Title
Microbes--an important piece in the puzzle of environmental actinide interactions

Permalink
https://escholarship.org/uc/item/5979r1f0

Author
Nitsche, Heino

Publication Date
2006-12-14
Microbes- an important piece in the puzzle of environmental actinide interactions.

Heino Nitsche.
Department of Chemistry
UC Berkeley and Lawrence Berkeley National Laboratory, Glenn T. Seaborg Center, 1 Cyclotron Road, MS 70A-1150, Berkeley, CA 94720 USA. hnitsche@lbl.gov

Bacteria are omnipresent in natural environments. They exhibit the highest bio-diversity of any living organism and sometimes can adapt quickly to changing living conditions. Certain strains can even survive under harsh environmental conditions such as low or high temperature, high pressure, highly acidic and basic media and high-radiation fields. It is noteworthy that only one percent of the total soil microbial community can be isolated by the common culture-based isolation techniques. Only recently has one begun to obtain a description of the remaining 99% uncultured microorganisms through the application of genetic probes. Microorganisms can interact with actinides by both direct interaction (biosorption, bioaccumulation, oxidation and reduction reactions) and indirect interaction (change of pH and redox potential). They may play an important role in the immobilization and mobilization of actinides in aquifers and subsurface environments. This talk will present an overview on the current state of knowledge of microbial actinide interaction processes. Several detailed examples of the interaction of aerobic soil bacteria (Pseudomonas, Bacillus and Deinococcus strains) with uranium and plutonium will be discussed. Details of the nature of the bacterial functional groups involved in the interfacial actinide interaction process will be reported. Based on time-resolved laser-induced fluorescence spectroscopy (TRLFS) and synchrotron X-ray absorption spectroscopy (XANES and EXAFS) studies, molecular-level mechanistic details of the different interaction processes will be discussed. Areas of this emerging field in actinide research will be outlined where additional information and integrated interdisciplinary research is required.