $I_y(\omega_3)$, then we could deduce from the experimental data $(M_Q)_{zz}/(M_D)_{zz} = -(4.45 \pm 0.8) \times 10^{-4}$ statvolt, which is very close to the value derived earlier.

We can now find the quadrupole transition moment $(M_Q)_{zz} = 3s|l_zzz|4d>$ of sodium if $(M_D)_{zz}$ is known. The latter can actually be calculated from the tabulated transition frequencies and dipole matrix elements for sodium. According to Ref. 9, all dipole matrix elements between $3s$ and np and between np and $4d$ with $n = 3, 4, 5, 6$ are negative except $<5p|z|4d>$ which is positive. Using these matrix elements, we obtained from Eq. (2)

$$(M_D)_{zz} = + 5.1 \times 10^3 a_0^2/\text{statvolt}$$

and hence $(M_Q)_{zz} = -2.2 a_0^2$, where a_0 is the Bohr radius. This is about 50% larger than the value $10^4 |(M_Q)_{zz}| = 1.36 \text{ a.u.}$ calculated by Tull et al.1 Aside from possible large uncertainty in the calculation, we do not know other causes for the discrepancy.

The technique described here can of course be used to measure other $s \rightarrow d$ quadrupole transition moments. It can also be used to measure $p \rightarrow p$ quadrupole moments by observing interference between $s \rightarrow p \rightarrow p \rightarrow s$ quadrupole
sum- (or difference-) frequency generation and \(s \rightarrow p \rightarrow d \rightarrow p \rightarrow s \) or
\(s \rightarrow p \rightarrow s \rightarrow p \rightarrow s \) dc-field-induced sum- (or difference-) frequency generation.

The dc-field-induced sum-frequency generation is of some interest by itself. Unlike the quadrupole case, the nonlinear susceptibility \(\chi^{(3)} \) gives nonvanishing SFG for the collinear beam geometry. As a result, dc-field-induced sum-frequency generation with collinear phase matching is possible. The process is in fact more efficient than the quadrupole process at a dc field \(E_0 \geq 500 \text{ v/cm} \). However, the efficiency of resonant optical mixing in metal vapor is always limited at high laser intensities by saturation, multiphoton ionization and self-defocusing. In order to improve the efficiency, the pump beams must be expanded. This requires greater electrode plate separation and higher voltage across the plates in the dc-field-induced case. Consequently, the problem of avalanche breakdown initiated by multiphoton ionization of atoms in the dc field becomes much more severe and may prevent the use of the dc-field-induced process for very efficient sum or difference frequency generation.

We have proposed here a new technique for measuring both the magnitude and the sign of atomic quadrupole transition moments relative to the dipole matrix elements. The technique is inherently very accurate. In the present work, it is limited by the pulsed laser power fluctuations. However, since the sum-frequency signal is far above noise, it is possible that stable CW dye lasers can be used for such measurements. The accuracy of the measurements can then be greatly improved.

This work is supported by the U. S. Energy Research and Development Agency.
REFERENCES

8. In Ref. 6, we left out the factor \(\frac{1}{2} \) in the quadrupole matrix element.
10. \(<3s|zz|4d> = (2/\sqrt{45})<3s|r^2|4d> \)

\[
= (2/\sqrt{45}) \int_0^\infty R_{3s}^2 R_{4d} r^2 dr
\]

where the radial function for the state \(|n\ell> \) is \(R_{n\ell}/r \).
FIGURE CAPTIONS

Fig. 1 Experimental geometry for sum-frequency generation. The dc field \mathbf{E}_0 and the laser field \mathbf{E}_1 are both along \hat{y}.

Fig. 2 $I_x(\omega_3)/I_y(\omega_3)$ as a function of the applied dc field E_0. $I_x(\omega_3)$ and $I_y(\omega_3)$ are phase-matched sum-frequency signals polarized along \hat{x} and \hat{y} respectively. The solid curve is a theoretical curve obtained from Eq. (7) to fit the data points.
Fig. 2
This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.