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Stability of annular equilibrium of energetic large orbit ion beam

H. Vernon Wong, H. L. Berk, R. V. Lovelace,® and N. Rostoker®
Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 4 March 1991; accepted 1 July 1991)

The low-frequency stability of a long thin annular layer of energetic ions in a background
plasma with finite axial and zero azimuthal magnetic field is studied analytically. It is found
that although the equilibrium is susceptible to the kink instability, low mode number
perturbations can be stabilized in the limit of V;/N, —0 when the current layer is close to the
maximum field-reversal parameter. A brief discussion of the tearing mode stability criteria of
such strong current layers with respect to the placement of conducting walls is also presented.

I. INTRODUCTION

A long field-reversed configuration of energetic large
orbit ions embedded in a charged neutralizing background
plasma has been proposed as the basis of a fusion reactor.’
The energetic ion component consists of a mixture of deuter-
ium and tritium ions having similar velocities and thus dir-
ected energies of ~400 and ~ 600 keV, respectively. The
energetic ions move in roughly circular orbits with radial
betatron oscillations within an annular layer about the axis
of symmetry. The azimuthal current of the energetic ions is
large enough to produce reversal of the axial magnetic field
B(r) on theinside of the annulus. Because of the rapid varia-
tion of B within the annulus the deuterium and tritium orbits
overlap. The “temperature’” associated with the radial beta-
tron oscillations is of the order of 50 keV. The fusion energy
cross section for D-T fusion is near its maximum value at
these energies. The energetic ion density, N, ~ 10"/cm?, is
assumed to be several orders of magnitude larger than the
background ion density, N, ~10'2/cm?, in order to reduce
background plasma drag of the energetic ions. The back-
ground electrons provide charge neutralization and are also
hot in order to reduce electron drag. For the mentioned par-
ameters, the fusion time is of the order of 10 sec. If the ener-
getic ion “lifetime” exceeds the fusion time, an energy multi-
plication factor

_ (Fusion probability) (Fusion energy per reaction)

o Initial ion beam energy

of about 20 is achievable. For such values of F, it is possible
to have a modest size fusion reactor without ignition. The
energetic ion layer can be maintained by repetitive injection
pulses from a series of ion diodes.

A critical issue for the proposed system is the low-fre-
quency stability of the equilibrium configuration. Annular
equilibria produced by relativistic electrons embedded in a
dense plasma, the well-known Astron system, have been
generated and observed to exhibit a low-frequency preces-
sional instability predicted by Furth.? This instability is
found to be stabilized by conducting walls.> A number of
further studies have been made of the low-frequency stabil-
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ity of kink modes of high-energy, high-current particle rings
embedded in a dense, low-temperature background plas-
ma.*? In the case of large aspect ratio, circular poloidal
cross-section rings, the kink mode of azimuthal mode num-
ber />1 is found to be stable for Q,; < Q,, where ()4 is the
self-magnetic-field betatron frequency and {1, is the circula-
tion frequency of the ring ions.* For circular cross-section
rings the radial ({),) and axial ({2,) betatron frequencies
are equal (2, =, =Qp). The kink mode /=1 corre-
sponds to a rigid tilting of the ring. For noncircular cross-
section rings the condition for tilt stability is 2, < Q, (Ref.
9). Because (), decreases with increasing axial length of the
ring, while , changes relatively little, the ring tends to be
stabilized by axial elongation. However, even for elongated
rings or layers there may a kink instability with />2. The
condition for stability to these kink modes is 77, <3, where
1, = |[ro/B(ro) ] (B /3r)| is the self-field index'® (r, is
the layer radius). This prediction has been verified in nu-
merical simulation studies.'"'? The above kink stability cri-
terion is necessary but not sufficient, and thus it is not clear
whether a violation of this criterion implies instability. It
may be noted that earlier investigations'® of the stability of
equilibria containing a small component of energetic parti-
cles have found stability “bands” in parameter space despite
violation of the magnetohydrodynamic (MHD) stability
criterion. Further, an essential aspect of the system proposed
by Rostoker and Fisher' is the very low ion density of the
background plasma relative to the energetic ion density,
which is necessary to decrease the drag on the energetic ions.
In this limit, the background ion inertia (which has an im-
portant role in the unstable “kink” perturbations) is negligi-
ble, and therefore the nature of the kink instability is likely to
be changed.

In this paper, we study analytically the low-frequency
stability of a long thin annular layer of energetic ions in a
background plasma with finite axial and zero azimuthal
magnetic field. We consider only flute perturbations in
which there is no variation along the magnetic field. We
focus primarily on kink modes with azimuthal mode
numbers />>2. We find that the equilibrium is susceptible to
the kink instability although low mode number perturba-
tions can be stabilized in the limit of N;/N, —0 and a strong
current layer where almost complete field reversal is
achieved. However, with a strong current layer the system is
susceptible to tearing instability and we therefore present (in
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the Appendix) a brief discussion of tearing mode (/= 0)

stabilization by the placement of conducting walls in close
proximity to the boundaries of the annular layer..

In Sec. II, we derive the approximate Hamiltonian of the

energetic ion beam motion. In Sec. III, we discuss the ener-
getic ion beam response to low-frequency flute perturba-
tions, and we construct a quadratic variational form of the
eigenmode equations. Parallel electric field perturbations

can be neglected, while the parallel magnetic field perturba-

tions within the annular layer are considered to be propor-
tional to the gradient of the equilibrium magnetic field (the

“rigid” displacement approximation) since such perturba-

tions tend to minimize the compressional magnetic energy.
We view the quadratic form as a dispersion functional, and
in Sec. IV we obtain approximate dispersion relations by
substituting appropriate trial functions in the quadratic
form. We find unstable modes in the limit of high- and low-
background ion densities. In Sec. V, we discuss our results
and suggest modifications of the equlhbnum which may lead
to more stable configurations.

Ii. EQUILIBRIUM

We consider an equilibrium configuration consisting of
a long cylindrical annulus of energetic ions encircling the
axis of symmetry and undergoing radial betatron oscilla-

tions in a field-reversed magnetic field (Fig. 1). The energet-

ic ion component is assumed to be charged neutralized by a
cold background plasma. The annular region is bounded by
conducting walls at » = r,, and » = 7, in order to stabilize
I = 0 tearing modes.

A. lon orbits

The equilibrium Hamiltonian of the energetic ion beam
is :

H, _p2/2m,, + pi /Zmb + ¥(pg,r), o (1
where
[pe — (e/c)p(r)]?

2m,r?

F(pgsr) =

is the effective potential. The energy (H,, ) as well as the axial
(p,) and azimuthal (p,) canonical momenta are constants
of the motion. The equilibrium vector potential is
A, = {I/r};b(r)ﬂ and the magnetic ﬁeld is B=B(r)z
where B(r) = (1/r) (dy/dr).

Let dV(py,r)/dr =0 at » = rg. We consider only the
“betatron’ root ' '

[Pe — (e/c);&(rg)] + (e/c)rﬁB(rg)

This equation defines
rg =r3(Pg)-

Thus those ions with energy A, and canonical momenta pg,
P, such that

pr=2m, {Ho — V(pesrg) ] -
=0,
will describe circular orbits of radius 7, about the axis of
symmetry.
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{a)

. [‘ Conducting Walt

energetic ion orbit

{b)

FIG. 1. Annular equilibrinm of beam ions. (a) Cylindrical annulus of ener-
getic ions of radius r, ard thickness A bounded by conducting walls at
r=r,and r = r,.. (b) Crcss section of annulus—betatron orbit of energetic
ions.

If we expand ¥{pe,r) about # = rg, we obtain the fol-
lowing approximate Hamiltonian for ions with small radial
excursions about the betatron radius:

I L 1o = (e/)drp) |?

H, = +
°" 2m, 2m, 2myr g

(r—rﬂ}z

— m, Q5 (75), 2)

where

%) =(0 Zra)
_6? r=rg
Q(7) = eB(r)/mye,
and we have used the identity
o"'rB ﬂ(l"g)

ape m,rg15(rg) '

The radial motion is simple harmonic with frequency
equal to the betatron frequency ,;(75). The equilibrium
orbits may therefore be approximated by

r—rg =6rg sin $, (3a)
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= 5?'3??1,,515 cos ¢, (3b)
d¢
—_ =0 " 3c
& 8 (3c)
8rg)Q 90
40 _9Hy _ g,y ) 5
dt  dp, 2rsQg  Org
2 oging o, (3d)
,

B
where the radial oscillation amplitude 87, is given by

[2e — (e/)P(rs) ]?

mi Q% (8rg)?=2m,H, — p} — =
B

and we assume (8r5/7g)* € 1.

B. Distribution function

We consider the energetic ion beam to be described by
the distribution function

Fy(Hypg) = (rgNy/2mm,)
X6(H, — €,)5(py — po — 6p), (4)
where the beam energy ¢, is related to p, by
€0 = V(posro)
and
ro =rg(po)-

For this distribution function, the equilibrium ion beam
density is

N,r, ° dH,

N=Id3F= o jd dp, L
pFy=—— g‘, Ipe dp oo 7]
XE8(Hy — €)8(ps — po — 6p)
N,r
= io J-dpa 8(ps — Po —6P)®(Pg¢),
(5)

where

|, | = [zmbHO —p; —2m, V(Pe;?')]m;

Do: = 2my€q — 2my V(py,r),

1, P6:>0,

0, pi, <O.
Expanding about p, = p,, r = r,, we obtain for pZ,

Por = 2m, Q(r0) (Pg — Po) — (r—15)’myQp(ro) + -+
Thus, the ion beam density is finite within an annulus of

thickness A,
(r—ry)*<(A72)?

N= [N*”"/ & , (6)
0, otherwise,

O(ps;) = I

where
(A/2)? =28pQ(70)/m, Q% (7)) £r .

The ion beam current Jy, is
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e s =)

myr
(r—rg)* O

~ —fd‘-*p F,,erﬁﬂ(rg)(l + 2!‘5 Q."(ra)

~ — Ner,Q(ry), (A/ry) < (8)'2(Q/Qp). (N

The ion beam is assumed to carry the total current and thus
the magnetic field inside the annulus may be approximated
by a linear variation

B(r) =B(r 7 ) + B(ry) (r—r-),

@
Q(ry)e?
rt>r>r-, (8)
where  w? =4aN,é¥/m,, Q(ry) =eB(ry)/myc,00s
=r,Q(ry),and r *, r ~ are the inner and outer radius of
theannulus (A=r * —r 7). N
We define the field-reversal parameter 6§} to be
8Q=[B(r *) — B(r ~)1/B(r,) = @iroA/?,  (9)

where B(r,) = [B(r *) + B(r ~)1/2. The field-reversal
factor is

E=[B(r*)—B(r —)1/B(r *) =280/(2 + Q).

With field reversal, B(;\ ~) <0 [we adopt the convention
that B(» *)>0] and 60 >2,£> 1.

The equilibrium density of the charge neutralizing back-
ground electrons and ions (assumed to be cold) are ,, NN;
where

N,— +Nb :Ne'

lIl. LINEAR DISPERSION RELATION
A. Perturbed fields

We are interested in the stability of the equilibrium to
low-frequency (@) perturbations with w €c/r,. We consider
flute perturbations with time and azimuthal angular depend-
ence given by ~ ¢~ and we neglect parallel electric field
perturbations.

We find it convenient to choose a gauge in which the
scalar potential # = 0 and the vector potential A is given by

x —_ vg(r)eie's— feot + X(r)eﬂ'@— lwrvr
- [(ﬁ +X)f' +ifp ]e"’“’— wr
ar r
where we express A in terms of field variables &(r) and y(r)
and # and & are unit vectors in the radial and azimuthal
directions, respectively.
The perturbed electromagnetic fields are

ng(i_i_x)effﬂ—fm:’
c \adr

E, = — (wlf /er)e™®— o

B, = — (ily/r)e™ ™",
The magnetic field perturbation is proportional to y while
the curl-free part of the electric field perturbation is due to £.

Inthe vacuumregion,r ~ >r>r.andr, >r>r *,out-
side the annulus of energetic ion beams, the perturbed mag-

=
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netic field (in the limit of low frequency |w?/. Ic| £1) is negli-
gibly small

r? ok Ok
’Y”cﬂrz. ar <o’ |
and the field variable £(») is approximately determined by

19 _ 09t 1I?
o e T rt0 (o
The solution of this equation is
B [(r/r-)f—(r /s = )”]
E=£(r ™) o) :
rT>I>T., (11a)
- [+ /m)' = (r/r )+ /ry)?]
§()=£0r7) TENTEYRCIE ,
ro>r>rt,. (11b)

where £(r) is continuous at r=r*,r- and E(r,) =0,
&(r.) =0, due to conducting wallsat r =r,, r=r..
Inside the annulus, 7 * >7r>7 ~, we assume y(r) to
have the form :
JB
X=X —o—» (12)
ar
where y, is constant. Thus the magnetlc field pcrturbatlon
B, is proportional to 9B /Jr

§z —— 'd,xn _Q"B'_ e!fG-—— m:t'
or

This perturbation is exactly a “rigid” displacemént of the

annulus for / = 1, and corresponds to the equilibrium mag- -

netic field moving with the displacement of the layer. It is

hereafter referred to as the rigid mode approximation.>'* =

The rigid mode approximation can be justified by an
examination of the quadratic variational form of the eigen-
mode equations. It can be shown that in the limit of
Q5> Q%(rg) [@? + 1°0Q%(7) ], the quadratic form is domi-
nated by a “large” term proportional to (dy,/dr)?, or more
physically a “large” term proportional to the magnetic
compressional energy. Thus, to minimize the magnetic
compressional energy, we need to take to lowest order (in
the layer) y, constant independent of r. Because of its com-

plicated structure, we will not write down the complete qua-.

dratic form including terms proportional to (dy,/dr)> In-
stead we take y, to be constant at the outset, and in Sec.
ITI C we construct a simplified quadratic variational form

valid in the limit where thc rigid mode apprommatlon is

applicable.

We also find it convenient to introduce a new ﬁeld vari-
able C, () inside the annulus in terms of which £(») may be
expressed as

E(r) = Co(r) — xorB(r). (13)
Thus inside the annulus
() I9C dB
P = — Yo B — yor—, 14
ar e XTI (%

and the perturbed radial electric field is
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Er = ( _ B e:fﬂ - lcr.!.rI
c \ or Ao

At the boundaries of the annulus

ErE)Y=Co(r*) —yor £B(r *). (15)

We assume (and justify later) that C, (r) varies slowly
inside the annulus: 3C,/dr<C,/A. If this inequality is not
satisfied, the perturbation of the background plasma would
result in large radizl electric fields, and the energy in the
radial electric field would not be minimized.

We now proceed to evaluate the perturbed currents of

the beam and background plasma induced by these per-
turbed fields.

B. Perturbed currents

The perturbed ion beam distribution function is deter-
mined by the linearized Liouville equation

Ly [ fHo] + [FH] =0, a6

where the Poisson brackets are defined in the usual way with
respect to the canonical variables (p, =p,,ps.p., ¢, =1,0,2),
and F'is the beam equilibrium distribution function {we de-
lete the subscript b for convenience);

' - af dg aFf dg
g1=3 (L% - L 2%),
g - dp;  dp; 9g;
and the perturbed Hamiltonian H, can be written as follows:
HI S - E Y'Al .
c
- e (, %
N m (p, r
+ (7o “.(e/cﬂﬁ—l—j?rk’oria“) ilf— it
r r ar
_ed

— g e;m it —

T edt’

we ger‘k)- iare

_ _e—Pr.l’s-’"?-")i oilf — i,
me ar
The solution of this equation is

f=1EW],

(17

(18)

where W= — f'dt' Hy(pl,//,0',t") and the integration in
- time is along the equilibrium phase space trajectory

Y —r=28rg {sin[¢ + Qp(¢' — )] —sin ¢},
6'—8 = —QUg)t' —1) — (8rg/rg) [Q(rp) /]
X{cos[¢+ Qp(t' —1)] — cos ¢},
Py =m{gbrg cos[¢+ﬂp(r'_;)],

Since C, () is assumed to vary slowly through the an-
nular layer and B(r) varies linearly, we can make the follow-
ing expansions to evaluate the time integration of H,:

i ac,
Co(P)=Co()+ (¥ —r) —=+ -+,
- ar
7B(r) =rB(r) + (¢ —r)%rﬂ(r} + o
Hence

Wong et al. 2976



E) =t +r—n L 5

We then obtain for W

W(p,pesns0st) = W (D, perr)e™® =, (19)
where
W =g, [Pn-',e(Pe J’] [Co (r) — xorB(r) ]
3B
+ 8, [P, 75(Pg), r][m(rﬁ)r:ro
ac,
+ m( 0 _X.,B)] (20)
ar

and
& [P175(Pe)sr]
e IQ(rg) e
STermenT e
« {[@+ IQ(rg) ] (r — rg) — (ip,/m)}0lQ(rg)
rglo+ IQ(rg) 1{Q; — [@ + IQ(r5) 1%}
& [Prr8(Dg)sr]
_e {95(r—r;) — (ip,/m) [0 + 1Q(rp) ]}
T [0+ 100, {0} — [0+ 190r,) 17}
The perturbed ion beam currents are determined by

2
jb=jdipi(p_EAo)f—jd3piAF, @1
m c mc

where d *p = (1/r)dp, dp, dp,.
Substituting for f, we obtain for the radial perturbed
current

J‘a“ —(pa _Ew)[FW] —fd ——AeF

G=[ @ Lpmwy— (a9 AF
m mc
[ tp (L2 W,
ar dp, dp, Or
ﬁiF""W) fd’ —AF
dpe

Since Fis even in p, and dW /dp, is independent of p,, the
first term is zero. The fourth term yields zero on integration.
The third term is smaller than the second term by A/ry €1.
Thus, J,, may be approximated by

2
7, =ifd3pF‘9—’f-fd3pe—A,F
m ar mc

. ez
zellﬂ—rm:JdSP F
mc

9 pdW
a8 dp,

(22)

[@ 4+ IQ(rg) |¥(CorxoshTs)
{9} — [0+ 1Q(r5) 17}

+ higher-order terms in A ’

(23)
To
where
‘P(Co,xu,r,rﬂ)_m(rﬂ)r ;(0 +w = B
wiﬂ(rﬁ)
——— _(Cy—y,rB). (24
rg[w+lﬂ(rﬁ)]( o —XorB). (24)

Similarly, we obtain for the azimuthal perturbed cur-
rent,

=J-dp—(9—— )‘? J il dp—(p9~—$)dF—+jd3 ¢ dFW fdp—AF

p,
= — eﬂ'e-—imtJ‘d:’ i F H&)" = (Co —IDF'B) rfﬂ erJ.d3 [Pe — (e/c)![']
mc  [w+1Q(rg)] r mr
Ilﬂ(r } Y (C Yot .
><( p —;'i) 5 (Co.Xo-r75) + higher-order terms in A, (25)
rgle+1Q(rg) ] or] Qf — [w+ IQ(rg)]? To
I
where we have mad f the relati = N} x i
ade use ol the refations J,=i2y —4 __(Q5XA + iwA)
c < m‘(co2 - Q)
drg Q
8 ac, )
—, - — YoB
6‘Pe mrgﬂg ; m; c(m — Qz [ [ ( o
@a_ a9 0 1 (1 Lt “’mJ . B)] é[' Q (‘;C" B)
_—_——_— —_——, T 1 i
dpe mrgQ)y drg mr Q3 o X ot or

[Po — (e/O)Y(r)V/mr= —rgQ(rg) + -+

The perturbation of the cold background plasma pro-
duces perturbed currents given by

2977 Phys. Fluids B, Vol. 3, No. 11, November 1991

ilew?

-, - xorB)]], (26)

where the sum is over the electron (j=e¢) and ion (j=1)
species.
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C. Quadratic form of eigenmode equations

Substituting the perturbed currents in Maxwell’s equa-
tion, we obtain the eigenmode equations
1 3?A 47 = =
VX (VXA) + — =—(J, +J,).
X(X)+czé‘t2 c(”+") |

These eigenmode equations can be written more com-
pactly as a quadratic variational form If we multiply Eq.

27)

(27) by the adjoint function A" = A e O+ o , and inte-

grate over space, we obtain
L(Cs" x5 sCos¥o)

=iJ-d3 BZB,+~-G}—A-A+)
dar e '
———I—fdz'rjp*z" ——1-fd3rjb-3+
c c
If 12 (3.5‘)2 w?
=1 d?l —_— ——
) AT\ Gr) s

2 ;2 .
x [ a [( ) +;<co——xor3)2]

+L,(Cos¥0) + Ly (Cox0)s (28)

where

L,(Coxo)= “ifdsrjp'x+

 Né&
.._J-d 7 :
7 micz(m —(12)

<{[-(5

1%(a® — Q2
+_...i__z._1) (CO _..xorsz} s

2

1
B) ——=(C, — l’ofﬂ)]

(29)
r

L, (Coyo)= _ljd%.’i,,-x’f
[

& o ]2 '
= — F . — (Cy — yorB)?
(mcz [0+ D] o X ))

L,(C P
» O’XO)H( mc* [w+!ﬂ(r§}]2;;( °

FI07) )7 — 0(rp)}) — <F£’ 2y [m (a;"
c r

_Xor3)2> +

[

< e F

me® {Qf — [0+ I0(rs) )%}

v [pe — (e/c)¥p(r)]
mr’Q(rg)

"pz(co;,\_’o)r»rg)>

+ higher-order terms in é (30)
To

The angular brackets denote integration over the phase
space variables {( ))=sd*pd (). We have deleted the
superscript + on the functions A * since A * = A. This is
due to the symmetry of the quadratic form: A+ are solutions
of the same eigenmode equations with the same boundary
conditions as A. The eigenmode equations are the Euler—
Lagrange equations obtained from first variations of the
quadratic form with respect to C,, and y,, and are identical to
Eq. (27).

- We do not attempt to solve these equations exactly. In-
stead, we consider our variational quadratic form to be a
dispersion functional, and for C, (r) we substitute an ap-
proximate solution based on the thinness of the plasma layer
and thereby obtain the dispersion relation for the eigenvalue
@.

Furthermore, we simplify the analysis by considering
the limit of large betatron frequency 0} >Q0%(r,)[0?
+12Q%(rg) ].

Smce_
1
{0} — [0+ 10013
o 1 ( [w+m(rﬂ)]2—02(rﬁ))
[QF — Q%(15)] {9} — [0+ 19(r) 1%}
and
JdB /or - B(f'g)
QF —Q%(rg)  7,0%rg)

we can approximate the beam contribution to the quadratic
form in the limit of large betatron frequency as follows:

eplbe Z W 12 98 ) (rminga i

mr ar

) wiQ(r 2)
B+

xon)

2 12

i fer (@

. ac,
X[+ 10~ 03114 — N, b0 (T2 108 )+ 22—,

2978 Phys, Fluids B, Vol. 3, No. 11, November 1991

J-d"’r { N;'ez -
my (@ +1Q,)% r?

(cd - Xorfg)z - mebfz

'_XO“‘B)]] >

Wong et al.
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where
A? 3
7o) — —— —— Q) + -
Q(ry) 80 Ory (ro
Thus the quadratic form [Eq. (28)] may now be ap-
proximated by

06 = Qp)pympr s, =

2

r T
réL(Corxo) = &—‘;Lo(co,,yo) + KOL' (CosXo)

wzrg Jta”r
|5+ f’]

where + d *r denotes integration over the vacuum region

+L2(Cosl’o) -

(32)

ac, \?
LO(COrXOJEJ'dSral(r)( 0), (33)
Ix
ac,
L, (Coyxo E—jdjrhz (r)Cy o
Ix
ac,
+fd3r2a3(r)fo °, (34)
ax
LZ(CO,X0)=J.a’3ra0 %+Id3r2alcofu
+J‘d3ra2,i%, (35)
x=(r—ry)/A,
Yo=xoBoro,
By = B(ry),
N-e?rz wz
(=32
“rr z,: m;c® (0" — Q)

N&rt o*(Q? — w*/b
 Miero (O m/)+0(m.),
m.c> QO — o)
b=[1+ mN,/m./N,]>1,
e2r2 I
az(f)=21\ﬂe}ro 2

m.;

i

i

7T mc (=)
_ N.ergl
B m;c?
w{Q?[(N,/N,) — 1] + &’} m,
>< { [( 2 ) 2 ] + 0(—') »
Q,(Q; — o) i
B(r) N,&ri lo
a,(r)=[ — a,(r — &
3 ( [ —a () +a,(n] B, e 0,
_ N5 B(r)
mic* B,

N,,ezr?] mz )

=]2
ay(r) (ﬂl(f)-i— me (@t )
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o B(r) _N&e’rélz )
o (r) = =) —p My (@ +1Q,)
B
+a,(r) ;;:)
B*(r)

1

N,e’ril? ((co +1Q,)?

a,(r) =a,(r) Oz
(4]

B} m,c’
20 B
(0 +100) B
Y BXn) Nbe’:é 2o B(r)
B} myc® Qo By
The summation over j does not include the energetic beam
ions. We note that typically L,, L,, L, are of the same order,
while the contribution from the vacuum is smaller (for com-
pleteness, we retain this contribution).
In the last term of Eq. (32), £(r) is determined in the
vacuum region by Eq. (11) with §(#* ) related to C, and ¥,
by Eq. (15).

)+ [a,(r) — 2a,(]

rtsr>r-

ay(r)

- ’ (37)
a,(r) Xo

IV. DISPERSION RELATION
We first define a “standard ordering” given by

N, N, IA W Q| N,

=(1=22)s =2 + | =] =)

N, N, ro Q, o | N,
where |a, | > (A/7y)|a, |. Furthermore, we assume that the
conducting walls are not in contact with the boundaries of
the plasma annulus so that

47N, A r. +

N8 [ () + 2 ()

m; (ﬂ, + o®) Ty r P
where

Z(s)=(14Y/(1 —s5).
The largest term in the quadratic form in a A/r, ordering is
L, (Cy,x0), and it is due to the inertial response of the back-
ground plasma ions. In order to minimize this response, it is
necessary  to  minimize the  magnitude  of
|E,|~|(w/c)(3C,/dr)| by taking C, to be constant to low-
est order in A/r,. Thus C; equal to a constant is the lowest-
order solution of the eigenmode equation. This is consistent
with the assumption made earlier that C, varies slowly in-
side the annulus.

Let

Co =Co + (A/r)CEV + +++, (36)
where 60 is equal to a constant. Substituting for C, in
L(C,,x,) and extremizing with respect to dC §'/dx, we ob-
tain

acg” _ay(r) A

ax a,(r)

where

a, N, 19,,-[(1 N,-) ]

a” N, o N, [QZ — (0¥/b)]
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»lQ; . B(r)

a B
a, T @] B

alﬁ'— B, [

The perturbed radial electric field

iw (505“ )?oB)
c ar roBy
is pcaked at the location of the Iowcr-hybnd resonance

o = bQ2(r).
Thus, within the annulus

r2 o . o
) E%-LD(CD)XG) +%L1(Cm,'t'o) +L2(Cos,l’c)

Sfef-Eraers fan(=2va)

le’oc +fd ’(——+Q2)X<2n _(33)
where .
a Ne’l2 N, ( 1)2 bw®
a 0¥ (b2 — w?)
+N§m,-. W ]
Nom, (@ + 19,)? |
a,a; N N,é*l? ( B ba? N,m.B
a =~
a, ' m,;c* \ By (b} — *) N,mbﬁo
< — w? _ N,m, ) )
(+190)* N.my (0+1Q)
a + N, &2 N,B? b N,m,B*?
— 2t a,
a ' mc | NBX(bO2—w®) N,m,BE
% @’ _.Nam.-((&)+fﬂo)z_1
(0 +19) N.m, 02
i om)
(@ + 19) B, '

Since B(r) varies linearly inside the annulus, the spatial inte-
grals can readily be evaluated. The quadratic form may then
be written as follows:

Z?TNeferzlz ~

r3L(CoR0) =fdz (&3,
m;c*
+2Co 80\ + 134 ), (39)
where
JZ{ . Ne (l N.‘ )2 Nemi &Jb 172
° N, N, N,m, 20,80
A A2+ )
x| lo; —1lo
( & Ay ¢ Ay
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N, m; w? Nym; 6‘)2"20
N, m, (o +1Q,)> N.m, |I|c?60

()

AT A Nb m; (2w + I1Q,)
AT AT N mb (@ + 1Qy)?

mf o* o
20250 °

N . s 2 —
4 Mo “."oﬂ [B(r ’z,( re )
. Namb f”r.'zﬁﬂ -Bo r-

1

+ -
+B(r )Zr(r )] (1)
‘BO rw
' N, m? 2
_ N, m: 02 m, 20.06 50
Af As
X(log " — log —2 )}
Ar A
+ N, m; l.l (@ + 194)? w?
N, m, 0% (@ + 19)?
A* /1 3B 2] 2w
Xil4 2 (2B 2
[ EETAVA ar) * (m+zno)]
Nam; @’ [.B’-(r“} . ( 7. )
~ N.m, |I|6Q 2 I -
20, + +
+ 2 )Zi(’ )] (42)
By Ty

AE=Q,(r *) — (/6"
AF=Q,(r =) + (/bV?),
Z()=(1+70 - 5.

We have extremized our quadratic form with respect fo
dCy/Ix. We still have the freedom to extremize Eq. (39)
with respect to the overall constant CO in order to determine
the unknown constant C in terms of §,,. Thus by extremiz-
ing with respect to ¢ ‘os We obtain

Co= —(-9{1/‘3’0)20- (43)
: Substitut‘ing for a,, we obtain the dispersion relation
— (A A = ( 44)
For equilibria in which there is no field reversal (1> 50
but 50 > IA/ry to satisfy the large betatron frequency as-

sumption ), we obtain an approximate solution of the disper-
sion relation in the Limit

2 my N,
Im ’ “m N
(802 >mbNb (1> —1)

12 m,N, 1?
where .
oo — (N.m2/Nm2 )07 (1 + (8Q)%/4),
o | = (mY/m2 Y21 + (80)%/12),
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N; A
dym = M g Mo (o),
N.m? N, m,
D=w/l0,.

Substituting in Eq. (44), we obtain the unstable root:
~ .(meb(!‘-l) 12 )‘”
=1 o
N.m,l? (50)?
and the perturbations are unstable with growth rate
N, 172
Im(w) =Q, (——Uz }—L%—) .
N, m, 80)?

For equilibria in which there is field reversal (6ﬁ> 2) so
that a resonance at the lower-hybrid frequency
® = + b'?Q(r) is possible at some radius 7, we obtain an
approximate solution in the limit @*~N,/N, €1, where

(45)

log Ay = —im,

log Ay —im,

log(AF A /AT A7) —-log[ﬂf(r )/Qir )],
A o ~im(N.my/N,m,) (wb?/5Q),

m; @ o Qir ™)
VR 20280 i)
N, m? w
Ay - L (117,
z N, m} Q} , b(
A, A .

The dispersion relation may then be approximated by
@*/Qy = — (N,m,/N;m;)(I* —1)
and the perturbations are unstable with growth rate

Im(w) = Qo [ (Nymy/N;m) (17 — 1) ]2 (46)

We solve Eq. (44) numerically, neglecting the typically
small contributions from the vacuum region surrounding
the annulus. In Figs. 2 and 3 we plot the frequency @ as a
function of N, /N, for several values of the azimuthal mode
number [ and the field-reversal parameter (). We have in-
cluded solutions for values of N,/N, — 1 since Eq. (44) re-
mains valid in this limit for reasons discussed below. We
predict instability for all nonzero values of N, /N,. However,
for equilibria with large field reversal where 62 > 25.6,/ =2
can be stable [see Eq. (50)].

We note that if N;/N, —0 or there is field reversal (then
the pole contribution from resonance at the lower-hybrid
frequency yields </, ~b 1251), o>« and hence
Co €¥,. Strictly, the “standard ordering” is not valid in the
limit N,/N,—0. However, as we demonstrate below, the
quadratic form is extremized by C, = O when ¥,/N, - 0. As
this is also the prediction from our “standard ordering”
analysis we can validly use the dispersion relation given by
Eq. (44) for arbitrary N,/N..

We now consider the low background ion density limit
where the “standard ordering” formally fails and the follow-

ing inequality applies:
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ro

IA

Further, we assume that

| () e (2
— >|Z +2Z .
N, m; | 0Q; "\ r- ! r,
In this case,

|(A/ru)azl > [|a| |, |(A/rn)02|]»
and the dominant term in the quadratic form [Eq. (32)] is

PAL(Co\Xy) = %"fd%% (% a,r)cg.

This term is due to the “electric drift” of the plasma elec-
trons, and since the energetic beam ions do not respond simi-
larly, large charge density perturbations would arise unless
the field variable C, is zero. Thus the quadratic form is extre-
mized to lowest order in A/r, by choosing C, = 0. The dis-
persion relation is therefore <&, = 0 with N;/N, = 0.
If we neglect the term proportional to w*r 3 /|/ 160 <1,

which is the contribution of the vacuum region between the
plasma annulus and the conducting walls, we obtain

[(@+ I9)/92] — Qo + I1Q,)* — *[ (60)%/12] =

(47)
For (8€1)2/12 < 1, the solutions are
@ — (=1 xi(l—1"72
0, l—U-DxU+D"
and the growth rate of the unstable mode is
Imow=(I—1)"2Q,. (48)

For I> 80/4(3)/*% 1. The solution of the unstable mode is

0= — Qg + 80[Q0/4(3)2] + iQ, [160/2(3)2].
(49)

For a given value of /, Eq. (47) predicts stability for
sufficiently large (69)2/ 12. Let x = w/IQ},. We can rewrite
Eq. (47) as follows:

Y, (x) =Y, (x),
where

Y, (x)=1*(x+1)4

Y, (x) = x*[ (6Q)%/12] + (2x + D)
We note that (/> 1)

Y>Y,, x=0,
Y,>Y, x=—1,
Y|>Yz, X—’:too.

Hence there are two real roots of ¥, (x) = ¥, (x) for x <0,
and a sufficient condition for the occurrence of two real roots
of ¥, (x) = ¥, (x) for x> 0 is the existence of a finite value
of x = x, >0 such that

Y,(x5)>Y,(x0),
that is
60 o+ D' 2%+ D
12 x5 x5

The minimum value of (x, + 1)*/x3 for x, >0 occurs at
xo = 1. Thus a sufficient condition for the occurrence of four
real roots of ¥, (x) = ¥, (x) (and therefore stability) is
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(68)*> 19212 — 108. - (50)  V.DISCUSSION
Forl=2, o . -
N We have investigated the low-frequency stability of an
80 >25.7,

We solve Eq. (47) numerically, and in Fig, 4 we plot the
frequency of the unstable modes as a function of the field-

reversal factor 80 For I = 2 stability, we estimate numeri-
cally that 50> 25.6.
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equilibrium configuration consisting of a thin annular layer
of energetic large orbit ions in a neutralizing background
plasma. The energetic ion motion exhibits two characteristic
frequencies, the frequency of radial betatron oscillations
Qp=00[1+ (7, /A)S.Q] /2 and the revolution about the
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FIG. 3. Real and imaginary part of the fre-
quency @ of the / = 2 mode for field-reversed
m equilibria (802 = 3,10,30) as a function of
(N /N, (my/m; = 2).

axis of symmetry (,. Here 7,/A> 1, and field reversal re-
quires 50 = (A/Q, )(o"ﬂﬁ/é'ro )>2. Here 80 is propor-
tional to the current per unit axial length and is related to the
field-reversal factor £ by § = 2850/ (2 + 50)

In order to simplify the analysis, the following was done.

(1) We neglected parallel electric field perturbations
and we considered only flute perturbations with no varia-
tions along the magnetic field.

(2) We considered the limit of a very thin annular layer
where ry /A > [£/(2 — £)]'?(ro/4A)"? > |1|. In this limit,
the betatron frequency €z is much larger than the beam
circulation frequency (},, and for low-frequency perturba-
tions w* S 12003,

Q% > Q, (® + 17°05) 2
This inequality allows us to make the rigid mode approxima-
tion.z.u

(3) We neglected the temperature of the background
plasma. We are therefore assuming that the thermal veloc-
ities of the background species are smaller than the phase
velocity of the unstable perturbations.

(4) We assume that the dielectric properties of the sys-
tem are dominant so that perturbations can be considered
quasineutral:

107! Tol
Np/Ne

&' . ’i| N)]
@ Q.| N,

1 . o my 2(
w*. —_—
Q2 + &) [ P |4'|AJr o

-2 G=) = ()]

The electric field energy within the beam equilibrium is then
large compared to that in the vacuum.

The beam equilibrium distribution function was taken
to be monoenergetic with no spread in the particle canonical
momentum p,. In reality, a small spread in p,, is likely. How-
ever, we expect our analysis to be valid for small spreads in
Pe provided the spread introduced in the circulation fre-
quency Q[rg(p,)] is small. This requires (@ + /)
> (A/4r) [§/(2 = 51|19

We constructed a quadratic variational form, ordered
the individual terms in the smallness parameter A/r, €1,
and by successive extremization of the lowest-order terms,
we obtained the dispersion relation [Eq. (44)].

For N,/N, <1, the equilibrium is unstable for azi-
muthal mode numbers />2 with growth rates

Im o = Qo {(12 — 1) (m,N,/m,N,)[12/(68)*1}72,
2580 > [12(/% = 1)m,N,/I*m,N,]"?,

2.0 T T 0.9 T
| £=2 | =2
0.6
or Im(®) A‘
Re (&) FIG. 4. Real and imaginary part of the fre-
2 _ quency @ of the I =2 mode for N,/N, =1,
0.3+ . my/m; =2, asa function of the field-reversed
parameter 55).
0 = —
] 1 0 1
(o] 10 A 20 30 0] ~ 20 30
38 38
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Imw = Q[ (12— 1)(m,Ny/m;N,) "%

66. > 2.

Instability persists for finite values of N,/N,. When
N,/N,— 1, the growth rate of the unstable mode is

Imo=0,(—1)" 80/23)<1,

Im o =0, [160/2(3)21"2, 1>60/2(3)*> 1.

Stability can be achieved for mode numbers 2</ </, if the
following sufficient condition (N,/N,-1) is satisfied,
1/(312 — 27/16)2 5. 8/50 = 4(2 — £)/E> A/ry. Thus g
must be greater than 1.86 in order to stabilize the /=

mode. Higher / modes are more difficult to stabilize but their

effect on containment should be less detrimental.

Residual instabilities due to the coupling of ion beam
modes to the background plasma at frequencies equal to the
local lower-hybrid frequency may still persist but they have

small growth rates when &, /N, ~ 1. Such ion beam-plasma

interactions have prevnously been investigated by Gerver
and Sudan.’’

This geometry has / = 1 marginally stable. However,
when field line curvature is taken into account, the /= 1
mode becomes the well-known precessional mode which can
be stabilized by quadrupole fields, walls, or toroidal fields.

We note that the stabilization of kink modes requires
strong current layers (60 large). This raises the question of
whether the axially extended annular equilibrium is stable to
“tearing” / = 0 modes. This topic has previously been dis-
cussed by many authors,'®*® but for conivenience, we repro-
duce in the Appendix the stability analysis for an annular
layer in the slab approximation.

We find that stability to /=0 modes can only be

achieved for a flat current profile if both outer and inner -
and r=r,, respectively are’

conducting walls at r=7,
placed close to the boundaries of the annulus. The general
stability criteria is of the form (7, — r.) <2gA, where the
numerical factor gis g = 1 for flat current profiles. The mag-
nitude of g exceeds unity with hollow current profiles. How-
ever such equilibria can be produced with distribution func-

tions (where {v?) = {v?)) only if the perpendicular energy -

of betatron oscillations approaches and exceeds the directed
energy of the ion beams, {v?} 2 v},. For this situation, the
assumptions used in our analysis are violated.

We note that smooth current profiles with a maximum
inside the annulus [ which can be produced by smooth distri-
bution functions F(H,p,,p,)] requires a conducting wall
nearly touching the layer if {v?) = {v?). Less stringent tear-
ing instability can be attained by having (v2) > (v7) as
shown in Refs. 17 and 18. We also note that attaining a hol-
low or flat beam current profile rather than a peaked one
requires high beam quality for which the spread of p,, is less
than p, — po, where p,, is the angular momentum of the beta-
tron orbit. Thus if self-collisions force (v?) = (v2) a system
without a toroidal magnetic field is susceptible to tearing
mode instability. The effect of a toroidal magnetic field is
clearly important and needs further study,

In addition, we expect that the presence of an az.imuthal
magnetic field will also be effective in enhancing stability to
tearing / = 0 mode instabilities.
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However, the stability to kink />2 modes of hollow or
peaked current profiles or equilibria with azimuthal magnet-
ic fields is not covered by our analysis and remains to be
investigated.

The result of this analysis indicates the existence of a

possible stability window for moderate values of the azi-

muthal mode number /(/>2) when the reversal limit is ap-
proached. It could be difficult to achieve experimentally,
since / = 2 stability requires the field-reversal factor £>1.86,
whereas § has an upper limit of 2.

However, the model equilibrium of a thin field-reversed
layer is somewhat iclealized. More favorable stability criteria
may be expected for thick layers. It is noteworthy that theta-
pinch experiments have already established the occurrence
of relatively long-lived field-reversed equilibria. It is interest-
ing to note that on the basis of MHD theory (without rota-
tion), £ = 2 for systems in such an equilibrium,

* We observe that Lovelace’s criterion'® for stability re-

~ quires

ro OB
B(ro} 6r0

Our analysis does not indicate any transition to stability for
small 50, However, as we have assumed (ry/ A)8§1> 3,itis
not surprising that we have not recovered Lovelace’s criter-
ion. Lovelace suggested that /> 3 would be unstable. This is
generally confirmed in our analysis although at very large J
values we find surprisingly that low azimuthal mode number
perturbations can be stable when N,/N, — 1. We note that
with thick layers Lovelace’s stability criterion can be satis-
fied even for a field-reversed layer, and this suggests an alter-
native limit for stable operation of a long layer of energetic
ion beams where the geometry resembles a field reversed
theta-pinch.

Further stability studies need to consider equilibria con-
figurations with a layer of finite thickness, finite axial length,
and a finite azimuthal magnetic field.

(51)
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APPENDIX: TEARING MODE ANALYSIS

In this appendix, we discuss the stability of long annular
field-reversed equilibria to the / = 0 perturbation of the form
=0, A=A,(r)ed, and f=f(r)e’. These perturba-
tions, if unstable, can lead to the “breakup” of the cylindrical
annulus into “rings” of finite axial length. We consider time-
independent perturtations and we analyze the eigenmode

~ equations for the occurrence of “neighboring stationary

states.” The existence of such states implies instability.'®"®

However, if they do not occur, the equilibrium is stable to
these perturbations.
The perturbed ion distribution function fis
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(fiHo] = — [F(Hope).H, H 1,
where
-~ ~ OH,
H = -—¢ ( ﬁﬁQA =, 2
1 mre Pe - 6 =Ty EY,
Thus
=rd,(r) —
A =r. (r) 3#!
and the perturbed ion beam current 8J,, is
2
ﬁ = ___41TN€ Ay (r)
c myc?
+ dme AE(r)fdio(pe _E';')g‘?‘
myc c / dy
= rdy(r) ‘; A oo ()
_Ag(r) g 4r ., _ A4,(r) 3’B
B(ry dr ¢ B(r) or*’

The perturbed currents of the cold background plasma

is zero. The eigenmode equation (with &k the eigenvalue) is
therefore given by

4 (%)(i $ea(-2)z-3)
A X; —X)
4 =14 (?) [x, — (A/2)]°
A (x, +x)
_A"(_? [x. — (A/2)]

By imposing the matching conditions at x = + A/2,

(A/2) + €

(5= 5% (5)

2 =—24,(2),

Ix /a2y —e A 2

A\ - (B +e

(-8,
ax - (A2 — € A 2

where € is infinitesimally small, we find that x, 4 x, = 2A
at marginal stability (X = 0). No solutions for real values of
k exist and hence the equilibrium is stable to / = 0 perturba-
tions if

X, +x, <2A. (A3)

This result implies that the / = 0 mode can be stabilized
only by placing two conducting walls relatively close to the
boundaries of the annulus. Hollow equilibrium current
maxima at the boundaries tend to be more stable than those
with a maximum at the center of the annulus. In order to
explore the sensitivity of the stability criterion to the current
profile, we consider the following model of the magnetic
field variation inside the annulus, which is, in fact, an exact
solution for the equilibrium distribution function discussed
in Sec. I B:
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3’4, 4

— kA, = ———5J,,, Al
Ix? ¢ c ab
where x = r — r, and we neglect the curvature of the annu-
lus,
19,9 &
rdr 9r ox*

It is sufficient to discuss only the k-0 limit since this deter-
mines the condition for marginal stability.'*'®

In the case of a thin annulus with uniform current where
we assume exact field reversal,

B, x>A/2,
B= B(ZI:\:/A), A/2>x> — A/2,
— B, x< —A/2,

we obtain (k = 0)

= -+ 2)+o(x-2)
s(x+ D) ss(x—2), (a2
a2 A [\F o) Ter 2] (A2)

where §(x) is the Dirac delta function.
We assume the annulus is bounded by conducting walls

A

atx=ux, andatx= —x, (dy=0atx=x,, —x;).
The solutions of Eq. (A2), inside and outside the annu-
lus, are
2 2’
X >x>£
2 2 ]
2 1
[
"~ A
B, xX>—
2
B— 4 sinh ax .f‘..>x>_£
| sinh(ad/2) T 2 2’
-~ A
_B) XL ——,
L 2
where
L SR S
4 4 T mi0 " W,

The corresponding eigenmode equation (k = 0) is

)

— Aga coth ax[ﬁ(x - %) + §(x + %)] )

2

2
A _ a’4,0 (AT —x*

ax?

(A4)

where ®@(x) is the step function.
The solution inside the annulus is
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8)- ()t
Ag =14, (=) -4, — 2| Snhax
¢ [”(2 \" 2 /1 2sinh (aA/2)
A A cosh ax
o@ea(-Prmte
+["(z)+ °\" 2/12cosh(ad/2)
._A.._>x>_£
2 2

Proceeding as before, we find that the / = 0 mode can be
stabilized if ;
2 .. al al
X, +x A(l ~—~smh—cosh~—-).
SR Ty 2 2 _

Thus, as aA/2 increases (more hollow current pro-
files), stability can be achieved with the conducting walls at
larger distances from the boundaries of the annulus.

As an example of a smooth current profile with a maxi-
mum at the midpoint of the annulus, we consider '

A A
B, xX>—,
2
~ L TX A A
={Bsin—, —>x>-—=,
B={Bsin ‘3_’ 2) > 3
- x< A
L 2

For this case, the current at the boundaries is zero, and the
eigenmode equation (k =0) is

%4, 2 (Az )

s arl\ T

The marginal stability conditionis x, + x; = A and the con-

ducting walls must be at the boundaries of the annulus to
obtain stability to / = O perturbations. -

We note that the eigenmode equation [Eq. (A1) ] was

derived assuming an equilibrium distribution function
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As)

Fy (Hy,pe) that depends only on H, and p,. Thus the aver-
age temperatures of the radial (¢v2) and axial (v?) motion are
equal. If F, = F, (Fly,p,,p, ), we can have (v?) # (v?). It has

" been shown by Berk and Pearlstein!” and Uhm and David-

son'® that when

@2y > (2,

significant improvement in the conduction wall require-
ments needed for tearing /=0 mode stability can be
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