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Abstract— We present the design and development of dual 
polarized aperture coupled stacked patch antennas with 
substrate embedded air cavities. The antennas, targeted for 
operation in the W-band (75 – 110 GHz), are realized in a multi-
layer organic hybrid substrate utilizing both Kapton and Liquid 
Crystal Polymer (LCP). Balanced and unbalanced feedlines are 
investigated in order to improve isolation and mitigate coupling 
between orthogonal polarized ports. Measured results for the 
single antenna element show good performance with a 
beamwidth of 90º and a 2.6:1 VSWR bandwidth of 23 GHz, and 
isolation of better than 17.8 dB. An 8-element linear array is also 
designed, fabricated and tested. The antenna array achieves a 
beamwidth of 13º with a 2.3:1 VSWR bandwidth of 7.2 GHz. 
Pattern measurements were achieved utilizing a millimeter-wave 
diode detector circuit implemented directly on the antenna 
substrate.      

 
Index Terms— Liquid crystal polymer, antenna-in-package, 

aperture-coupled patch antennas, wide bandwidth, phased-array 
antennas. 

I. INTRODUCTION 

 
HERE has been a major effort in recent years to develop 
integrated millimeter-wave radio systems. Part of the push 

has been because of the development of high capacity wireless 
mobile backhauls which operate in the licensed E-Band (71 – 
76 GHz). Recent advances in silicon technology have made 
possible the realization of multi-antenna phased array radios 
which are low in cost and small in size [1] – [5]. As there has 
been advancement in integrated radios, there has also been 
progress in the development of millimeter-wave antennas. It 
has been seen that antenna designs for highly integrated 
millimeter-wave radios have shifted from discrete 
implementations to chip-scale implementations [6]. This is 
largely due to the reduced wavelengths at these higher 
operating frequencies.  
 Generally two methods are adopted for chip-scale 
antennas. The first is to build the antennas directly onto a 
millimeter wave integrated circuit (MMIC) substrate. Slot-ring 
and microstrip type antennas operating in the W-band (75 – 
110 GHz) on a silicon substrate have been reported in [7] – 
[11]. In these implementations, a quartz superstrate lens or  
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etched horn extensions must be utilized in order to improve 
the gain. The second method is to implement the antennas on a 
package level, leveraging organic substrate materials which 
are more optimal for antenna performance. Zhang et al. 
investigated antenna-on-chip (AoC) and antenna-in-package 
(AiP) solutions for 60 GHz radios with the conclusion that 
AoC suffer from low efficiencies due to high permittivity of 
the silicon substrate rendering AiPs a more desirable solution 
[12]. Following this work, Liu et al. demonstrated several AiP 
concepts for 60 GHz radios which utilize low permittivity 
organic substrate materials in order to demonstrate wideband, 
high gain, and high efficiency antennas [13] – [15]. Two 
performance metrics which are critical for millimeter-wave 
antennas are their bandwidth and efficiency. In order to 
achieve wide bandwidths, substrates with either low dielectric 
constants or thick dielectric layers must be used [16]. 
Substrate embedded air cavities have been explored in [17], in 
order to improve the bandwidth and efficiency. Stacked patch 
topologies have been investigated in [18] to further improve 
the bandwidth, even up to the W-Band [19]. The ability to 
support dual polarizations can also be very desirable. For these 
applications, high isolation between orthogonal feeds and low 
cross-polarization is very important. Methods utilizing balun 
feeds [20] have shown to achieve very high isolation while 
maintaining low cross-polarization levels.  
 This paper presents for the first time the development of 
dual polarized, millimeter-wave aperture coupled stacked 
patch antennas with substrate embedded air cavities. The use 
of liquid crystal polymer (LCP) is leveraged because it is light 
weight [21], near hermetic [22], flexible allowing for 
conformal designs [23], has a low permittivity and loss 
tangent stable up to 110 GHz [24], and finally has the ability 
to support 3D integration [25]. The single antenna achieves a 
measured beamdwidth of 90º with a 2.6:1 VSWR bandwidth 
of 23 GHz, covering the 74 – 97 GHz frequency range, the 
widest bandwidth reported to date. In simulation, the antenna 
achieves >90% efficiency. This work is also extended to 
realize an 8-element linear array which achieves a measured 
beamwidth of 13º and a 2.3:1 VSWR bandwidth of 7.2 GHz, 
covering the 85 – 92 GHz frequency range.  

 Section II will discuss the design of the single antenna 
including the printed circuit board (PCB) stackup, two types 
of feed-line structures, and finally simulation and 
measurement results. Section III will discuss the radiation 
pattern measurement setup and experimental results for the 
single antenna. Section IV will discuss the design of an 8 
element linear array and the associated measurement results. 
Finally, a summary and conclusion is given in Section V.  
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TABLE I 
ANTENNA PARAMETERS 

 
 

 
Fig. 3. Simulated reflection coefficient varying the driven and parasitic patch 
sizes. 
 

 
Fig. 4. Simulated reflection coefficient varying the slot length and open stub 
length. 

 
each of the cases is approximately the same; however the dual 
resonances is clearly most distinct when the dimensions are 
exact (L1 = 0.8 mm, L2 = 0.94 mm). 30 μm steps were used as 
that reflects the absolute minimum tolerance for the PCB 
process. We also considered the slot length and the length of the 
open stub feedline. Parametric simulations are shown in Fig. 4. 
As can be seen, the resonant frequencies can be shifted 
primarily with the length of the open stub feedline. When the 
stub length exceeds 0.25 mm, the return loss degrades and 

 

 
 
Fig. 5. Simulated reflection coefficient varying the cavity height.  

 
 
Fig. 6. Simulated reflection coefficient varying patch offset. 
 

 
bandwidth is reduced. An analysis of the cavity height was 
also performed; this is shown in Fig. 5. As can be seen, this is 
one parameter for which the antenna is extremely sensitive to. 
The optimal height is 203 μm, and as the height is reduced, the 
10 dB return loss bandwidth is also reduced. When the cavity 
is completely filled, the majority of the power is reflected 
instead of being radiated. Table I shows the optimized 
parameters for each of the antennas. Using these optimized 
dimensions we also considered the effects of alignment offsets 
to the square patches. Fig. 6 shows the simulated reflection 
coefficients when an offset is added in the x-axis and y-axis 
respectively. Even in the most severe circumstance, with a 50 
μm offset in both directions, the bandwidth of the return loss 
remains fairly constant.  

In this design, an interleaved Kapton and LCP dielectric 
material is adopted for the superstrate layer.  The reason being 
that during lamination, LCP has a tendency to flow, therefore  
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                                                    (a) 

 
                                                    (b) 
 
Fig. 17. Measured and simulated radiation patterns for the horizontal 
polarization in the H-Plane at (a) 95 GHz (b) 105 GHz 

 
 
from ±90º. It is observed that at angles greater than 65º, the 
radiation pattern has a steep drop-off. This is mainly attributed 
to scattering effects from various metal surfaces that are 
present in the table-top setup and low antenna efficiency. The 
main drawback of this method is that the absolute gain cannot 
be measured. The simulated gain of the antenna at 95 GHz and 
105 GHz are 7.25 dBi and 8.21 dBi respectively.  E-plane 
patterns are not presented as the radiating patch is a symmetric 
structure.  

IV. LINEAR ANTENNA ARRAY  

 
Based on the high isolation antenna design, an 8-element 

linear array was fabricated. Utilizing 7 T-junction power 
combiners, a corporate feed network was design for both the 
vertical and horizontal polarizations. An antenna inter- 
elemental spacing of λo/2 was utilized to emulate phased 
arrayconditions where grating lobes would be minimized. Fig. 
19 shows the fabricated antenna array with CPWG launches 
which are utilized to measure the antenna array. The array was 
probed in a similar fashion as described in Section II, where 

 
                                                    (a) 

 
                                                        (b) 
 
Fig. 18. Measured and simulated radiation patterns for the vertical polarization 
in the H-Plane at (a) 95 GHz (b) 105 GHz 
 

 
absorber foam was placed beneath the array in order to 
suppress effects of the metal chuck. The loss of a microstrip 
transmission line is approximately 1 – 1.5 dB/cm across the 
W-band [24]. 
  Fig. 20 shows the measured s-parameters of the antenna 
array. It can be seen that the S11 is better than 10 dB from 84 – 
92 GHz. The S22 shows a similar behavior being better than 10 
dB from 84 – 90 GHz. The deviation is mainly attributed the 
measurement setup on the RF probe station, which lacks 
mechanical stability due to the absorber foam. It is also 
acknowledged that the Kapton adhesive layer thickness, which 
bonds the air cavity superstrate together, can change after 
lamination as much as 50% [13], leading to an uneven thickness 
profile across the array. Finally, the measured isolation 
between the vertical and horizontal polarization is better than 
17 dB across the entirety of the W-band. Fig. 21 shows the 
measured and simulated H-plane radiation patterns in the 
horizontal polarization at 95 and 105 GHz. Simulated radiation 
patterns for the array were completed using the finite array 
synthesis from the single antenna element in HFSS. All pattern 
measurements of the linear array correlate well with  
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Fig. 21. Measured and simulated radiation patterns of the antenna array for the 
horizontal polarization in the H-Plane at (a) 95 GHz (b) 105 GHz 
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