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Substantial changes need to occur in the electricity generation sector in order to address greenhouse gas
and urban air quality goals. These goals, combined with increasing energy prices, have led to elevated
interest in alternative, low to zero carbon and pollutant emission technologies in this sector. The chal-
lenge is to assess the impacts of various technologies, policies, and market practices in order to develop
a roadmap to meet energy and environmental goals.
To this end, a spatially and temporally resolved resource dispatch model is developed that simulates an

electricity market while taking into account physical constraints associated with various components of
an electricity grid. Multiple technology simulation modules are developed to provide inputs to the model.
The model is used to design a market-based grid, and to develop and evaluate different dispatch strate-

gies. To maintain the system cost at acceptable levels and reduce emissions, the results reveal that the
best approach is a combination of economic and environmental dispatch strategies. The methodology
and the tools developed provide a means to examine various aspects of future scenarios and their impacts
on different sectors, and can be used for both decision making and planning.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Electricity demand in the U.S. increased from 690 kW h per
capita in 1930 to 12,158 kW h per capita in 2000. The energy and
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Nomenclature

AB32 Assembly Bill 32
CAISO California Independent System Operator
FERC Federal Energy Regulatory Commission
GDP Gross Domestic Product
LCOE Levelized Cost of Energy
LP Linear Programming
LR Lagrangian Relaxation
MCP Market Clearing Price
MINLP Mixed Integer Non-Linear Programming
MIP Mixed Integer Programming
ND Net Demand

NERC North American Electric Reliability Corporation
PEV Plug-in Electric Vehicle
RPS Renewable Portfolio Standard
SB32 Senate Bill 32
SC Scheduling Coordinator
SCED Security-Constrained Economic Dispatch
SCUC Security-Constrained Unit Commitment
SoCAB South Coast Air Basin
UE Unserved Energy
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electricity demand are estimated to increase 44% and 77% from
2006 to 2030, respectively [1], and fossil fuels are projected to
remain the number one source of primary energy for years to
come. In the United States, coal and natural gas are the major fuels
for generating electricity.

Electricity has become an inseparable part of everyday life,
essential to power homes, businesses, and industry, and directly
impact thereby the quality of life, economy, and gross domestic
product (GDP). With increasing concerns about air quality and cli-
mate change, inflexibility of the demand side, and increasing
requirements for reliability, attention in the electricity sector is
focused on exploring strategies to promote a more efficient and
environmental-friendly industry, keeping energy prices relatively
unchanged, and providing the necessary generation to meet the
future demand while ensuring that the grid meets the resiliency
needs of the community.

The power generation industry has progressed from the local-
ized distributed generation and monopoly of the Pearl Street Station
days. Advances in technologies such as high-voltage transmission
lines and computer systems facilitate the long-distance transmis-
sion of electricity. However, electricity is different from other com-
modities and energy sources (oil or natural gas for instance)
because of its physical characteristics that require matching injec-
tion and withdrawal at each point and instant in the system (at
least until massive storage becomes economically viable and per-
vasive for more widespread use). This characteristic makes the
scheduling of electricity generation crucial. In the state of Califor-
nia, the California Independent System Operator (CAISO) is the
responsible entity for scheduling electricity generation and also
ensuring the reliability of the system. Those who wish to sell
power in this market have to participate and bid into the CAISO
various electricity markets including energy and ancillary services
markets. The CAISO processes the bids and announces the schedule
while making sure that all system constraints are met at all times.

The model developed in this work mimics the operation of the
CAISOmarket. Not only is the model consistent with business prac-
tices and goals of the ISO, the model also has the capability to
introduce advanced power generation (e.g. higher market penetra-
tion of renewable resources including wind and solar, and dis-
tributed generation such as fuel cells) in order to (1) evaluate the
future economic and environmental impacts of these technologies,
and (2) assess various possibilities and scenarios for the future grid
from different perspectives. With California’s stringent environ-
mental policies such as Assembly Bill 32 (AB32) that requires
reduction in greenhouse gas emissions to 1990 levels by 2020
[2], renewable portfolio standards (RPS) requiring that 33% of elec-
tric energy sold in the state come from renewable sources by 2020
[3], and Senate Bill 350 (SB350) that requires 50% of electric energy
sold in the state come from renewable sources by 2030 [4], it is
inevitable that the penetration of renewable sources of energy will
increase in the future. The current model and research can help
clarify (1) how the addition of renewable sources can affect the
electricity market, and (2) if and how the market procedures
should change in order to better accommodate these new
technologies.

The model is capable of resolving the spatial and temporal oper-
ation of the utility grid network. It is temporally resolved in order
to predict the market results with a resolution of down to 5 min. It
is spatially resolved in order to include the amount of electricity
that each specific generator produces. Resolving the spatial and
temporal electricity generation also allows the amount of pollu-
tants emitted from each generator to be established as a function
of space and time, thereby providing the opportunity to study air
quality impacts associated with various market and generator dis-
patch strategies [5].

Currently, several ISOs use the Security Constraint Unit Com-
mitment (SCUC) to clear their energy and ancillary services mar-
kets and find the corresponding Market Clearing Price (MCP) for
these markets. SCUC commits generating units in the day-ahead
market and allocates the necessary reserves. In the real-time mar-
kets, the Security Constrained Economic Dispatch (SCED) algorithm
is used and, for all intents and purposes is the same as the SCUC
but with more accurate inputs and network parameters.

The objective of the SCUC is to find a dispatch schedule that
minimizes the electricity price (which results in minimizing the
social cost in most cases), and also ensure the reliability of the sys-
tem (and hence the term Security-Constrained). Moreover, the
SCUC is subject to several constraints, most of which are associated
with the physical characteristics of the generating units and relia-
bility of the electric utility network, while other constraints are due
to various regulations and laws (e.g., environmental regulations).
The solution of the SCUC problem results in a challenging Mixed-
Integer Nonlinear Programming (MINLP) problem.

1.1. Previous related studies

After deregulation and development of competitive markets for
electricity, many studies have modeled the restructured electricity
market. In competitive markets, each participant in the market
tries to maximize profit. Some of the previous studies have focused
upon modeling a single firm’s profit and determining how they
could effectively participate in the market. In these studies, Linear
Programming (LP) and MINLP methods are used to obtain the solu-
tion. If the price uncertainty is taken into account, the scheduling
of each unit of the firm can be treated independently, thus simpli-
fying the problem. This strategy has been used in [6] to optimize
self-commitment under uncertain energy and reserves prices,
and in [7] for portfolio managent. These sets of problems have been
typically solved using backward Dynamic Programming solution
strategies.
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More sophisticated models take into account the impact of the
individual generator unit decision on the market clearing price
using the leader-in price model of microeconomic theory [8]. Some
efforts aim at optimizing the generation curve, and use algorithms
based upon MINLP to determine strategic bidding strategy in
deregulated markets [9,10]. Other efforts, focus upon optimizing
the demand curve by taking into account, using probability distri-
butions, the uncertain behavior associated with other firms and
consumers [11].

Another group of market models focuses on the clearing process
of various types of markets in a wholesale electricity market. A
handful of these studies focus on the price or supply curves that
generating units submit and estimate the impacts on the market
results. Cournot equilibrium and Supply Function Equilibrium
methods are usually used in such approaches [12,13].

The majority of recent studies focus upon solving the SCUC. Var-
ious optimization methods have been applied to the SCUC problem
with Lagrangian Relaxation (LR) and Mixed-Integer Programming
(MIP) as the two most-widely used and recommended methods
[14–16]. (A detailed comparison of the two methods can be found
in [17].) The downside of the MIP methods is the large number of
binary variables, which adds complexity to the problem. On the
other hand, LR involves heuristics to solve the SCUC problem and
thus, does not always guarantee an optimal solution.

The LR method is the direct technique to solve the SCUC prob-
lem as used in [18,19]. In this approach, if all the transmission con-
straints are not relaxed, the problem will include a large number of
Lagrangian multipliers which make the problem very complicated
and nearly impossible to solve. To overcome this problem, Benders
decomposition is used to separate the problem into a master prob-
lem and several sub-problems. The master problem is the tradi-
tional unit commitment problem without the transmission and
voltage constraints, and the sub-problems include security-
checking routines using the results from the master problem and
Benders cuts [20,21]. This method has been used to solve the UC
problem with transmission constraints and voltage constraints
[22], and with stochastic unit commitment to include higher pen-
etration of wind energy resources [23].

The use of MIP methods has become more common with the
introduction of efficient techniques and solvers such as the branch
and cut technique. These techniques allow modeling of nonconvex
and nondifferentiable costs [24], as well as start-up and shut down
power trajectories of generating units [25]. In [26], in order to
reduce the computation time, the authors reduce the number of
integer variables by fixing unit states and then changing them
gradually into committable states if the solution is infeasible. Pre-
viously obtained results and Benders are kept and used to acceler-
ate the solution process, and at the end the results are used as
initial conditions in an MIP algorithm to assure that the results
obtained are indeed the optimal results.

The output of each generating unit is usually approximated by a
smooth quadratic and convex curve. In real life, however, units
may have prohibited operating zones that make the problem
non-convex, solutions to which are available in the literature
[27,28].

Other methods have been used to find a solution to the SCUC;
including dynamic programming [29,30], particle swarm optimiza-
tion [31–34], genetic algorithms [35–38], stochastic optimization
[39–42], and adaptive optimization [43].

Concerning the applications assessed in previous work, some
dispatch models were developed to assess the impacts of plug-in
electric vehicles (PEVs) on air quality [5], emissions [44,45], and
distribution system [46]. Others assessed integration of intermit-
tent resources [47] such as wind [48] or solar [49], addition of
demand response [50], water consumption [51] and climate
impacts of the grid [52].
While other dispatch models have been developed, the results
are not spatially resolved and thus do not count for transmission
constraints [53–55]. Very few studies are spatially resolved and
amenable to air quality analyses [5,44,51]. However, most of these
do not include a sophisticated dispatch model and use a relatively
simple dispatch strategy, such as marginal dispatch [56,57], or
average grid mix [58,59] with simplified system constraints [60].
Other studies have been performed that model the electricity mar-
ket and solution methods primarily for solving the complicated
unit commitment problem. However, these studies typically only
solved the problem for a small number of generators rather than
utility scale modeling, and were not used to assess actual systems,
present or future [17,20].

In this work, a comprehensive dispatch model is presented for a
specific fictional balancing area (the South Coast Air Basin in south-
ern California, SoCAB) which is both spatially and temporally
resolved, includes market operations and physical constraints of
the electric utility network in this area. Various dispatch strategies
are applied to 2050 base case and the economic and environmental
implications are discussed.

While currently applied to this fictional balancing area, it is
large enough and thus representative of real balancing areas.
Therefore, the methodology can be directly applied to large-scale
grid modeling of any area simply by changing the model inputs.
Modules developed as components of the methodology provide
the capability to study the environmental and economic impacts
associated with future scenarios.

2. Methodology

In order to study the air quality impacts of various scenarios, it is
necessary to have emissions that are both spatially and temporally
resolved. The spatially and temporally resolved dispatch model
developed in the present study represents the actual electricity
market operation that includes various physical characteristics of
electric grid operation that are unique to electricity markets, such
as the balance of supply and demand at each instant, in all locations.

To simplify the algorithm, the model is divided into several
modules (Fig. 1) and a core optimization algorithm, which is
referred to herein as the dispatch model (see Fig. 2). To reduce
the number of variables in the optimization, base-loading units,
imports, and renewable resources are dispatched first with the
renewables treated as ‘‘must-take” units. Various modules provide
the necessary inputs to the dispatch model. These inputs include
the cost curves, base electricity demand, electricity demand of
PEVs if required, availability of renewable resources, and charac-
teristics of individual generators such as ramp rates, and emissions
factors. Fig. 1 offers a summary of the modules developed for the
current methodology and the most important inputs and outputs
to these modules. For instance, in the cost module, inputs include
the future year under study, type of generator, primary fuel, and
fuel price. The module calculates the cost curve (Levelized Cost
of Energy (LCOE) vs. capacity factor) and the start-up cost for that
specific generator operating in the specified future year.

Significant challenges associated with the development of the
modules include collecting the necessary data and forecasting
the various metrics for future scenarios. Detailed descriptions of
the modules used in this paper are provided in the Appendix A.

2.1. Economic dispatch

The objective of the dispatch model is shown in Eq. (1).

Minimize
XNg

i¼1

CiðPði; tÞÞIði; tÞ þ SðiÞIði; tÞfIði; tÞ � Iði; t � 1Þg½ � ð1Þ



Fig. 1. Modules.
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In this equation, Ng is the number of generators participating in
the market, Ci is the cost function of generating unit i, P(i, t) is the
production (generation) of unit i at time t, S(i) is the start-up cost of
unit i, and finally I(i, t) is a binary variable associated with the com-
mitment status of unit i at time t (1 for committed and 0 for
uncommitted). Note that the objective function is nonlinear due
to the nonlinearity in the cost curves and the start-up costs.

The first term in Eq. (1) is the production cost and the second
term is the start-up cost. To take into account capital and operating
costs such as instant costs [61], installed costs, and fixed and vari-
able operation and maintenance costs (O&M), Ci is replaced with
the LCOE curves associated with each of the generators (assuming
zero start-up) and the start-up cost is calculated based upon the
amount of fuel required to start the generator and the cost of the
fuel. Note that all of the bids in the current methodology are based
upon ‘‘actual costs” and do not include gaming and the impact of
demand on the bids. Thus the bids include a cost of production
(generation) curve as a function of capacity factor and a start-up
cost only (i.e., bids are not a function of time of day or electricity
demand).

When I(i, t) is zero, P(i, t) is zero since generator i is neither com-
mitted nor generating at time t. On the other hand, when I(i, t) is
equal to one, not only should P(i, t) be greater than zero, it is also
less than Pgmax and greater than Pgmin which are the operating lim-
its of generator i. To ensure that the unit commitment of a gener-
ator, I(i, t), and the output of that generator P(i, t) are not
independent of each other, a constraint is added that shows the
relationship between these variables. Such a constraint is shown
in Eq. (2).

Pði; tÞ ¼ 0 if and only if Iði; tÞ ¼ 0 ð2Þ
At each time, the output of a generator should be lower than

Pgmax (Eq. (3)) due to both physical limitations of the system and
the reality that the generator never reaches nameplate capacity
due to losses. Pgmax(i) is derived from the generating unit character-
istics module and used as an input here.



Fig. 2. Dispatch model summary.
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Pði; tÞ 6 PgmaxðiÞ ð3Þ
P(i, t) usually has a lower bound as well which is due to the fact that
operation under a specific capacity factor is not economically sound
and thus the owner submits a lower bound for generation into the
market. Many generators are also constrained to a minimum power
output due to requirements of post-combustion nitrogen oxide
emissions removal equipment for meeting pollutant emissions reg-
ulations. However, P(i, t) can also be zero when generator i is not
committed at time t. This constraint is rewritten as in Eq. (4) to
include both cases. It must be noted that such a constraint is non-
linear itself.

Iði; tÞ PgminðiÞ 6 Pði; tÞ ð4Þ
The constraint associated with the balance of supply and

demand is shown Eq. (5). In this equation, D(t) is the electricity
demand at time t.

sumfi in NggIði; tÞPði; tÞ ¼ DðtÞ ð5Þ
While it may seem that I(i, t) is not necessary in Eq. (5), this

term helps the algorithm run faster. Due to numerical errors,
instances may occur where I(i, t) is zero but P(i, t) has a very small
value close to zero but not quite zero. In such situations, the I(i, t)
term in Eq. (5) helps facilitate the computations.

Another important set of constraints are ramp rates associated
with each of the generators. The ramping up or down constraints
do not have a lower bound and the lower bound is considered zero.
The maximum ramping up constraint and ramping down con-
straint in this research are assumed equal for a specific generating
unit, and thus the ramping up and down constraints are combined
together for each generator as shown in Eq. (6) where abs stands
for absolute value, and RL(i) is the ramping limit associated with
generator i. It must be mentioned that the constraint shown in
Eq. (6) is nonlinear in nature and can vary for each of the genera-
tors (some ramp quickly and others ramp slowly).
absðPði; tÞ � Pði; t � 1ÞÞ 6 RLðiÞ ð6Þ
Another constraint taken into account is the minimum on-time

of a generating unit (Eq. (7)). It is not economic for a generating
unit to be online only for a short amount of time. For peaking units,
this minimum on-time has a default value of 2 h and the default
value for a combined cycle power plant is 8 h. The minimum off-
time is not considered in this research, especially since it doesn’t
imply any physical limitations and is included in long-term studies
to ensure that there is enough down time for scheduled and
unscheduled maintenance. The off-time of generating units that
is required for maintenance is considered when calculating the
annual greenhouse gas emissions but is not considered in the
hourly dispatch of the current paper.

Xt

t�TonðiÞ
Iði; tÞ P Iði; t � 1ÞTonðiÞ ð7Þ

The transmission constraints are also added for transmission
lines in locations that have historically been congested. The maxi-
mum capacity of the line is considered in these constraints. To fully
add the bus-to-bus transmission constraint, it is necessary to solve
all the power flows in the system and determine how the power is
flowing between supply and demand. Although this is possible for
a small area and a limited number of variables, solving for all of the
power flows inside of a MINLP optimization is numerically inten-
sive for an actual market size or even for a balancing area like
the one considered here. It must be noted that, in the SoCAB, there
are around 200 generators (not counting wind, solar, and hydro),
each introducing two variables into the model -one for commit-
ment status and one for the amount of generation. Furthermore,
the number of the variables increases exponentially if the opti-
mization is conducted for several consecutive time intervals.

The set of equations introduced in this section, make up a
mixed-integer (binary here) nonlinear program. In the current
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study, the AMPL language is used to solve the MINLP problem.
AMPL is a comprehensive and powerful algebraic modeling lan-
guage for linear and nonlinear optimization problems, in discrete
or continuous variables. Various solvers such as CPLEX, Gurobi,
and KNITRO can be used with AMPL.

Module of the current methodology (Fig. 1) are developed in
MATLAB. For each of the scenarios, the outputs of these modules
are compiled into a file and used as input to the dispatch algorithm
which is developed in AMPL using KNITRO as the solver. The
results are then saved and further processed. The results are also
used as inputs to some of the modules (such as the emissions mod-
ule) to calculate the spatially and temporally resolved emissions
from individual generators and overall system emissions.

2.2. Environmental dispatch

A dispatch strategy is also developed to minimize the air quality
and climate change impacts of the grid by minimizing criteria pol-
lutant or greenhouse gas emissions instead of the cost. Referred to
as environmental dispatch, the strategy takes into account the envi-
ronmental impacts of the system before the economics of the dis-
patch are considered.

For the environmental dispatch, the objective function of the
economic dispatch (Eq. (1)) is replaced with the new objective
function shown in Eq. (8). In this equation, EM(i, j) is the emissions
factor for generator (i) and associated with specific species j. The
start-up cost in Eq. (1) is replaced with the start-up emissions for
species j, SE(i, j).

minimize
XNg

i¼1

½EMði; jÞðPði; tÞÞIði; tÞ þ SEði; jÞIði; tÞfIði; tÞ � Iði; t � 1Þg�

ð8Þ
The constraints of the problem remain unchanged from that of

the economic dispatch discussed in the previous section. The
ramping emissions are not included in Eq. (8) to simplify the
problem.

Two environmental dispatch strategies are considered in this
paper; one minimizes the emission of nitrogen oxides (NOx) and
the other CO2e. These dispatch strategies are referred to as NOx dis-
patch and CO2 dispatch, respectively. CO2 is chosen because of its
contribution to climate change and the fact that the state of Cali-
fornia has stringent environmental laws mandating significant
reduction in greenhouse gas emissions. NOx is chosen because it
is a regulated criteria pollutant, and it is a precursor for ozone
and PM2.5 impacting urban air quality.

2.3. Future grid design

Since electricity demand is growing, it is most likely that the
currently online units will not be sufficient to satisfy the electricity
demand of a future scenario. In order to determine how much new
generation is required, an algorithm similar to the SCUC was devel-
oped. In this new algorithm, the constraint associated with balance
of supply and demand is relaxed, and the objective is changed to
minimize the amount of unserved energy (UE).

The first step is to determine a net demand (ND) which is
defined as shown in Eq. (9). This net demand is the sum of electric-
ity demands (base electricity demand and PEV electricity demand
(if any) derived from the ‘‘electricity demand” and ‘‘transportation”
modules, respectively) minus the generation from wind, solar, and
hydro resources, and imports. In this document, the base case sce-
nario refers to the case in which the penetrations of wind and solar,
as well as plug-in electric vehicles are the same as the year 2010
(7% wind, insignificant solar, and 0.1% PEV). The market rules and
operation are unchanged meaning that the intermittent resources
are treated as must-take. Market clearing is based upon economics
and minimizing the social cost in the economic dispatch, and based
upon minimizing emissions in environmental dispatch strategy.

NDðtÞ ¼ Electricity demand�wind generation

� solar generation� hydro generation� imports ð9Þ
To further ensure that sufficient reserves and ancillary services

are available, the historical operating reserves in the CAISO are
studied together with North American Electric Reliability Corpora-
tion (NERC) requirements for various types of ancillary services.
Consistent with historical trends in CAISO and in order to have a
conservative estimate at each time interval, 10% demand is added
to the net demand calculated to account for ancillary services and
reserves. The total generation calculated in this manner is referred
to as the required generation (RG). It must be mentioned that hydro-
electric units currently being used as spinning reserves and stand-
by units are retained for future scenarios. As a result, the 10%
increase provides the required reserves for the new load that has
been added to the system.

Next, the already installed generating units are assessed. Units
are retired based on their age and are replaced with advanced gen-
erator of the same type.

As previously mentioned, the objective is to minimize the
unserved energy (UE), which is the difference between the required
generation and outputs of all generating units subject to physical
constraints previously discussed in Section 2.1 (except for Eq. (5)
which corresponds to balance of supply and demand). The objec-
tive function is shown is Eq. (10).

Minimize UEðtÞ ¼ RGðtÞ �
XNg

i¼1

½ðPði; tÞÞIði; tÞ� ð10Þ

This problem (without the transmission constraints) is a mixed-
integer linear programming problem and can be solved using var-
ious solvers such as CPLEX. Here, the model and its data are defined
separately in the AMPL environment.

Unserved energy greater than zero, indicates that in order to
serve the projected electricity demand, it is necessary to install
additional generating units.

In the following section, the outcomes of the dispatch model
associated with the base case are presented for 2050.
3. Results and discussion

3.1. Model verification

To verify the result, first the model is run for the year 2000–
2001 and the results compared to Federal Energy Regulatory Com-
mission (FERC) data [62], the only publicly available database
including the hourly electricity production of individual genera-
tors. The model produces results for the overall in-basin generation
that is within 12% of that reported by the FERC. The error in mod-
eling the output of individual generators, on the other hand, is
between 2% and 40% (depending more upon the specific generator
than upon the time of the day). There are several reasons for the
generator error. First, the current model assumes that generators
bid in their actual cost of generation plus a reasonable profit into
the market and that the percentage of the profit is uniform
amongst all generators. Second, the ownership of the generator
has not been taken into account. Owning several generators across
the grid can result in better bidding by the scheduling coordinators
to maximize their profit. Most importantly, gaming of the system
and arbitrage are not taken into account in the dispatch model
developed. This is especially important in regards to the FERC data
that are used in the verification because the data correspond to the
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2000–2001 court case associated with the energy crisis in the state
of California, and these data were publicly released because of law-
suits involving Enron corporation [63]. Considering this fact, these
data correspond to exceptional situations that may involve signif-
icant gaming rather than normal operations. As a result, the verifi-
cation of the current dispatch model seems reasonable (predicting
2000–2001 data within 12% total, and between 2% and 40% for all
generators at all times).

3.2. Air quality analysis

As previously mentioned, the spatial and temporal emissions
resulting from the model can be used for air quality analysis. To
demonstrate this, the dispatch strategy is applied to the SoCAB grid
of 2005. An emissions inventory was generated for the 2007 Air
Quality Management Plan by the South Coast Air Quality Manage-
ment District (AQMD) [64] which includes emissions from both
stationary and mobile sources for the year 2005. It includes carbon
monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), total
organic gases (TOG) and total suspended particulates (TSP) emis-
sions from each source for the entire year with the time resolution
of one hour. These data are results of a model developed by the Cal-
ifornia Air Resources Board for an air quality event. Year 2005 is
chosen for this section in order to be able to compare the outcomes
of the current methodology to those of the emissions inventory
developed by the AQMD in order to further verify the results of
the model.

A high demand day in August 2005 is selected and the devel-
oped model is run for that day. A high demand day in summer is
chosen because high emissions from the generating units com-
bined with high temperatures, will likely result in an air quality
episode.

The emissions module of the model is then used to develop an
emissions inventory from the dispatch model results. NOx, and
Fig. 3. Difference in (a) NOx, (b) PM2.5, (c) 8-h ozone, and (d) 1-h o
other criteria pollutant emissions from the dispatch model, are
then used as inputs to the UCI-CIT model [5,65,66] to obtain air
quality results.

These results are then compared to the air quality outcomes of
the same model using the AQMD emission inventory as shown in
Fig. 3. Note that the figure shows the difference between the model
results using the emissions from the current methodology from
that using the AQMD inventory. The errors in estimating NOx are
less than 8% (maximum error of less than 200 kg/day out of the
average of 2000 kg/day) throughout the basin over the time period
considered, and PM2.5 errors are less than 2.5% (1 lg/m3 maximum
error, the maximum concentration can reach 50 lg/m3) through-
out the spatial domain and temporal period considered. The 8-h
ground level ozone nearly matched the ARB’s results with a maxi-
mum difference of less than 1 ppb (out of a nominal maximum
100 ppb) in very few locations. The 1-h ground-level ozone predic-
tions also agree with ARB inventory (between 20 and 100 ppb)
with a maximum difference of 1 ppb mostly at one location. These
differences are associated primarily with the difference in dis-
patching a peaking unit located at Anaheim.

From the results provided, it is shown that the current method-
ology agrees well with the previously established models and spa-
tially and temporally resolved data that is available for previous
years.

3.3. Unserved energy and future grid design

Themethod described in Section 2.3 is used for future grid design
for the year 2050. The results for net demand and unserved energy
are shown in Fig. 4a and b, respectively. Negative values in Fig. 4b
show the electricity generation still available, and the positive
values correspond to the amount of electricity demand that could
not be served with the previously installed units, requiring the
installation of more generating units in order to satisfy the demand.
zone between the model results and ARB emission inventory.
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As can be seen from Fig. 4b, at least 4.1 GW of new generation is
required in 2050 (compared to 2010) assuming that the maximum
capacity factor of the units is 0.98. The new power generation units
that are selected to meet this demand vary between natural gas
combined cycle and simple cycle gas turbine power plants. These
technologies are chosen because they provide load-following and
also peaking power to the grid, and are amongst the most
environmentally-friendly types of conventional generation. The
other reason is that base-loading units, such as coal and nuclear,
are being phased out in the state of California especially because
dynamic dispatch is increasingly required as the penetration of
renewable resources increases. Finally there is no acceptable loca-
tion to install base-load power plants inside the balancing area
under study (SoCAB) due to various environmental regulations.
To allocate the new power generation, various combinations of
combined cycles and simple cycle gas turbine power plants with
different capacities were added to the lists of generators and to
the unit characteristics modules and then iteratively running the
algorithm to determine if there is still unserved energy.

The fact that integration of intermittent resources and plug-in
vehicles might require more peaking units is also taken into
account when determining a combination of load-following and
.

peaking units for the suite of new generating units (strategy
described in [5,49] is used to determine PEV demand). Three and
a half GW of combined cycles and one GW of simple cycle gas tur-
bine power plants were determined to be required by the final
results of the algorithm to meet all demand. The combined cycle
plants include four 500 MW units and three 550 MW units. The
simple cycle gas turbines include ten 50 MW, three 100 MW, and
one 200 MW unit. To locate the new generation, the method in
[49] is used to establish the eligible locations based upon land-
use and size of the generator that can be accommodated by the
footprint and capacity of retired units. In this model, it is assumed
that in order to accommodate new generation and avoid conges-
tion, the transmission system capacity will be increased or new
transmission lines added.

The new generators are added to the model, and appropriate
values for ramp rates and cost curves are automatically assigned
based upon the type of the generator and fuel specified. These
new units are assumed to be of advanced technology with pro-
jected characteristics for a future year (2050 in this case) which
are specified in the Appendix A.

Now that the new generators are added to the appropriate mod-
ule, the unserved algorithm is run again to ensure that the new
capacity installed helps satisfy the demand completely with no
unserved energy. The results are shown in Fig. 5. It is evident that
the demand is completely met with no unserved energy.

3.4. Dispatch schedule

After the new capacity is added to the model, the characteristics
and physical properties of these new generators are determined
and added to the dispatch model. The results (by generator type)
associated with the 2050 base case are shown in Fig. 6 for the eco-
nomic, NOx, and CO2 dispatch strategies. The intermittency of wind
is not evident in this figure because of the very low penetration of
wind energy in the base case (7%). Since the penetration of hydro
and biomass resources remained unchanged form 2010, they con-
tribute very little to the total generation. While the imports are not
shown in this figure, they have the same profile presented in Fig. 4a
for all dispatch strategies. It must be noted that, in practice,
imports are settled ahead of time, and thus in this methodology
these energy imports are represented as being dispatched ahead
of all in-basin generators.

The use of peaking units is increased in the NOx dispatch sce-
nario because the steam turbines have significantly higher NOx
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Fig. 6. Electricity generation by type, Base Case 2050. (a) Economic dispatch, (b) NOx dispatch, and (c) CO2 dispatch.

Table 1
Emission factors (kg/MW h) for operation at cf = 1 [67,68].

NOx VOC CO SOx PM10 CO2e

Gas turbine 0.127 0.024 0.167 0.006 0.061 528.8
Gas turbine-advanced 0.045 0.014 0.086 0.004 0.028 460.0
Combined cycle 0.033 0.136 0.009 0.004 0.019 391.8
Combined cycle-advanced 0.029 0.008 0.0025 0.002 0.014 354.8
Biomass 0.034 0.004 0.036 0.009 0.091 0
Steam turbine 0.163 0.026 0.361 0.006 0.008 521.5
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emissions factors compared to the gas turbine peaking plants.
These units have replaced the retired units of the same type and
are very few in numbers in the grid mix. Also at high capacity fac-
tors, the advanced peaking gas turbine power plants have lower
NOx emission factors compared to aging combined cycles operating
at lower capacity factors. Since peaking unit are, in general, smaller
units (50, 100, or 200 MW) compared to combined cycle power
plants, for a specific load, they are able to operate at a higher col-
lective capacity factor, and thus the fleet will have a lower average
NOx emission factor.

In the CO2 dispatch case, the generation from biomass generat-
ing units is higher, because their CO2 emission factor is zero. The
use of peaking units is increased but not as much as in the NOx dis-
patch case. The reason is that the emission factor associated with
older gas turbine power plants is higher than the rest of the gener-
ators, while the advanced gas turbines have a CO2 emissions fac-
tors that are lower than that of a steam turbine power plant. To
better understand the results, NOx and CO2e emissions factors for
various technologies operating at nameplate capacity are shown
in Table 1. From the emission factors associated with other pollu-
tants, it is evident that the results would have been slightly differ-
ent if the objective were to minimize other pollutants.

3.5. Economic metrics

The objective of the dispatch model developed, as described
above, is to find a dispatch schedule that minimizes the total cost
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or environmental impacts of the system. The results of the dispatch
model include the total payment of the market operator to the gen-
erators. Two methods for compensating generators that are cleared
in the market are simulated in this study: (1) pay-as-bid, and (2)
market clearing price (MCP). In the first method, each generator
gets compensated based upon the bid they had placed, therefore
the results are representative of ‘‘actual” cost of the system. In
the second method, all generators get paid the same $/MW h
according to the MCP. MCP is the price in a market at which the
supply equals the demand. All demand customers pay this price,
and all supply customers operate at or below this price. In other
words, MCP is the price of the last (and the most expensive) gener-
ator that is cleared in the market.

The results using pay-as-bid payment method for 2050 base
case are shown in Fig. 7 for economic and environmental dispatch
strategies. Note that these results also represent the average sys-
tem cost and include only payments to conventional generation
and not to renewable (must-take) generation since none of these
scenarios result in curtailment. Therefore, the renewable resources
generation profile and associated costs are the same for all three
dispatch strategies. The price (including the payment to the renew-
able resources based on their actual LCOE) is shown in Fig. 8. It is
evident that the price at off-peak hours is dominated by the price
of wind (a high wind day is shown).

Fig. 7 shows that, as expected, the economic dispatch results in
the lowest prices and follows the demand curve showing that, at
high demand times, more expensive generators come online to sat-
isfy the demand. The decrease in price after the peak demand
hours is slower than the decrease in demand since the expensive
generators that come online at peak demand cannot all be turned
off at once because of the minimum operation time constraints.
Environmental dispatch strategies are slightly more expensive,
with the CO2 dispatch being the most expensive on average mainly
because the overall capacity factor of the system is lower. This
occurs because in CO2 dispatch, the number of units that are online
is greater compared to NOx dispatch.

It is interesting to note that, unlike the price of conventional
generators which follows the demand curve, the grid price essen-
tially follows the wind profile when including all of the generators
(see Fig. 8). At early hours of the day, when wind is available and
the less expensive in-basin units are online, the overall production
cost is dominated by the price of wind. Under these conditions, the
production cost increases compared to in-basin generators because
the wind power is more expensive than the online in-basin
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generators. At peak demand times, the availability of wind energy
decreases, and the overall production costs remain virtually
unchanged from the case of only considering in-basin generators,
and thus the overall price follows the wind profile even at low
wind power penetrations such as that included in this base case.

To determine the MCP, the payment a generator should receive
is calculated and then divided by the amount of power that each is
generating in order to determine the adjusted cost per megawatt
hour (MW h) which includes the start-up cost as well. The equa-
tion to calculate this adjusted cost is shown in Eq. (11). The
F
d

adjusted cost is calculated for all generators that are cleared in the
market. At each time step the generator with the highest adjusted
cost determines the MCP.

Adjusted Cost¼Production cost $
MWh

� ��Generation ðMWhÞþStart up cost ð$Þ
Generation ðMWhÞ

ð11Þ
The results for the economic dispatch using MCP method for

payment are shown in Fig. 9a along with the number of online
units (Fig. 9b) to better explain the results.

The MCP is substantially different from the production costs.
Note that the start-up costs of wind, solar, and hydro are assumed
to be insignificant and, as a result, have little effect on the MCP. The
market clearing price is almost uniform throughout the day except
for some intervals. From 10 am to 2 pm, although the demand
starts increasing, the MCP decreases because very few new gener-
ators come online, and those which were online before, operate at
higher capacity factors reducing the operation costs and ultimately
the MCP. To meet the peak demand, a significant number of gener-
ators have to come online to satisfy the demand, increasing the
MCP significantly. After 5 pm, the same generators that came
online at peak, operate to satisfy the demand but at much higher
capacity factors which reduce the MCP due to lower start-up cost



Table A.1
Annual growth rate associated with California’s electricity demand [69].

High case Mid case Low case

2012–2024 1.56% 1.15% 0.79%
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and lower production costs. Late at night, the generators operate at
low capacity factors, increasing the MCP.

The trend observed in real markets might be different from
what is presented so far in this section. In real markets, the price
curves depend upon time of day as well as capacity factors because
market participants typically adjust their bids based upon the pro-
jected demand profile. For example, a peaking unit will most likely
submit a higher bid into the market at peak demand times to max-
imize its revenue, and place a much lower bid during off-peak
hours to have the chance of getting cleared in the market. In this
research, the cost curves are assumed to be actual operation costs
and thus do not vary with time of day. To further demonstrate this
point, a case is assessed in which generators’ bids in the market fol-
low the demand profile assuming that the bid submitted by a
specific generator is never lower than its actual cost of generation.
The results for the MCP for this case are shown in Fig. 10.

3.6. Criteria pollutant emissions

The results of the dispatch model are used as inputs to the emis-
sions module (described in the Appendix A) to calculate the hourly
emissions from each generator. Emissions from generating units
include operating emissions, start-up emissions, and ramping
emissions. The operating emissions depend upon the instanta-
neous capacity factor of the electricity generating unit and increase
as the capacity factor is reduced from its ideal value of 1 (part-load
emissions). The importance of including part-load, ramping and
start-up emissions in the analysis is shown in Fig. 11. In Method
1, average emission factors are used, in Method 2 start-up and
ramping emissions are added, and Method 3 includes part-load
emissions, start-up emissions, and ramping emissions.

The dispatch model is run for the entire summer for various dis-
patch strategies, and the daily NOx emissions for an average sum-
mer day are shown in Fig. 12. The emissions calculated include
part-load emissions, ramping, and start-up emissions. This figure
shows that although NOx emissions are higher in CO2 dispatch case
compared to NOx dispatch case, they are still significantly lower
than the economic dispatch case. By comparing NOx emissions
from economic and environmental dispatch strategies, it is evident
that it is possible to reduce emissions significantly (up to 55%) by
just changing the dispatch strategy and without any additional
capital investment.

4. Summary and conclusions

In this paper, a spatially and temporally resolved resource dis-
patch methodology is developed. In addition to a unit commitment
algorithm, this methodology includes multiple modules to deter-
mine characteristics of electricity and transportation sectors in
future scenarios. The methodology is applied to 2050 base case,
and economic and environmental implications of various dispatch
strategies are assessed. The following are the conclusions of this
study:

� A spatially and temporally resolved model is required to cor-
rectly capture the electricity market and dispatch of resources.
Electricity is different from most other commodities since the
storage of electricity is not economic, and electricity is sub-
jected to various physical constraints associated with the gener-
ators and the transmission system. Temporal resolution is
required to take into account the constraints associated with
generators such as ramp rates and minimum operation times.
To account for transmission constraints, it is necessary to know
the location of generators, requiring spatial resolution. Simpli-
fied models can ignore one or more of these important con-
straints of the system and thereby render results inconsistent
with real operations. Furthermore, spatial and temporal resolu-
tion is necessary to conduct air quality assessments.

� Better grid management is required in order to take advantage
of all available resources.
In 2050, the electricity demand in the balancing area under
study, will be on average 60% higher than 2010. However, using
the dispatch model for optimal grid design, it is shown that the
installed generation needs to increase by only 25% (ancillary
services are treated separately in both cases). This shows that,
currently, the resources available are not being used in an opti-
mized fashion. With optimized dispatch and appropriate grid
management, future resources will be used to their capacity
and moreover, the reliability of the grid will be increased.

� With appropriate planning, congestion in the transmission sys-
tem can be avoided.
Planning for transmission infrastructure must occur before new
generating units and power plants are put in place. In this
research, none of the scenarios studied result in significant
increase in transmission system congestion, simply because
with each new generator installed, the minimum required
transmission capacity was also added to the model, showing
the importance of system-wide planning.

� A mix of economic and environmental dispatch portends a suc-
cessful strategy for reducing emissions while keeping the over-
all cost of the system at acceptable levels.
It was shown that it is possible to reduce emissions from the
grid significantly by changing the dispatch strategy and without
additional investment. While environmental dispatch alone
results in lower emissions, the cost of generation is increased.
A compromise that takes into account both the cost of genera-
tion and the emission factors of generating units by assigning a
value (or penalty) for pollutants emitted by generators is sug-
gested by the results. Carbon or other emissions pricing por-
tends a viable option.
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Appendix A

A.1. Electricity demand

One of the important constraints of the dispatch model is the
balance between demand and supply (Eq. (5)). To make sure that
generation procured in the market matches the demand, the elec-
tricity demand needs to be included in the model as an input. In
order to forecast the future electricity demand, California Energy
Commission (CEC) forecasted demands are used and extrapolated
up to 2050 [69]. The annual electricity demand growth rates are
shown in Table A.1 for various cases studied by the CEC.

The method to calculate and project the electricity load associ-
ated with the balancing area under study (the SoCAB) is based on
the fact that the electricity consumption per capita has been con-
stant (in some cases even reduced) in the state of California and
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is described in detail in Razeghi et al. [44]. In Fig. A.1 the forecasted
demand for the state of California is shown for the month of August
in 2050, as well as electricity demand of the SoCAB. The demand
profile has a time resolution of 5 min and it has been smoothed
out using a central moving average to get a more realistic profile.

A.2. Cost module

The objective of a SCUC is to find a schedule that minimizes the
social cost of the system which in ideal situations is equal to the
operation cost. The operation cost includes production cost and
start-up cost. The production cost is defined as:

Production cost ¼ heat rate� fuel cost

This approach is very simple but alternative technologies such
as wind cannot be compared to conventional generation using this
metric. When various technologies with different scales of opera-
tion, different investment and operating time periods, are to be
compared, Levelized Cost of Energy (LCOE) is used. The LCOE is
the cost that, if assigned to every unit of energy produced will
equal the total lifecycle cost (TLCC) when discounted back to the
base year [70]. In terms of electricity, LCOE is the constant unit cost
($/MW h) of a payment stream that has the same present value as
the total cost of building and operating a generating plant over its
life. It is a very useful financial metric in comparing technologies
with different operating characteristics.

The LCOE depends on the capital costs, taxes, incentives, opera-
tion and maintenance costs, and revenue requirements. Eq. (A.1)
shows how the capital recovery factor (CRF) is calculated based
on the discount rate (dr) during the analysis period n which is usu-
ally the same as the project life.

CRF ¼ drð1þ drÞn
ð1þ drÞn � 1

ðA:1Þ

If the annual energy generated is assumed to remain constant
over time, LCOE can be calculated from Eq. (A.2) in which AE is
the annual energy produced by that unit.

LCOE ¼ TLCC
AE

� CRF ðA:2Þ

In real-life operations, the annual output of a specific unit
decreases each year. When taking this degradation into account
the LCOE is calculated from Eq. (A.3). In this equation, l is the pro-
ject life.
Xl

i¼1

AEi � LCOE

ð1þ drÞi
¼ TLCC ðA:3Þ

In calculating the LCOE for generating units, the most important
factors that must be included are capital cost, fixed O&M cost, vari-
able O&M cost, capacity factor, heat rate, and fuel cost. A simple
LCOE (sLCOE) can be calculated from Eq. (A.4) for initial estimate:

sLCOE ¼ Capital Cost� CRFþ Fixed O&M
0:87 Capacity Factor

þ Fuel Cost

�Heat Rate ðA:4Þ
A more thorough way to calculate the LCOE is presented in Eq.

(A.5).

LCOE ¼ Capital Cost� CRF
Capacity� Capacity Factor�Hours=Year

þ Land Lease Costþ Levelized O&M

þ Levelized Replacemnt Cost� Production Tax ðA:5Þ
In this research, it is assumed that the market participants use

the LCOE associated with their unit as the bid they submit to the
ISO. Thus, the LCOEs associated with each type of technology need
to be forecasted. To do this, an extensive literature survey was
done to compare projections of capital costs, fixed O&M, variable
O&M, unit’s lifetime, and other financial metrics that are required
to calculate the LCOE. Using these data, the LCOE for each genera-
tor type was forecasted. The results for 2050 are shown in Fig. A.2
and are compared to those of 2010. The error bars are used to com-
pare the results of LCOE from this study to those calculated in the
literature [68,71–78].

The LCOEs shown in Fig. A.2 are calculated assuming that the
generating unit is operating at its expected capacity factor. These
capacity factors are shown in Fig. A.3. It must be noted that in
the case of a gas turbine, this capacity factor represents the capac-
ity factor of the unit when it is operating and not the annual aver-
age capacity factor which is much lower because these units only
come online during peak-demand hours. As the capacity factor
decreases from the ideal 100%, the heat rate of a thermal unit
increases. Therefore, for generating the same amount of electricity,
more fuel is required [77,79]. Moreover, the capacity factor affects
the annual produced energy and as a result it affects the LCOE. The
LCOE for various capacity factors for each type of technology is cal-
culated to determine the cost curve for each generator.

In Fig. A.4, the cost curve projections for 2050 are shown for
various technologies. Similar curves are produced for other
resources (coal, nuclear, hydro, wind, and solar thermal) as well.
These curves are used as the cost curves that generating units sub-
mit to the market.
F
p



$0.00
$0.50
$1.00
$1.50
$2.00
$2.50
$3.00
$3.50
$4.00
$4.50

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

2010 2020 2030 2040 2050 2060

$/
M

M
B

tu
 (B

io
m

as
s)

$/
M

M
B

tu
 (N

G
)

Year

Natural Gas Biomass

Fig. A.5. Price of natural gas and biomass [77].

0

0.2

0.4

0.6

0.8

1
C

ap
ac

ity
 F

ac
to

r

2010 2050

Fig. A.3. Expected capacity factor for different technologies in 2010 and 2050
projection.

0

100

200

300

400

500

600

10% 30% 50% 70% 90%

LC
O

E
 ($

/M
W

h)

Capacity Factor

Geothermal
Solar PV
Combined Cycle
Gas Turbine

Fig. A.4. Cost curves projections for different types of generators (2050).

G. Razeghi et al. / Applied Energy 178 (2016) 540–556 553
Start-up costs are also important especially for combustion
(gas) turbines that are being used as peaking units. For combustion
turbines and combined cycle units, it is assumed that 2.8 MMBtu
(2.95 kJ) of the fuel per MW of capacity is required for each
start-up. Using the fuel price projections (Fig. A.5) for natural gas
and biomass, the start-up costs for each generator can be
calculated.

For generators that provide combined heat and power (CHP)
also known as cogeneration (or cogen), the LCOE is adjusted to
reflect that some of the heat output is being used. EPA’s eGRID
database includes the ratio of electricity to heat for individual
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CHP units. From this ratio, the amount of fuel that needs to be
burnt in a boiler with 75% efficiency to produce the same amount
of heat, is calculated. The cost of this amount of fuel is calculated
and deducted from the fuel cost used in the LCOE calculations.

A.3. Imports

In Fig. A.6, the sources of California’s electricity are presented
for August 2010. It is evident that the imports, more or less, follow
the same profile as the demand. This is shown in Fig. A.7 where the
California’s electricity demand and imports are shown for three
consecutive days in August 2010. For the state of California, it is
assumed that the capacity for imports increases with the demand.
This results in 60% increase in imports capacity from 2010 to 2050.
It must be mentioned that this requires extensive upgrade of
the transmission system especially since the import lines at
southwest and southern California, and Humboldt region in the
northwest of the state, are historically major areas that experience
congestion.

In the current study, ‘‘imports” only refer to non-renewable
imports. Imports are settled ahead of the real-time dispatch. For
the following reasons, it is assumed that the imports vary linearly
with the demand until the capacity is reached, and transmission
capacity to outside SoCAB remains unchanged:

� Obtaining licenses required for building transmission lines
takes a long time,
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Table A.2
Start-up emissions penalty (hours of equivalent full-load operation) [79].

CO2 NOx

Combined cycle 0.3 6.1
Gas turbine 0.4 1.8
Steam turbine 0.9 0

Table A.3
Start-up emissions penalty (hours of equivalent full-load operation per ramp) [79].

CO2 NOx

Combined cycle 0.01 0.08
Gas turbine 0.01 0.01
Steam turbine 0.01 0.08
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� Environmental concerns, and
� Assessing an air quality episode in the basin requires a high
generation inside the basin. (This capacity is determined using
historical data as mentioned in Razeghi et al. [44].)

During off-peak hours, it is assumed that the imports are pro-
vided by load-following units with an average of expected capacity
factor (Fig. A.3), and during peak hours, the extra import is
assumed to be provided by peaking (and more expensive) units.
In all cases, a 5% transmission loss in assumed for the imports
[82]. When the amount of imports is less than 10% of the total
import capacity, it is assumed that the generators providing the
imports are operating at minimum allowable capacity factor,
resulting in increase in the price of imports per MW h.

A.4. Generating unit characteristics

This module combines all the data gathered for individual gen-
erators into an organized database ready to be used in the opti-
mization process. For each generating unit, this module includes
the name, nameplate capacity, type, fuel, minimum and maximum
capacity factors, and ramp rates associated with that unit. This
module also includes the location of the generators (latitude, lon-
gitude) since the dispatch model is both spatially and temporarily
resolved. Moreover, major transmission infrastructure components
between generators are added to take into account the transmis-
sion constraints.

In this module, the age of a generating unit is calculated based
on the year it first came online. Units older than 40 years (or less,
based on the type of generator), are automatically retired and
replaced with new generators of the same type and nameplate
capacity but with improved operating characteristic (lower heat
rate and emission factors).

A.5. Emissions module

This module includes the emission factors for individual gener-
ators for criteria pollutants such as NOx, SOx, and CO, and also
greenhouse gas emissions. The annual average emission factors
are derived from EPA’s eGRID2012 [83] for each generator. For gen-
erators missing from the database or the newly installed units,
generic values presented in Table 1 of the paper are used.

Emission factors also depend on the capacity factor. The adjust-
ments to emissions as a function of capacity factor (power output)
are done mainly using the results of the Western Wind and Solar
Integration Study (WWSIS) [79]. Ramping also affects the amount
of pollutants that a generator emits. The ramping and start-up
penalties taken into account in this study are shown in Tables
A.2 and A.3.
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