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ABSTRACT

The kinetics of c0-type (Ni3X) precipitate growth and solute depletion in Ni–Al,

Ni–Ga, Ni–Ge, Ni–Si, Ni–Ti and Ni–Al–Cr alloys is successfully predicted by the

trans-interface diffusion-controlled theory of coarsening using non-integer

temporal exponents, n, satisfying 2 B n B 3, which are obtained from analyses

of particle size distributions (PSDs). The origin of non-integer n is concentration-

dependent diffusion through the c/c0 interface. The literature on diffusion of Al

and Ni in Ni3Al is specifically examined. It is shown unequivocally that the

concentration-dependent diffusion of Al can account semi-quantitatively for the

value of n that successfully describes the PSDs and kinetics of coarsening of the

c0 precipitates. There is no need to invoke a particle size-dependent c/c0 interface

width, as was done in prior work. It is argued that existing theory and com-

putational modeling of coarsening in systems with highly disparate diffusion

mobilities in both phases do not correctly represent the mobilities in the matrix,

precipitate, and interface in Ni–Al alloys. These theories predict temporal

exponents satisfying 3 B n B 4, for which there is no experimental support.

Introduction

Late-stage coarsening of precipitates involves the

growth of large precipitates at the expense of small

ones in a polydisperse assembly embedded in the

majority (matrix) phase. When the kinetics of coars-

ening is controlled by solute diffusion in the matrix

phase, the average size, hri, of spherical precipitates

of radius r increases with time, t, as hri3 & kt, where

k is a rate constant that includes the physical and

thermodynamic parameters of the entire system. As

the average particle size increases with t, the average

concentration of solute in the matrix phase, X,

decreases approximately as X & (jt)-1/3, where j is

another rate constant involving the same parameters

as k. The iconic theories of Lifshitz and Slyozov [1],

and Wagner [2] (the LSW theory) describe this

behavior quantitatively and also predict the particle

size distribution, PSD, which is independent of

t when properly expressed in terms of the variable

u = r/hri (scaling behavior). A major premise of the

LSW theory is that the matrix phase is a very dilute

solid solution and that the particles are highly dis-

perse, so that the LSW theory is valid, strictly
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speaking, only in the limit fe ? 0, where fe is

the equilibrium volume fraction of the dispersed

phase.

It was recognized quite some time ago, by Lifshitz

and Slyozov themselves [1] and, for example, by

Asimow [3] and Sarian and Weart [4], that for finite

values of fe, the kinetics of coarsening must increase

faster than predicted by LSW. The physical reason for

this is straightforward. As fe increases the average

distance separating the particles decreases, the rate of

diffusive transport of solute from smaller than aver-

age shrinking particles to larger than average grow-

ing ones increases. Since the differences in solute

concentrations at the particle–matrix interfaces are set

by local equilibrium dictated by the Gibbs–Thomson

equation, the interface concentrations are indepen-

dent of fe. But the fluxes of solute from shrinking to

growing precipitates increase as the diffusion dis-

tances decrease, which they must do as fe increases.

In a nutshell, this is the origin of the effect of fe on

precipitate coarsening. The rate constants k and j are

no longer dependent solely on the thermo-physical

parameters of the system, they also depend on fe;

symbolically k = k(fe) and j = j(fe). The shape of the

PSD is also affected by the finite volume fraction,

becoming broader as fe increases.

The diffusive transport of solute in the matrix is

very difficult to describe theoretically when fe is

finite, and for this reason it has been modeled in a

variety of different ways. The large number of pub-

lished models make rather different quantitative

predictions for the effect of fe on k(fe), j(fe) and the

PSDs. These predictions are presented very clearly in

the review article by Baldan [5]. Despite disagree-

ments among the various theories, they all have one

thing in common: k(fe) and j(fe) invariably increase as

fe increases, and the PSDs invariably broaden as fe
increases. A sampling of the predictions of several

representative theories [6–10], which is by no means

exhaustive, is shown in Fig. 1a. More recent theories

of the effect of fe on coarsening behavior [11–13],

published after the review by Baldan, predict

dependencies of k(fe)/k(0) on fe that lie between the

DNS [7] and BW [9] predictions.

The theory of trans-interface diffusion-controlled

particle coarsening (TIDC) [14] was stimulated by the

complete absence of the expected influence of fe on

the coarsening kinetics of c0-type precipitates (Ni3X,

with X = Al, Ga, Ge, Si, or Ti) and their PSDs in five

different binary Ni alloys. In other words, the

coarsening behavior of c0 precipitates in these five

different binary Ni-X alloys is in utter disagreement

with the behavior predicted by the numerous theo-

ries (see [5]). In all these alloys, there is actually a

slight, unexplained decrease in k(fe) and j(fe) when fe
is very small (\0.05), but both rate constants

approach a constant value as fe increases (Ni–Al [15];

Ni–Ga [16]; Ni–Ge [17]; Ni–Si [18–20]; Ni–Ti [21]). To

emphasize this point, the dependence of k(fe) for Ni–

Si alloys shown in Fig. 1b; it is representative of the

results on the other c/c0-type alloys (the only excep-

tion is the coarsening behavior of large Ni3Al pre-

cipitates of non-equilibrium shape reported by Lund

and Voorhees [22], but there is a ready explanation

for this finding in the context of the TIDC theory, as

discussed later in ‘‘The coarsening of c0 precipitates in

Ni-X alloys’’ section). Such behavior suggests that the

traditional view of matrix diffusion-controlled

coarsening of c0 precipitates, specifically the LSW

theory, and modifications thereof, are incapable of

explaining the absence of an effect of fe on coarsening

behavior in Ni-based c/c0 alloys. It is one thing to

produce results that are arguably consistent with the

predictions of any particular theory, but quite

another to observe behavior that cannot possibly be

explained by any of them. It was this conundrum that

led to the genesis of the TIDC theory of coarsening in

the first place.

We know that c/c0 interfaces are diffuse in multi-

component Ni-based alloys [24–28] as well as in

binary Ni–Al alloys where the evidence is experi-

mental [29] and computational [14, 30]. We also know

that the diffusion coefficients in Ni3Al are between

one and two orders of magnitude smaller than in Ni–

Al solid solutions at temperatures of typical coars-

ening experiments (800–1000 K) [31–34]. In order for

c0 precipitates to grow or shrink, solute must be

transported through the c/c0 interface. Since diffusion

through the ordered region of the interface is the

slower step, it is by necessity the rate-controlling one.

Implicitly, coarsening behavior under conditions of

trans-interface diffusion control must be completely

independent of fe. Assuming that the width of the

interface, d, is independent of r, and that all the other

thermo-kinetic parameters that govern transport

through the interface are also independent of r, the

TIDC [14] theory predicts a temporal exponent, n,

equal to 2, i.e., hri2 & kTt and X & (jTt)
-1/2 at very

long aging times; kT and jT are the TIDC counterparts

of k and j in the LSW theory and both are completely
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independent of fe. Under these conditions, the PSD

becomes broader than the LSW result and is in fact

equivalent to the PSD derived by Wagner [2] for the

case of interface reaction-controlled coarsening; the

temporal exponent for that mode of coarsening is also

n = 2.

Ardell and Ozolins [14] briefly considered the

possibility that d might actually vary with r, arguing

that precipitates approaching the dimensions of sev-

eral unit cells of the L12 structure would lose their

identity as a distinct phase unless the interface

sharpened for very small values of r. In subsequent

papers [35–39], this conjecture was made quantitative

by assuming a relationship of the form d � rm, with m

satisfying 0 B m B 1, ultimately leading to a tempo-

ral exponent of n = m ? 2. According to the TIDC

theory for arbitrary values of m, the kinetics of par-

ticle growth and solute depletion in a binary alloy

system obeys the equation

dhrin

dt
¼ kT; ð1Þ

integration of which produces the equation for the

growth of the average precipitate, namely

hrin�hr0in ¼ kTt; ð2Þ

where hroi is the average radius at the onset of

coarsening. As the average precipitate grows, the

concentration of solute in the matrix decreases with t

according to the equation

X � Xe � ðjTtÞ�1=n; ð3Þ

where Xe is the concentration of solute at thermo-

dynamic equilibrium. The PSDs are also dependent

upon n and are given by the equations [35–37]1

h zð Þ ¼ �3f zð Þ exp 3p zð Þf g ð4Þ

where p(z) is the function

p zð Þ ¼
Z z

0

f xð Þdx ð5Þ

and f(z) is the function

f zð Þ ¼ z n� 1ð Þ½ � n�1ð Þ

nn z� 1ð Þ � zn n� 1ð Þ n�1ð Þ : ð6Þ

In Eqs. (4)–(6) z = r/r*; see Eq. (7) for the definition

of r*. For comparison with experimentally deter-

mined PSDs, it is necessary to use the function g(u),

where u = r/hri and g(u) = huih(z). The maximum

allowable scaled particle size in the distribution, umax,

is n/(n-1).

A particularly attractive feature of this aspect of the

TIDC theory is that the dependence of the PSDs on n

quantitatively connects the PSDs with the kinetics.

Analysis of previously published experimental data

on the c0 PSDs Ni–Al, Ni–Ga, Ni–Ge, Ni–Si, and Ni–

Ti alloys [37] confirms the efficacy of the TIDC

Figure 1 a The dependencies of the rate constant for particle

growth during coarsening, k(fe), normalized by the rate constant of

the LSW theory, k(0), predicted by 5 theories: MLSW [6], DNS

[7], MR [8], BW [9], and VG [10]. b The experimentally measured

values of k(fe) for the coarsening of c0 Ni3Si precipitates in

different Ni–Si alloys aged at 650 �C. The plotting symbols in

(b) refer to the data of filled triangleMeshkinpour and Ardell [18],

filled circle Cho and Ardell [20], and filled square Sauthoff and

Kahlweit [23]. The shaded area in (b) contains the majority of the

data on k(fe).

1 The factor of 3 in the exponential term in Eq. (4) was
mistakenly omitted in [35–37], but was included in all fitting of
experimental PSDs.
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theory, via fitting the PSDs to determine the ‘‘best’’

value of n and then analyzing the data on kinetics

using this particular non-integer value of n to extract

values of the interfacial free energy, r, from the

experimentally measured rate constants kT and jT. It

is not an overstatement to claim that the TIDC theory

is the only published theory to date that successfully

couples the parameter that governs the shape of the

PSD with the kinetics of growth of the average par-

ticle and the kinetics of solute depletion. Moreover,

the extension of the theory to describe the kinetics of

coarsening of precipitates in ternary alloys [38] is

similarly successful in describing the coarsening

behavior of c0 precipitates in ternary Ni–Al–Cr alloys

[39].

An additional issue related to TIDC coarsening is

worth emphasizing. Imagine reversing the matrix

and precipitate phases in these same Ni-based alloys!

Diffusion in the ordered matrix phase is now slower

than diffusion through the interface, so matrix dif-

fusion becomes rate controlling, and the conditions

for LSW-type coarsening behavior should prevail.

Under these conditions, the kinetics of particle

growth should obey hri3 & k(fe)t, and there should be

a palpable effect of fe on k(fe). This is in fact exactly

what happens for the coarsening of c (Ni-X solid

solution) precipitates in two so-called ‘‘inverse’’ Ni3Al

and Ni3Ge alloys. As seen in Fig. 2, the rate constants

k(fe) increase dramatically with fe over the ranges

studied. These ranges are necessarily restricted due

to the compositions of the phase boundaries in Ni3
Al/Ni–Al and Ni3Ge/Ni–Ge alloys, so it is not pos-

sible to explore the vast range of fe accessible in

normal binary alloys, similar to the data shown in

Fig. 1b. It is nevertheless quite evident in Fig. 2 that

the dependencies of k(fe) for the coarsening of c pre-

cipitates in inverse Ni3Al and Ni3Ge alloys are very

strong.

From a purely physical perspective, the observa-

tions on the effect of fe on the coarsening behavior of

c0 precipitates in normal Ni-X alloys and c precipi-

tates in inverse Ni3Al and Ni3Ge alloys are satisfac-

torily explained. There is no other way to rationalize

the observed behavior other than by accepting the

predominant role that long-range order plays in the

diffusive transport of solute atoms through the c/c0

interface in these alloys. From a quantitative, pre-

dictive point of view, however, the theoretical ratio-

nale for coupling the temporal exponent and the

PSDs has been predicated solely on the assumption

that d slowly increases as r increases. Until recently,

the measurements of Booth-Morrison et al. [43] on the

Al concentration profiles across c/c0 interfaces in a

ternary Ni–Al–Cr alloy provided the sole support for

this assertion. In their work, the complete concen-

tration profiles are difficult to measure for the smaller

particle sizes, but it is evident in their Fig. 4 that the

gradient across the interface decreases with the

increasing particle size (or aging time), suggesting

that d increases as the size increases. This assertion

was further supported by modeling the interfaces

using the sigmoid function to represent the concen-

tration profile [44].

That situation has changed to a large extent with

the results of several investigations in which mea-

surements of d with t have been reported [28, 29, 45].

Plotnikov et al. [29] published data showing that d for

the Ni–Al/Ni3Al interface decreases rapidly at small

particle sizes, the order of the interface width, and

continues to decrease slightly during the coarsening

Figure 2 Data on the rate

constants for coarsening, k(fe),

of c (Ni–Al or Ni–Ge)

precipitates in ‘‘inverse’’

a Ni3Al [40] and b Ni3Ge [41]

alloys. The curves in both the

figures are predictions of the

MSLW theory [6] modified by

the calculations of Tsumuraya

and Miyata [42].
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regime. Meher et al. [28] reported somewhat similar

results for the c/c0 interface in ternary Ni–Al–Cr

alloys, but in their alloy d is essentially constant

during late-stage coarsening. Al-Kassab et al. [45]

reported that the width of the Ni–Ti/Ni3Ti interface

is essentially constant for 2 aging times in the coars-

ening regime. These observations that d is approxi-

mately constant during coarsening suggest that the

temporal exponent for TIDC coarsening should be

n = 2 for c0 coarsening in all three alloys, and by

implication in all the others as well. Furthermore, a

constant interface width during coarsening poten-

tially obviates any physical argument for non-integer

values of n.

There is no doubt that the temporal exponent that

best fits the PSDs for c0 precipitate coarsening in Ni–

Al alloys is n = 2.4 [36], and there is no doubt that

non-integer values of n best fit the PSDs for c0

coarsening in the other binary Ni-based alloys as

well. Absent a concentration-dependent interface

width, this can be explained by the TIDC theory only

if some other factor is incorporated into the theory to

account for non-integer values of n, in particular a

factor that depends relatively strongly on alloy con-

centration over the small concentration changes

attendant to particle coarsening. The most obvious

candidate is the intrinsic diffusion coefficient of Al in

Ni3Al, which is already quite well known to be

Figure 3 The dependencies

of the activation energies, Q�
Ni,

and pre-exponential factors,

D�
0;Ni, on the concentration of

Al, XAl, in Ni3Al for the tracer

diffusion coefficients of Ni in

Ni3Al. Data of filled diamond

Hancock [65], filled triangle

Bronfin et al. [66], filled

square Hoshino et al. [67],

filled downward triangle

Frank et al. [68] and filled

circle Shi et al. [69].

Figure 4 The dependencies on composition, XAl, in Ni3Al of the activation energy, ~Q, (a) and pre-exponential factor, ~D0, (b) for

chemical diffusion in Ni3Al; Data of Fujiwara and Horita [32].
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concentration dependent (see Campbell [46] for a

compendium of results).

In this context, it should be noted that concentra-

tion-dependent atomic mobilities have been incor-

porated into theories of late-stage spinodal

decomposition (well into the coarsening regime) [47–

53], and that phase field simulations of c0 precipitate

coarsening have used similar assumptions [54, 55].

These works show that with suitably chosen func-

tions for the mobility of solute, particularly functions

that represent extremely slow diffusion in the pre-

cipitate phase, the temporal exponent n actually

increases from 3 to as much as 4, with the irony that

the kinetics in these papers is attributed to interface

diffusion control. Obviously, these predictions are

entirely contrary to those of the TIDC theory, and for

the most part, they are completely unsupported by

experimental evidence. The only theories of coars-

ening derived using the methodology of LSW, taking

diffusion-dependent diffusivity into account, are

those of Che and Hoyt for zero [56] and finite [57]

volume fractions. They found no effect on the tem-

poral exponent during late-stage coarsening, but they

do predict important effects during transient ripen-

ing, especially for finite volume fractions; these con-

siderations do not apply here.

The main purpose of the work reported in this

paper is to explore the possibility that concentration-

dependent diffusion in Ni3Al can affect the kinetics of

coarsening and yield non-integer temporal exponents

in the range 2 B n B 3. We will see that this is indeed

the case. The theories and simulations which predict

values of n[ 3 as manifestations of interface diffu-

sion control will be discussed.

The role of concentration-dependent
diffusion in Ni3Al

In the TIDC theory [14], the growth rate, dr/dt, of a

particle of radius r is

dr

dt
¼ 2rVmDIAl

dðDXc=c0

eAl ÞG00
mc

1

r�
� 1

r

� �
; ð7Þ

where r is the interfacial free energy of the c/c0

interface, Vm is the molar volume of the c0 phase, DIAl

is the coefficient of diffusion of Al in the interface,

DXc=c0

eAl is the difference between the Al concentrations

in the c and c0 phases at thermodynamic equilibrium

(DXc=c0

eAl ¼ Xc0

eAl � Xc
eAl), G00

mc is the curvature of the

molar Gibbs free energy of mixing of the c phase,

evaluated at Xc
eAl, and r* is the radius of the critical

particle which is momentarily in (unstable) equilib-

rium with the ensemble of particles and is neither

growing nor shrinking at time t. Equation (7) is

written explicitly for a two-phase binary c/c0 alloy

but is easily generalized for a system with matrix a
and precipitate b phases. The extension to ternary

alloys is a bit more complicated but has been dealt

with theoretically in the literature [38, 58–61]. Keep in

mind that r* is not necessarily equal to the average

radius hri. It happens that r* = hri in the LSW theory,

but in other kinds of coarsening processes, including

TIDC coarsening, these two parameters are not equal.

The relationship between r* and hri is simply

hri = huir*, where hui B 1 is obtained from the PSD.

When d is constant, n can never be [2 unless

another parameter in Eq. (1) varies appropriately

with r. The most obvious choice is DIAl, which rep-

resents the intrinsic diffusion coefficient of Al in the

diffuse c/c0 interface. In the TIDC theory, DIAl is a

weighted average interfacial diffusion coefficient,

varying between its relatively high value in the

matrix and relatively low value in the ordered c0

phase. In reality, DIAl is expected to be closer in value

to the intrinsic diffusivity of Al in the c0 phase.

The dependence of DIAl on r comes about in the

following way. We already know that diffusion of Al

in ordered Ni3Al is composition dependent at high

temperatures, e.g., 1400 K, from the data of Numa-

kura et al. [62], and increases with increasing Al

concentration. For the analysis of data on coarsening,

data on the diffusion of Al in Ni3Al are needed at low

temperatures, specifically 898 and 988 K [36, 63].

There are no direct measurements of tracer diffusion

of Al in Ni3Al due to the absence of a suitable Al

isotope. To obtain such data, it is therefore necessary

to evaluate data on the tracer diffusion of Ni in Ni3Al,

D�
Ni, and the chemical diffusion coefficient in Ni3Al,

~D, and use the relationship

~D ¼ ðXAlD
�
Ni þ XNiD

�
AlÞUS ¼ XAlDNi þ ð1 � XAlÞDAl;

ð8Þ

where DNi and DAl are the intrinsic diffusion coeffi-

cients of Ni and Al in Ni3Al, U is the thermodynamic

factor, defined by

6138 J Mater Sci (2016) 51:6133–6148
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U ¼ XAl

d ln aAl
dXAl

¼ d ln aAl
d lnXAl

; ð9Þ

aAl is the activity of Al in Ni3Al, S is the vacancy wind

factor [64], and the superscript c0 on XeAl has been

dropped as no longer needed. Fortunately, D�
Ni,

~D ,

and aAl have all been measured at high temperatures

(1400–1600 K). Estimates of these parameters at the

lower temperatures of the experiments on coarsening

involve extrapolations over a large range of T, but

there is no other option. DAl is taken as the diffusion

coefficient approximately equal to DIAl.

We first consider the measurements of D�
Ni repor-

ted in several investigations [65–69]. The activation

energies and pre-exponential factors for tracer diffu-

sion in Ni3Al, Q�
Ni , and D�

0;Ni, respectively, are shown

as functions of composition in Fig. 3. With the

exception of 2 data points from the work of Hoshino

et al. [67], both quantities pass through a sharp

maximum at around XAl = 0.24. The maxima in Q�
Ni

and D�
0;Ni have been discussed by Shi et al. [69], but

there is no convincing argument for their existence.

Whatever the reason, there is little doubt that both

quantities decrease from their maxima for XAl\ 0.24.

Chemical diffusion in Ni3Al has been measured as a

function of composition by Fujiwara and Horita [32],

the activation energies, and pre-exponential factors

for which ~Q and ~D0, respectively, computed from the

results shown in their Fig. 3, are shown in Fig. 4. Both

quantities decrease with the increasing XAl.

To proceed, we need to estimate the activity of Al

in Ni3Al as a function of composition, and to this end

select the data of Hilpert et al. [70]. Their data,

organized by Ikeda et al. [71] is reproduced in Fig. 5a,

where it is seen that the relationship between log aAl

and XAl is linear to a good approximation at 1400,

1500 and 1600 K. The temperature dependencies of

aAl are of the Arrhenius type at any given composi-

tion [71], and hence, the activities of Al in Ni3Al at

898 and 988 K can be evaluated from Arrhenius plots

to extrapolate the activities to the lower temperatures

relevant to this work. This is done for XAl = 0.23, 0.24

and 0.25, leading to the results shown in Fig. 5b.

Assuming that the relationship between log aAl

and XAl at 898 and 988 K is linear at low tempera-

tures, as it appears to be at high temperatures

(Fig. 5a), all the input needed to calculate DAl as a

function of composition at these two temperatures

becomes available.

The calculations of DAl are done for four compo-

sitions, using the data of Hoshino et al. [67]

(XAl = 0.2384) and the data of Shi et al. [69]

(XAl = 0.230, 0.235, and 0.240) on Q�
Ni and D�

0;Ni in

Fig. 3 to first calculate D�
Ni. The intrinsic diffusivities

of Ni in Ni3Al, DNi, are then readily calculated using

the relationship DNi ¼ UD�
Ni (assuming for now that

S = 1), using Eq. (6) to calculate U from the linear

equations relating log aAl and XAl at 898 and 988 K.

The chemical diffusion coefficients at these tempera-

tures are then estimated from the values of ~Q and ~D0

shown in Fig. 4, and, finally, DAl is calculated using

Figure 5 a Plots of the activity of Al, aAl, versus concentration,

XAl, in Ni3Al at the 3 temperatures indicated, taken from the work

of Hilpert et al. [70] and Ikeda et al. [71]; b Arrhenius plots of aAl,

for XAl = 0.23, 0.24, and 0.25. The activities of Al as functions of

composition are indicated by 1 symbols.
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Eq. (8). The values of all the parameters are shown in

Tables 1, 2 for the two aging temperatures of interest.

The magnitude of S is difficult to determine over

the full range of compositions and temperatures rel-

evant to these estimates, but it is possible to estimate

its importance using the tracer diffusivities of Al [72]

and Ni [73] and the calculations of Belova and Murch

[74], who report values of S as functions of the ratios

D�
Al

�
D�

Ni and D�
Ni

�
D�

Al. At 898 and 988 K, the relevant

ratios D�
Ni

�
D�

Al are 0.51 and 0.91. For XAl = 0.23,

S & 1, justifying the assumption used in the

calculations.

To see how well this conjecture works, the data on

DAl and in Tables 1, 2 are plotted in Fig. 6 as log DAl

versus log (XAl-XeAl), presupposing that DIAl & DAl

a relationship of the type

DAl � D̂ðXAl � XeAlÞm; ð10Þ

where m satisfies the condition 0\m\ 1 and D̂ is a

constant. The concentration differences are estimated

using the equilibrium values of XeAl at the two aging

temperatures (XeAl = 0.22948 at 898 K and 0.22689 at

988 K), calculated using the equilibrium c solvus

curve of Ma and Ardell [75]. It is evident in Fig. 6 that

the relationships are not linear, but it is also quite

apparent that the slopes of the curves diminish to

values smaller than unity as XAl approaches XeAl. If

the data are fitted to a parabola, the slopes at the

smallest values of XAl (=0.23) are approximately 0.9

and 0.3 at 898 and 998 K, respectively; the dashed line

shown in the figure has a slope m = 0.4. Strictly

speaking, Eq. (10) cannot be correct in the limit

XAl = XeAl, because DAl approaches zero, which is

clearly an impossible result. However, it takes a very

long time during coarsening to reach thermodynamic

equilibrium, and hence, Eq. (10) is a realistic

approximation under typical experimental condi-

tions, where XAl-XeAl is the order of 10-4. Consid-

ering that the complexity of trans-interface diffusion

in a polydisperse assembly of precipitates is difficult

to capture in a single equation, the utility of Eq. (10)

is rationalized due to its simple form and ready

Figure 6 Plots of the logarithm of the intrinsic diffusion coeffi-

cient of Al in Ni3Al, DAl, versus the logarithm of the difference

between the concentrations of Al in hypostoichiometric Ni3Al,

XAl, and the concentration in equilibrium with the c (Ni–Al) solid
solution, XeAl, at 2 temperatures of interest. The curves shown are

not fitted to the data, but serve as a guide to the eye. The dashed

line has a slope, m = 0.4, which leads to the temporal exponent

n = 2.4 used in [36].

Table 1 Values of the parameters used in the calculations of DAl at 898 K in conjunction with XeAl = 0.22948

XAl D�
Ni (m

2/s) U DNi (m
2/s) ~Q (kJ/mol) ~D0(m

2/s) ~D (m2/s) DAl (m
2/s)

0.2300 1.795 9 10-21 28.941 5.196 9 10-20 280.021 5.307 9 10-4 2.730 9 10-20 1.993 9 10-20

0.2350 8.992 9 10-22 29.570 2.659 9 10-20 254.255 6.196 9 10-5 1.005 9 10-19 1.232 9 10-19

0.2384 1.163 9 10-22 29.998 3.490 9 10-21 242.205 2.376 9 10-5 1.936 9 10-19 2.531 9 10-19

0.2400 7.115 9 10-23 30.199 2.149 9 10-21 236.015 1.427 9 10-5 2.664 9 10-19 3.499 9 10-19

Table 2 Values of the parameters used in the calculations of DAl at 988 K in conjunction with XeAl = 0.22689

XAl D�
Ni (m

2/s) U DNi (m
2/s) ~Q (kJ/mol) ~D0 (m2/s) ~D (m2/s) DAl (m

2/s)

0.2300 6.283 9 10-20 24.001 1.508 9 10-18 280.021 5.307 9 10-4 8.316 9 10-19 6.296 9 10-19

0.2350 3.667 9 10-20 24.523 8.993 9 10-19 254.255 6.196 9 10-5 2.235 9 10-18 2.646 9 10-18

0.2384 7.808 9 10-21 24.502 1.913 9 10-19 242.205 2.376 9 10-5 3.718 9 10-18 4.822 9 10-18

0.2400 5.416 9 10-21 25.045 1.356 9 10-19 236.015 1.427 9 10-5 4.744 9 10-18 6.200 9 10-18
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adaptability to the equations of coarsening. A tem-

poral exponent of 2.4, relevant to c0 coarsening in Ni–

Al alloys, emerges naturally from the condition

n = m ? 2.

The temporal exponent for coarsening is formally

manifested through the Gibbs–Thomson equation for

the precipitate phase, which has the same form as it

does for the matrix phase, i.e.,

XAl � XeAl ¼ ‘c0

r
; ð11Þ

where ‘c0 is the capillary length for the c0 phase,

which is given by the equation [76]

‘c0 ¼
2 �Vc0

Ni 1 � Xc
Al

� �
þ �Vc0

AlX
c
Al

n o
r

DXc=c0

eAl G
00
mc0

¼ 2 �Vm

DXc=c0

eAl G
00
mc0

; ð12Þ

where �Vc0

Ni and �Vc0

Al are the partial molar volumes of

Ni and Al in the c0 phase, G00
mc0 is the curvature of the

Gibbs free energy of mixing of the c0 phase, evaluated

at Xc
e ¼ Xc

eAl. On first substituting Eq. (12) into (11)

and then (10) and ultimately into Eq. (7), the

expression for the growth rate of an individual par-

ticle of radius r becomes

dr

dt
¼ 2rVmD̂

dðDXc=c0

eAl Þ
2G00

mc

2r �Vm

DXc=c0

eAlG
00
mc0

( )m
1

rm
1

r�
� 1

r

� �
ð13Þ

Following established procedures [14, 36] to gen-

erate the equations describing the variations of hri
and XAl with aging time, we arrive at Eqs. (2) and (3),

with the rate constants kT and jT expressed as

kT ¼ 2ðn� 1Þr
n

� �ðn�1Þ huinVm
�Vn�2
m D̂

dðDXc=c0

eAl Þ
nG00

mcðG00
mc0 Þ

ðn�2Þ

" #

ð14Þ

and

jT ¼
ðn � 1ÞG00

mc

nVm

� �ðn�1Þ �Vm

G00
mc0

" #ðn�2Þ
D̂

2dr
ð15Þ

On dividing Eq. (11) by (12) and solving for r, we

obtain the result

r ¼
G00

mcDX
c=c0

eAl

2huiVm

kT
jT

� �1=n

; ð16Þ

which is exactly the same equation derived previ-

ously [36] assuming that d rather that DIAl depends

on r. In other words, treating diffusion as is done

herein has no impact at all on the values of r

extracted from data on coarsening. It also has no

impact whatsoever on the PSDs, which are governed

by Eqs. (4) to (6) [35, 36].

Discussion

The coarsening of c0 precipitates in Ni-X
alloys

The results and analyses presented in ‘‘The role of

concentration-dependent diffusion in Ni3Al’’ section

demonstrate convincingly that a non-integer tempo-

ral exponent, n, satisfying the condition 2 B n B 3

arises naturally from the concentration dependence

of diffusion in Ni3Al. There is therefore no need to

invoke a size-dependent interface width to account

for the non-integer value of n = 2.4 previously

reported for this alloy. Although not as extensively

investigated, the aforementioned absence of an effect

of fe on coarsening behavior in Ni–Ga, Ni–Ge, Ni–Si,

and Ni–Ti alloys, and for that matter in ternary Ni–

Al–Cr alloys, naturally leads to the expectation that

the explanation for this finding is identical in those

alloy systems.

Of the 5 binary Ni-X alloys, diffusion in the Ni3X

phases has been measured as a function of solute

concentration only in Ni3Ga and Ni3Ge. The L12

crystal structure of Ni3Ti is metastable, so diffusion in

it cannot be measured. The L12 crystal structure of

Ni3Si is stable only below *1130 �C [77], thereby

rendering measurement of diffusion of Si in Ni3Si by

conventional methods very difficult; no such mea-

surements exist. There have been measurements of

diffusion as a function of concentration in ternary

Ni3(Al,Cr) alloys, but there are not enough data to

extrapolate to the low temperatures and c0 concen-

trations in the coarsening regimes. Of the Ni3Ga and

Ni3Ge phases, there is convincing evidence that both

chemical and intrinsic diffusion of Ga in Ni3Ga

increases with increasing solute concentration at low

temperatures [78–80], therefore mimicking the

behavior of diffusion in Ni3Al. The data on the dif-

fusion of Ge in Ni3Ge are more limited. Komai et al.

[81] report that ~D in Ni3Ge increases rapidly with

increasing Ge content at temperatures below

*970 �C, and Numakura et al. [62] report similar

behavior at *920 �C. However, the tracer diffusion

coefficient, D�
Ge, decreases with the increasing Ge

concentration at T[ 920 �C. Unfortunately, the

J Mater Sci (2016) 51:6133–6148 6141

Author's personal copy



concentration dependence of the intrinsic Ge diffu-

sion coefficient cannot be predicted without knowl-

edge of the thermodynamic factor, which has not

been determined for Ni3Ge. The very strong con-

centration dependence of ~D suggests that the intrinsic

diffusivities of both components (DNi ¼ D�
NiUS and

DGe ¼ D�
GeUS) should increase similarly through the

concentration dependence of U. It therefore seems

safe to conclude that the coarsening of c0-type pre-

cipitates in binary Ni-X alloys is controlled by diffu-

sion through the c/c0 interface, with temporal

exponents satisfying n\ 3, and with no effect of

volume fraction and no need to invoke precipitate

size-dependent interface widths to account for the

kinetics or predicting the PSDs.

Turning now to the volume fraction dependence of

c0 coarsening measured by Lund and Voorhees [22], it

is important to contextualize the circumstances

involved in their measurements. They investigated

very late-stage coarsening of large c0 particles that

were far from their equilibrium shapes; elastic inter-

actions had already intervened to produce primarily

plate-shaped or lath-shaped particles. They did not

measure hri as a function of t but instead measured

surface area per unit volume as the most convenient

and accessible metric of particle size. Measuring

PSDs under these circumstances is out of the ques-

tion. Ardell and Ozolins [14] pointed out that when

the condition r � dD c
Al

�
DIAl, where D c

Al is the coeffi-

cient of solute diffusion in the matrix phase, the

coarsening behavior becomes matrix diffusion con-

trolled. The physical reason for this is that when the

particles are very large, the concentration gradients in

the matrix become so small that diffusion of solute in

the matrix is actually slower than it is through the

interface. An estimate of the particle radius at the

transition from trans-interface to matrix diffusion

control, rT, is simply rT � dD c
Al

�
DIAl. Taking

d = 2 nm and D c
Al

�
DIAl = 0.05 as representative val-

ues, rT & 100 nm. This might seem like a small par-

ticle size, but it is nearly an order of magnitude larger

than the largest non-agglomerated average particle

radius reported by Ardell and Nicholson [82]

(hri = 17.3 nm). From their published figures, it is

easy to see that the average ‘‘diameters’’ of the c0

precipitates measured by Lund and Voorhees [22] are

between 0.5 and 1 lm, which is far in excess of rT.

This provides clear rationalization for the assertion

that there is no contradiction between the results of

Lund and Voorhees and the predictions of the TIDC

theory.

Relationship to coarsening in systems
with highly disparate diffusion mobilities

We consider here the connections between the results

in this work on coarsening and diffusion in c/c0

alloys and theories and computational simulations

that predict temporal exponents[3. Langer et al. [47]

suggested that a concentration-dependent mobility,

M(X) = K(1-X2), satisfies the conditions specified by

Cahn and Hilliard for describing the free energy of a

compositionally non-uniform system [83]; K is a

temperature-dependent constant. Langer et al. did

not pursue this suggestion mathematically but noted

that the kinetics in late stages of spinodal decompo-

sition could be seriously impacted at concentrations

approaching X & 1. Kitahara and Imada [53] and

Kitahara et al. [48], using a similar expression for the

mobility, M = K(1-bX), where b is a constant,

showed that if bX & 1, diffusion in the minority

phase during late-stage coarsening becomes very

slow and that the temporal exponent becomes n = 4.

They allege that interface diffusion dominates the

kinetics. The computer simulations of Lacasta et al.

[52] further explored the influence of b on the tem-

poral exponent and showed that in the late stages of

coarsening, n can actually approach *4.5 as b
approaches unity. Bray and Emmott [50] explored the

effect of a mobility satisfying the equation

M(X) = K(1-X2)a, where a is an exponent satisfying

the condition a C 1, and showed theoretically that the

temporal exponent becomes n = 3 ? a during late-

stage coarsening. It should be noted that all these

theories utilize a ‘‘double-well’’ free energy function

of the form G(X) � (1-X2)2, with minima at X = ±1.

Sheng et al. [54] explored the impact of several

different concentration-dependent mobilities,

including those mentioned above, and concluded

that temporal exponents of n & 3.35 are characteris-

tic of late-stage coarsening whenever the mobility in

the precipitate phase is much smaller than that in the

matrix phase, actually approaching zero. They cited

the data reported in Fig. 1 of a paper by Seidman

et al. [84] as experimental evidence supporting the

results of their computer simulations, using the

knowledge that diffusion in the ordered c0 precipi-

tates in a ternary Ni–5.2Al–14.2Cr (at.%) alloy is

much slower than in the matrix. Similar to their
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predecessors, Sheng et al. [54] attributed their find-

ings to interface diffusion-controlled coarsening.

Inspired by the simulations of Sheng et al., Dai and

Du [85] mathematically examined the implications of

a dimensionless mobility M* = 1 ? u, where u is a

dimensionless concentration that satisfies –1 B u B 1,

so that for u & –1 in the precipitate phase M* ? 0.

They did not report the temporal exponent for this

model but affirmed the findings of Sheng et al. Dai

and Du [55] subsequently performed detailed math-

ematical and computational studies of the impact of

three different dimensionless mobility expressions,

M* = 1, M* = |1-u2| and M* = |1 ? u|/2, on late-

stage coarsening behavior. Constant mobility,

M* = 1, always produces a temporal exponent n = 3,

but for M* = |1-u2|, the temporal exponent is n = 4

for late-stage coarsening. They suggested that a

temporal exponent between 3 and 4 might be a con-

sequence of transient ripening behavior.

These theoretical and computational findings beg

the question of the relevance of the TIDC theory. To

be clear, the phase diagrams in the alloy systems

investigated computationally all have miscibility

gaps. The diffusional mobilities of the components

are treated as highly disparate using the types of

functions mentioned above. Initial phase separation

occurs by spinodal decomposition, tracked by solu-

tion of the Cahn–Hilliard equation in 2 dimensions,

and allowed run for long times until the late stages

are reached at which time coarsening is the dominant

mode of particle growth. The kinetics in these simu-

lations is inevitably governed by an equation with the

form of Eq. (2), but with n[ 3 and sometimes

exceeding 4. It is obvious that there is no conceivable

compatibility between these simulations and the

TIDC theory. The connection between slow diffusion

in the precipitate phase and interface diffusion con-

trol espoused by the works of these authors [48–50,

52, 53, 55, 85] further compromises the TIDC theory.

To make sense of the basic tenets of the TIDC theory

in the face of these findings, we need to look more

closely at the general framework of phase transfor-

mations, diffusion and thermodynamics, as physical,

rather than mathematical and computational,

concepts.

Consider first diffusion in the real Ni–Al alloy

system. In this regard most of the work has already

been done in ‘‘The role of concentration-dependent

diffusion in Ni3Al’’ section. The general equations of

coarsening in the absence of spinodal decomposition

in particular, and unstable solid solutions in general,

involve solutions to Fick’s laws using diffusion

coefficients, not mobilities. But the theoretical and

computational modeling efforts which predict tem-

poral exponents satisfying 3 B n B 4 when diffusion

in the precipitate phase is very sluggish invariably

use mobilities, so it seems worthwhile to calculate the

mobilities in the c and c0 phases for the two temper-

atures of interest in this work. M is expressed by the

equation

M ¼ ð1 � XÞD�
Al þ XD�

Ni; ð17Þ

which is the coefficient of US in Eq. (8); Eq. (17)

applies to both the c and c0 phases. To estimate M for

the c phase, the chemical diffusion coefficients, ~D, as

functions of composition at 898 and 988 K were cal-

culated using the activation energies and pre-expo-

nential factors reported in Table 1 of Watanabe et al.

[33]; the EPMA results exhibit less scatter and so were

favored in this analysis. To calculate M from ~D; it is

necessary to know the thermodynamic factor U.

These were obtained using the formula U ¼ RgTG00
mc

(Rg is the gas constant) after calculating G00
mc using the

procedures described in [37], which are based on the

thermodynamic model of Ansara et al. [86]. The

vacancy wind factor, S, is ignored in these

calculations.

The mobilities in the c0 phase were calculated using

the data presented in Tables 1 and 2. It was necessary

only to calculate D�
Al from the values of DAl shown in

the 8th columns using the formula D�
Al ¼ DAl=U. The

mobilities as functions of concentration are shown in

Fig. 7. It is immediately evident that the mobility

functions used in all the theoretical and computa-

tional efforts bear no resemblance whatsoever to the

mobilities shown in Fig. 7. In particular, what is

lacking physically in all the theoretical and compu-

tational work is the variation of M through the c/c0

interface. It is also evident that the mobility in the c0

phase at both temperatures is *15 times smaller than

that in the c phase. Since the c/c0 interface is diffuse,

it would seem that any model of coarsening in this

alloy system that fails to take into account the vari-

ation of M through the interface cannot possibly

capture the physics of coarsening in Ni-based c/c0

alloys. It follows that all claims that late-stage coars-

ening is represented by a temporal exponent satis-

fying 3 B n B 4, specifically because diffusion is

interface controlled when M in the minority phase is
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very sluggish, cannot be correct. In fact, doubts have

been raised recently [87–89] about the assertions that

interface diffusion control governs late-stage coars-

ening with mobilities of the type M* = 1-u2, even in

the sharp interface limit.

What then to make of the claim that the computa-

tional results of Sheng et al. [54], and by implication

those of Dai and Du [55, 85], are supported by the

temporal exponent n = 3.3 taken from the data

reported by Seidman et al. [84] in Fig. 1 of their

paper? Sheng et al. [54] simply used the reciprocal of

the slope of the log–log plot of hri versus t (n = 1/

0.3 = 3.33) to lend credence to their computer simu-

lation results which show that n tends to a value of

about 3.35 as M in the precipitate phase approaches

zero. It probably does not go without saying, but

should, that accepting the validity of temporal

exponents obtained from log–log plots of experi-

mental data on coarsening is exceptionally poor

practice. To illustrate this, we examine here the same

set of data that appears in Fig. 1 of [84]. The original

data were published by Sudbrack et al. [90], who

tabulated their results, greatly simplifying all subse-

quent re-evaluation. We analyze here the data on hri
versus t from 4 to 1024 h, which are in the coarsening

regime (with the possible exception of the datum for

4 h of aging time) and are the same data seen in the

log–log plot, Fig. 1 of [84]. There are two paths

toward evaluating n in Eq. (2): Method 1 acknowl-

edges the fact that hroi is simply an essentially

insignificant and ignorable constant of integration

that arises from the integration of Eq. (1); Method 2

attributes physical significance to hroi as a meaning-

ful value of hri at the onset of coarsening. The latter

method then requires a multivariate non-linear

regression analysis of the same data with hroi, kT, and

n as free parameters. This unfortunately imparts to

hroi a significance that it does not deserve because in

fact hroi is unknown, as is the aging time at the onset

of coarsening, and completely needlessly affects the

analysis of the data.

In using Method 1, it is necessary only to plot hrin
versus t for different values of n and select the ‘‘best’’

value of n from the plot that produces the best fit to

the data, judged from the value of the correlation

coefficient R2. The data of Sudbrack et al. [90] are

plotted this way in Fig. 8a for n = 2.15, which pro-

vides the best fit of the data. The values of R2 versus

n are inset in this figure. The multivariate non-linear

regression analysis of the same set of data produced a

value of n = 2.87; the data plotted using this value of

n are shown in Fig. 8b. Two conclusions can be

drawn from the data shown in Fig. 8. The first is that

the assertion of Sheng et al. [54] that n[ 3 when the

mobility within the c0 phase is very small is com-

pletely unsupported by proper analysis of the data;

indeed, the slope of the log–log plot of hri versus t in

Fig. 1 of [84] is not only misleading but is also

meaningless. The second conclusion is that Method 1

produces a much better fit to the data than Method 2;

Figure 7 Mobilities in the c and c0 phases as functions of

concentration, XAl, in Ni–Al alloys at two temperatures: a 898 K;

b 988 K. The filled squares represent the calculations using the

data of Watanabe et al. [33], and the filled circles represent the

calculations using the data in Tables 1, 2. The shaded region in

each figure represents the 2 phase c ? c0 region of the Ni–Al phase
diagram at 898 and 988 K, respectively. The mobilities are plotted

on logarithmic scales.
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this is obvious simply by looking at the two plots in

Fig. 8. It is probably not apparent, but the value of kT
obtained using Method 1 is much more meaningful

than that obtained using Method 2, simply due to the

superior fit to the data.

There are other important points to be made in

assessing the results in Fig. 8. Within the framework

of the TIDC theory, the most meaningful value of n is

obtained from fitting the PSDs, as was done for c0

coarsening in ternary Ni–Al–Cr alloys [39] using

PSDs measured by Chellman and Ardell [15] and

Jayanth and Nash [91], because in a large set of

experimental data on hri versus t for alloys of dif-

ferent composition, plots of hrin versus t will always

produce different values of n. Values of n determined

from such plots, exemplified in Fig. 8a, are not nec-

essarily representative of the entire set of data. It is

also important to note that the values of R2 inset in

Fig. 8a are all very close to unity, which means that

nearly any fit to these data could easily be proclaimed

as excellent. This only reinforces the point that n is

best determined from fitting the PSDs. Finally, it

should be obvious on viewing the data in Fig. 8 that

all fits to the data reported by Seidman and his co-

workers [43, 90, 92] on the kinetics of growth of c0

precipitates in ternary Ni–Al–Cr alloys are domi-

nated by the value of hri at the longest aging time,

which is another reason why all the values of R2 are

close to unity. This is primarily a consequence of

inadequate experimental practice, where the aging

times appear to have been chosen to produce more-

or-less equal intervals in log–log plots, such as the

one in Fig. 1 of [84]. On the other hand, when aging

times are chosen experimentally at approximately

equal intervals, similar to the data of Chellman and

Ardell [15] and Jayanth and Nash [91], the exponents

obtained from measurements of hri versus t are not

dominated by the largest value of hrin, irrespective of

the magnitude of n, and the rate constants extracted

from such data are far more reliable.

Conclusions

The diffusivity of Al in Ni3Al depends strongly on

XAl and is more than an order of magnitude slower

than it is in the Ni–Al solid solution matrix. Assum-

ing that the transport of Al through the c/c0 interface

is controlled by the near-precipitate region in the

interface, its concentration dependence has been

shown to account formally for the non-integer kinetic

exponents of c0 particle coarsening in the framework

of the TIDC theory. It is therefore possible to fully

reproduce all the features and predictions of the

TIDC theory without invoking a particle size-de-

pendent interface width. This is consistent with the

absence of an effect of fe on coarsening kinetics in

normal Ni–Al alloys and, by implication, in other Ni-

based c/c0 alloys, as well as the considerable effects of

fe on c coarsening in inverse alloys. Since a detailed

Figure 8 The data of Sudbrack et al. [90] on a Ni–5.2Al–14.2Cr

(at.%) alloy aged at 873 K plotted as average particle radius, hri,
raised to the nth power, versus aging time, t. a n = 2.15;

b n = 2.87. The correlation coefficient, R2, plotted versus n is

shown in inset of (a). The fit in (b) is the result of a multivariate

non-linear regression analysis of the same data using Eq. (2) with

hroi, kT and n as free parameters.
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expression for the concentration dependence of the

diffusion coefficient does not enter Eq. (16), the

magnitude of the interfacial free energy, r, can be

derived as shown previously [37]. The work pre-

sented in this paper provides a semi-empirical, but

rigorous, explanation for the non-integer temporal

exponents that allow the kinetics of coarsening of c0

precipitates in Ni-based alloys, and the PSDs, to be

explained by the TIDC theory.

The TIDC theory is at odds with numerous com-

putational and theoretical results that predict tem-

poral exponents exceeding n = 3 in systems

characterized by sluggish diffusional mobilities in the

minority phase. This is rationalized by noting that

equations for the mobility used in those theories and

computational efforts bear no resemblance at all to

real mobilities in Ni–Al alloys and furthermore do

not take the mobility through the interface into

account. It is shown that when extant data are ana-

lyzed properly, there is no experimental support for

temporal exponents exceeding n = 3.
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