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Abstract

With expanded access to, and decreased costs of, mass spectrometry, investigators are collecting and analyzing multiple
biological matrices from the same subject such as serum, plasma, tissue and urine to enhance biomarker discoveries,
understanding of disease processes and identification of therapeutic targets. Commonly, each biological matrix is analyzed
separately, but multivariate methods such as MANOVAs that combine information from multiple biological matrices are
potentially more powerful. However, mass spectrometric data typically contain large amounts of missing values, and im-
putation is often used to create complete data sets for analysis. The effects of imputation on multiple biological matrix ana-
lyses have not been studied. We investigated the effects of seven imputation methods (half minimum substitution, mean
substitution, k-nearest neighbors, local least squares regression, Bayesian principal components analysis, singular value
decomposition and random forest), on the within-subject correlation of compounds between biological matrices and its
consequences on MANOVA results. Through analysis of three real omics data sets and simulation studies, we found the
amount of missing data and imputation method to substantially change the between-matrix correlation structure. The
magnitude of the correlations was generally reduced in imputed data sets, and this effect increased with the amount of
missing data. Significant results from MANOVA testing also were substantially affected. In particular, the number of false
positives increased with the level of missing data for all imputation methods. No one imputation method was universally
the best, but the simple substitution methods (Half Minimum and Mean) consistently performed poorly.

Key words: mass spectrometry; missing data; imputation; multivariate analysis; within-subject correlation; metabolomics

Introduction

Advances in and declining costs of mass spectrometry have
supported an increase in the number of mass spectrometric
(MS) omics studies. As part of this increase, some investigators

are collecting and analyzing multiple biospecimen types (herein
referred to as ‘matrices’) from participating subjects such as
serum, plasma, tissue and urine for multi-domain assessment
[1–3]. By investigating multiple biological matrices simultan-
eously, investigators hope to enhance discovery of promising
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biomarkers for disease, understanding of disease processes and
mechanisms and identification of therapeutic targets.

In analyzing multi-matrix omics data from the same sub-
jects, investigators typically analyze each matrix individually
and then qualitatively compare results across the matrices
[3–6]. However, this approach does not take advantage of the in-
herent correlation between biological matrices collected from
the same subject. Use of multivariate methods such as multi-
variate analysis of variance (MANOVA) has the potential to in-
crease power to reveal significant results over independent
analyses. Further, multivariate methods could preserve power
by avoiding adjusting for multiple testing across matrices, al-
though many authors restrict such adjustments to each matrix.

One challenge in analyzing MS data using multivariate
methods is the large amount of missing data [7, 8] because most
statistical procedures require complete data. Various strategies
are available for handling missing data [8, 9]. A common ap-
proach is to use a combination of dropping compounds with
missing values above a predetermined percentage and imputing
any remaining missing values for the compounds retained for
statistical analysis. A wide variety of imputation methods have
been developed and extensively evaluated particularly in the
microarray literature [10].

MS data are similar to microarray data in that both yield
quantitative measures of many individual compounds from a
single sample and are commonly analyzed with similar tech-
niques. However, there are marked differences in the data-
generating processes of these two data types and important
differences with respect to missing values. First, MS data typic-
ally has a much larger amount of missing data than microarray
data. Missing values commonly account for <10% of microarray
data, but in MS studies, 20–50% missing values are common
[11, 12]. Imputation procedures that perform well with small
amounts of missing data might not perform favorably with
larger amounts. Second, and more importantly, the missing
data mechanisms differ between the two technologies. In
microarray studies, missing values arise owing to a variety of
technical problems with no one mechanism dominating [10,
13]. The patterns of missing values in microarray data have
been largely considered to be missing completely at random or
missing at random [13] although Scheel noted that some miss-
ingness in microarray data can be nonrandom, occurring when
a signal is too low or irregular to distinguish it from background
[14]. In MS data, missing patterns have been shown to be
strongly nonrandom owing to markedly increased missingness
with declining compound abundance [7, 11]. As a result of these
differences, conclusions on the performance of imputation
methods based on microarray data investigations might not ad-
equately capture performance when applied to MS data, and
understanding the performance of imputation methods in the
context of MS data is critical.

Recently, several studies have investigated imputation for
MS data [7, 15, 16]. These studies have focused on the degree of
deviation between true and imputed values [7, 11] and the sub-
sequent impacts on significance testing [7, 16] or the impact of
imputation approaches on within-matrix multivariate analyses
such as partial least squares regression or principal components
analysis [7, 15, 17]. However, imputation could also change the
correlation structure of the data, and for studies involving mul-
tiple biological matrices, affect the between-matrix correlation
for a compound. Acceptable performance of imputation meth-
ods within a biological matrix in terms of normalized root mean
squared error, identification of differentially regulated com-
pounds, or classification cannot be assumed to preserve the

between-matrix correlation. No previous studies have investi-
gated the impact of imputation methods on the correlation of
compounds quantified using MS between biological matrices.
Because the results of multivariate statistical methods that in-
tegrate results from multiple matrices such as MANOVA are
influenced by the between-matrix correlation structure [18],
and with multi-matrix omics studies becoming more common,
it is important to understand the impact of imputation on the
between-matrix correlation and its consequence in inferential
testing. Therefore, we investigated the effects of imputation of
(mainly not random) missing values on intra-subject correlation
between different matrices in multivariate analysis using simu-
lations with different data configurations and real MS omics
data.

Methods

We used three real MS omics data sets to assess the effect of
three imputation methods on the between-matrix correlation
structure and MANOVA results. Characteristics of the three real
data sets are described below and summarized in Table 1. We
then conducted a simulation study to further understand the ef-
fect of imputation under a range of missingness for data sets
with known correlation structures and effect sizes.

Real data sets

Renal cell carcinoma xenograft metabolomics
A metabolomics study of tissue, serum and urine was con-
ducted of renal cell carcinoma using xenograft and sham sur-
gery control mice. Human Caki-1 cells were xenografted into
seven nude mice and seven mice were subjected to sham sur-
gery. All mice were sacrificed 34 days after surgery when the
xenografted animals became moribund. Terminal serum was
collected, and tumor (from xenografted animals) and normal
kidneys (from sham surgery animals) were removed for tissue
analysis. Urine was collected 32 days after surgery (2 days be-
fore sacrifice). Nontargeted metabolomics was accomplished
using three different platforms: ultra-high performance liquid
chromatography/tandem mass spectrometry (UHLC/MS/MS2)
optimized for basic species, UHLC/MS/MS2 optimized for acidic
species and gas chromatography/mass spectrometry. Urinary
metabolite values were creatinine normalized to account for
urine concentration differences among samples, and tissue
samples were normalized to equal mass before chromato-
graphic analysis. Detailed information on the experimental
procedures and metabolomic platforms, including sample ex-
traction process, instrumentation configurations and condi-
tions and software approaches for data handling, were
previously described in detail [4].

Lung cancer serum and plasma glycomics
Blood samples (serum and plasma) were collected from 43 sub-
jects diagnosed with non-small-cell lung cancer (NSCLC) adeno-
carcinoma and 43 healthy controls recruited during a 4-year
period (2010–14) from the UC Davis Medical Center and Cancer
Center Clinics. Cancer patients were frequency matched with
controls for gender, age and smoking history. Glycomics ana-
lysis was performed by enzymatic release of the N-glycans fol-
lowed by purification and subsequent analysis using an Agilent
nanoLC coupled to an Agilent time-of-flight mass spectrometer
(nLC-TOF-MS) equipped with a Chip-cube. Glycan separation
was performed using a porous graphitized carbon stationary
phase on a chip. Further information on sample processing, the
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MS analysis and additional data processing is contained in
[19, 20].

Lung cancer blood glycomics
Serum, plasma and dried blood spots were obtained from 10
subjects with NSCLC adenocarcinoma and 10 healthy controls
matched for gender, age and smoking history. Glycomics ana-
lysis was performed using nLC-TOF-MS as described in the pre-
vious section. Collection, processing and analysis of serum and
plasma samples is described in more detail in [19, 20] and in [21]
for the dried blood samples.

Inducing and imputing missing values

To prevent introduction of undesired artifacts in this study, we
restricted these data sets to compounds detected in all samples
in all biological matrices (Table 1) and then created data sets
with 10%, 25% and 50% missing values, a range reflecting our
real data sets (Supplementary Table S1). We generated missing
values through a restricted random selection procedure similar
to [14]. In our approach, values below a predetermined thresh-
old were randomly selected and set to missing. Specifically, to
generate 10% total missing, intensity values below the 25th

quantile of each biological matrix were randomly selected and
set to missing. To generate 25% missing, we sampled below the
50th quantile and for 50% missing we sampled from values
below the 75th quantile. This approach yielded patterns of miss-
ingness similar to the nature of real data sets where the amount
of missing values tends to increase with declining intensity
[7, 16] and some compounds have no missing values as previ-
ously shown in [19] from the experiments by our group
(Supplementary Figure S1).

We imputed missing values using seven methods that have
been used in omics studies: (1) substituting one-half the min-
imum compound-specific value (Half Minimum), (2) mean sub-
stitution where we substituted the missing value with the
cancer group-specific mean of observed values for the com-
pound (Mean), (3) k-nearest neighbor (KNN) [10], (4) local least
squares regression (LLS) [22], (5) Bayesian principal component
analysis (BPCA) [23], (6) singular value decomposition (SVD) [10]
and (7) random forest (RF) [24]. These methods encompassed a
range of approaches including simple substitution methods
(Half Minimum, Mean), local similarity methods (KNN, LLS, RF)
and global structure methods (BPCA, SVD). KNN imputation was
conducted using the impute package in R [25] using 10 neigh-
bors and with the maximum level of missing allowed for a com-
pound before mean imputation set at 80%. For LLS, we used the
llsImpute function from the pcaMethods package in R [26].
Spearman’s correlation was used to identify the five nearest
neighbors using all compounds. Compounds were centered to a
mean of 0. BPCA and SVD imputation methods were imple-
mented using the pca function in the pcaMethods package in R.

For both methods, three components (principal components or
latent variables) were used and compounds were centered and
scaled to unit variance. We used the missForest function in the
missForest R package to conduct RF imputation [27].

Analysis of real data sets

For the three real data sets, we induced 10%, 25% and 50% miss-
ing values and imputed the missing values using the seven
methods. We first compared the between-matrix correlations of
the full and imputed data sets. Then, for each compound, we
tested for differences between cancer and control subjects using
a MANOVA and compared results from the full and imputed
data sets. We defined true positives as the number of the sig-
nificant results (P < 0.05) from the full data set that were also
significant with the imputed data set and false positives as the
number of significant results in the imputed data set that were
not significant in the full data set. The numbers of true and false
negatives also were calculated. Intensity values were log2 trans-
formed for all analyses to accommodate the underlying as-
sumption of MANOVA. In addition to the MANOVAs, we used
t-tests to conduct single matrix tests using non-missing values.
We identified a compound as significantly differentially regu-
lated if the t-test was significant in any matrix based on a
Bonferroni adjusted threshold.

Simulation study

A simulation study was conducted to measure the effects of im-
putation on the between-matrix correlation and MANOVA
results under known conditions. For our correlation investiga-
tions, we simulated 30 samples from a bivariate standard nor-
mal distribution with correlation of 60.75, 60.5, 60.25 and 0.
These values were exponentiated to yield log normal distribu-
tions. One thousand data sets, each consisting of 100 com-
pounds, were simulated. Each data set represented a single
experiment that identified 100 compounds in two biological
matrices from the same subject. Missingness levels of 10%, 25%
and 50% were induced in the same manner as for the real data
sets and imputed with the seven methods. We graphically com-
pared correlations of the full data set to the imputed data sets.

For our MANOVA investigations, we simulated correlated
data for two biological matrices from the same subject with sub-
jects in two conditions (e.g. cases versus controls). We simu-
lated data sets consisting of 15 samples per group from a
bivariate normal distribution with variances of 1 and between-
matrix correlations of 6 0.75, 6 0.5, 60.25 and 0. ‘Controls’
were always set to have a mean 0; ‘Cases’ had (1) a mean of 0.5
in both biological matrices or (2) in only one of the biological
matrices. Missingness levels of 10%, 25% and 50% were induced
as before and the bivariate normal values were exponentiated
to yield log normal distributions. We simulated 1000 data sets,

Table 1: Characteristics of real mass spectrometry omics data sets evaluated

Data set Biological
matrices

N Number of
compounds detected
in at least one matrix

Number of
compounds detected
in all matrices

Number of
compounds detected
in all samples
and matrices

Kidney Cancer Xenograft Tissue, Serum, Urine 14 485 100 60
Lung Cancer Serum/Plasma Glycomics Serum, Plasma 86 331 330 51
Lung Cancer Blood Glycomics Serum, Plasma, Dried Blood 20 323 323 27
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each consisting of 100 compounds for each combination of
mean differences, correlation level and missingness level.
Missing values were imputed for each data set of 100 com-
pounds. A MANOVA was applied to log-transformed data and
the average numbers of true and false positives and true and
false negatives were calculated across the 1000 data sets for
each imputation method versus the full data set. Significance
was set at P < 0.05 without adjusting for multiple testing.

Single matrix t-tests using non-missing values were also
conducted.

Results
Effect on correlation estimation

All imputation methods impacted the correlation between bio-
logical matrices observed in the real data sets, acting to reduce
the magnitude of the correlation (Figure 1). The largest
changes to the correlations occurred with the largest level of
missingness. With 50% missing values, some strongly posi-
tively correlated compounds reversed direction to weakly
negatively correlated after imputation (Figure 1). The simula-
tions corroborated these results showing all imputation meth-
ods to cause a general reduction in the magnitude of the
correlation. The degree of change was greater for strongly cor-
related compounds, and also increased with increasing levels
of missingness (Figure 2, Supplementary Figure S2). Notably,
even the direction of the correlation could change with imput-
ation. Half Minimum had the worst performance, resulting in
the largest displacement from the true correlation distribution
(Figure 2 and Supplementary Figure S2). Across all levels of
correlation and missingness, BPCA and RF were best at pre-
serving the between-matrix correlation (Figure 2 and
Supplementary Figure S2).

Impacts on MANOVA results of real data sets

With the real data sets, the level of missingness and the imput-
ation method impacted the results of MANOVAs. In general, as
the level of missingness increased, the number of true positives
decreased and false positives increased (Figure 3). Mean
imputation often yielded the highest number of true positives
but also always had the highest number of false positives,
sometimes with large numbers of false positives. Half Minimum
imputation tended to result in few significant findings, small
numbers of both true and false positives. The remaining meth-
ods provided a more favorable balance of true and false posi-
tives. No one method was consistently best in terms of
maximizing the number of true positives while controlling the
number of false positives, and the relative performance of the
methods varied depending on the data set and level of missing
values. With the Xenograft data set, RF, BPCA and SVD all per-
formed well with high and similar numbers of true positives
and low numbers of false positives at all missing value levels.
RF continued to have high true positives and low false positives
at 10% and 25% missing for the lung cancer serum/plasma gly-
comics data set (LC-SP) data set but performed relatively poorly
at 50% missing. SVD yielded similar performance to RF at 25%
missing, but had the fewest true positives at 10% and 50% miss-
ing. Interestingly, with the lung cancer blood glycomics data set
(LC-DBS) data set, LLS and SVD had the highest true positives at
10%, but LLS had more false positives. At 25% and 50% missing,
KNN and BPCA had similar relatively high numbers of true posi-
tives, but false positives were better controlled with BPCA.

Finally, we compared the MANOVA results using imputed
data to single matrix t-tests with a Bonferroni adjustment. For
almost all data sets and levels of missingness, the MANOVA
procedures using imputed data had higher numbers of true
positives than the single matrix tests. False positives were
largely comparable between the single matrix tests and
MANOVAs except for Mean imputation at 10% and 25% missing.

Figure 1: Comparison of between-matrix correlation of intensity values of glycans measured in plasma and serum of lung cancer patients for the full data set and

imputed data sets with 10%, 25% and 50% missing values after imputation using seven methods (Half Min ¼ Half Minimum imputation; Mean ¼ Mean imputation;

KNN ¼ k-nearest neighbor imputation; LLS ¼ local least squares regression imputation; BPCA ¼ Bayesian principal components analysis imputation; SVD ¼ singular

value decomposition imputation; RF ¼ random forest imputation). Each dot represents a correlation coefficient between plasma and serum for one glycan. The diag-

onal line in each plot depicts equal correlation in the full and imputed data sets. The dashed lines show correlation of 0. Filled dots indicate false positives of a

MANOVA using the imputed data. False positives were defined as glycans found to differ significantly between Cases and Controls with the imputed data set but not

with the full data set.
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At 50% missing, the single matrix tests had fewer false positives
for the Xenograft and LC-DBS data sets but more for the LC-SP
data set than the MANOVA procedures.

True and false negatives mirrored the true and false positive
findings (Supplementary Figure S3). Half Minimum, which had
the lowest power of the methods, tended to have large numbers
of true and false negatives, while Mean imputation, which
yielded many rejections, had relatively small numbers of true
and false negatives with the remaining methods intermediate
to these two methods.

Simulation study of impacts to MANOVA results

Impact of level of missingness
The simulation study provided a better understanding of the ef-
fects of the level of missingness and differences among the im-
putation methods on MANOVA results. There were several
notable patterns. First, consistent with the real data set find-
ings, for all simulation scenarios, the number of false positives
generally increased for all imputation methods as the level of
missingness increased (Figures 4 and 5). BPCA and Half
Minimum were the exceptions, maintaining a consistent false
positive rate regardless of the level of missing values. As with
the real data sets, Mean imputation showed a substantial in-
crease in false positives with increasing missingness, and Half
Minimum had little power to detect significant compounds.

At 10% missing values, the remaining imputation methods
were broadly similar in terms of the number of true and false
positives. SVD, however, did identify a few more true positives

while maintaining the smallest number of false positives.
Differences among the imputation methods became more evi-
dent at 25% and 50% missing. At 25% missing, KNN, SVD and RF
had relatively large numbers of true positives, but among these
three, RF had the smallest number of false positives. LLS de-
tected the smallest number of true positives other than Half
Minimum at 25%, but at 50% missing, BPCA had fewer true posi-
tives. At 50% missing, KNN continued to yield a high number of
true positives but with a fair number of false positives. SVD and
LLS had similar numbers of false positives as KNN at 50% miss-
ing but fewer true positives. BPCA had low power at 50% with
small numbers of true and false positives. At 50% missing, RF
was intermediate, detecting a moderate number of true posi-
tives while controlling the number of false positives
(Figures 4 and 5). These patterns were consistent regardless of
whether Cases differed from Controls in both or only one of the
simulated biological matrices. The true and false negative rates
mirrored the true and false positives and are shown in
Supplementary Figures S4 and S5.

Impact of differential effect sizes
The effect of imputing missing values on MANOVA results
differed depending on whether Cases and Controls had
different means in both biological matrices versus in only
one of the matrices. For the full data sets, when both biolo-
gical matrices differed in the same direction (i.e. Cases
had higher means than Controls in both biological matrices),
the largest number of significant results occurred when the
matrices were strongly negatively correlated (Figure 4).

Figure 2: Comparison of correlation between two biological matrices for 100 simulated compounds with 10%, 25% and 50% missing values after imputation using seven

methods (Half Min ¼ Half Minimum imputation; Mean ¼ Mean imputation; KNN ¼ k-nearest neighbor imputation; LLS ¼ local least squares regression imputation;

BPCA ¼ Bayesian principal components analysis imputation; SVD ¼ singular value decomposition imputation; RF ¼ random forest imputation). True shows the distri-

bution of the correlations of the full data set. Data shown here were simulated from a bivariate normal distribution with a mean of 0 and variance of 1 with correlations

(rho) indicated by the solid horizontal lines of (A) 0.75 and (B) 0.25 and then exponentiated.
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Figure 3: Number of true positives and false positives for MANOVAs applied to three real omics data sets with 10%, 25% and 50% induced missing values imputed using

seven methods (Half ¼ Half Minimum imputation; Mean ¼ Mean imputation; KNN ¼ k-nearest neighbor imputation; LLS ¼ local least squares regression imputation;

BPCA ¼ Bayesian principal components analysis imputation; SVD ¼ singular value decomposition imputation; RF ¼ random forest imputation). Single shows single

matrix results of t-tests using non-missing data with a Bonferroni adjustment to account for testing multiple matrices. The thick, horizontal lines indicate the number

of significant (P < 0.05) MANOVA tests based on the full data set. Xenograft ¼ renal cell carcinoma xenograft metabolomics data set; LC-SP ¼ lung cancer serum/

plasma glycomics data set; LC-DBS ¼ lung cancer blood glycomics data set. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Figure 4: MANOVA results for simulated data sets in which Cases differ from Controls in both biological matrices. The number of (A) true positives and (B) false posi-

tives for MANOVAs applied to simulated data sets with 10%, 25% and 50% induced missing values imputed using seven methods (Half Min ¼ Half Minimum imput-

ation; Mean ¼ Mean imputation; KNN ¼ k-nearest neighbor imputation; LLS ¼ local least squares regression imputation; BPCA ¼ Bayesian principal components

analysis imputation; SVD ¼ singular value decomposition imputation; RF ¼ random forest imputation) are shown. ‘Single’ shows single matrix results of t-tests using

non-missing data with a Bonferroni adjustment to account for testing multiple matrices. The thick dashed or solid horizontal lines indicate the number of significant

(P < 0.05) MANOVA tests based on the full data set; the line colors correspond to the correlations in the legend. Data were simulated from a bivariate normal distribu-

tion with a variance of 1 and between matrix correlations of 6 0.75, 6 0.50 and 0 and then exponentiated. The mean of the Controls in each biological matrix was 0.

The mean of the Cases was set at 0.5 in both biological matrices. For each set of parameters, 1000 data sets, each consisting of 100 compounds, were simulated. A col-

our version of this figure is available at BIB online: https://academic.oup.com/bib.
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As the correlation increases from strongly negative to
strongly positive, the number of significant results declined
(Figure 4). This pattern was also apparent in the imputed
data sets. However, with the imputed data sets there
were large numbers of false positives for large amounts of
missing data, often in equal or greater numbers to the true
positives (Figure 4). This effect was largest for strongly posi-
tively correlated matrices. Further, the reduction in the num-
ber of true positives with increasing missingness was
greatest for strongly negatively correlated matrices
(Figure 4).

The dynamics were different when Cases differed from
Controls in only one of the biological matrices. First, with the
full data set, the number of significant results increased as the
between-matrix correlation became stronger either positively or
negatively (Figure 5). False positives were highest for moder-
ately correlated matrices. Unlike the results when Cases dif-
fered from Controls in both matrices, increasing missingness
reduced the number of true positives by a similar amount
regardless of the correlation.

Comparison of real data and simulation study results
Interpreting the real data analysis results in the context of the
simulation results is complicated by (1) not knowing the true dif-
ferences between Cases and Controls for the real data sets, (2) the
varied correlation levels and direction among the biological
matrices and (3) the absence of a within-matrix correlation struc-
ture for the simulated data that could influence performance of
some of the imputation methods examined. Nevertheless, there

are some similarities. Increased missing values decreased the
number of true positives and increased the number of false posi-
tives for both the real and simulated data sets. Half Minimum
generally had low numbers of true and false positives while
Mean imputation had high numbers of true and false positives.
The largest differences between the simulations and real data re-
sults were for KNN, which had some of the highest numbers of
true positives in the simulated data but was among the lowest
for the real data. SVD had fewer false positives with the real data,
and BPCA had relatively high numbers of true positives with the
real data, with 50% missing but low true positives for the simu-
lated data at this level of missingness. RF and LLS had compar-
able relative performance in the simulations and real data.

In these analyses, we focused on MANOVA performance.
Typically though, investigators independently analyze each bio-
logical matrix. Although a comprehensive evaluation of the
power of MANOVA versus single matrix analysis methods is
outside the scope of this investigation, we did compare
MANOVA results to single matrix analyses of the real data sets.
For the real data sets with no missing values, the MANOVA de-
tected more differentially regulated compounds for the
Xenograft (50 versus 47) and LC_SP data sets (7 versus 4). For
LC_DBS, the MANOVA identified one fewer significant com-
pounds than the five identified through individual-matrix ana-
lysis. These results indicate that when there are no missing
values, MANOVAs can yield higher power than separate ana-
lyses of each matrix. When missing values are present,
MANOVAs cannot be used unless the missing values are
imputed. Imputation can influence the within-subject between-

Figure 5: MANOVA results for simulated data sets in which Cases differ from Controls in only one biological matrix. The number of (A) true positives and (B) false posi-

tives for MANOVAs applied to simulated data sets with 10%, 25% and 50% induced missing values imputed using seven methods (Half ¼ Half Minimum imputation;

Mean ¼Mean imputation; KNN ¼ k-nearest neighbor imputation; LLS ¼ local least squares regression imputation; BPCA ¼ Bayesian principal components analysis im-

putation; SVD ¼ singular value decomposition imputation; RF ¼ random forest imputation) are shown. The thick dashed or solid horizontal lines indicate the number

of significant (P < 0.05) MANOVA tests based on the full data set; the line colors correspond to the correlations in the legend. Single shows single matrix results of t-

tests using non-missing data with a Bonferroni adjustment to account for testing multiple matrices. Data were simulated from a bivariate normal distribution with a

variance of 1 and between-matrix correlations of 6 0.75, 6 0.50 and 0 and then exponentiated. The mean of the Controls in each biological matrix was 0. The mean of

the Cases was set at 0.5 in one biological matrix. For each set of parameters, 1000 data sets each consisting of 100 compounds were simulated. The thick, colored hori-

zontal lines in the true positive figures (A) show the numbers of significant (P < 0.05) MANOVAs based on the full data sets. A colour version of this figure is available

at BIB online: https://academic.oup.com/bib.
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matrix correlation, leading to potentially undesirable effects on
MANOVA results; thus, independent analysis of biological
matrices using only observed values could be more favorable. In
our simulations, in addition to using MANOVA with imputing
missing values, we applied t-tests using non-missing values in
each of the simulated biological matrices. At 10% and 25% miss-
ing, the single matrix procedures had more false positives and
fewer true positives than the MANOVAs. At 50%, the single ma-
trix analyses had fewer false positives than MANOVA’s on data
imputed using Mean, KNN, LSS, SVD and RF but detected fewer
true positives (Figures 4 and 5). The smaller sample sizes associ-
ated with only using observed values reduced statistical power
of the individual matrix analyses (Figures 4 and 5).

Discussion

Imputation is a common approach to handling missing values in
MS data, but before using such a strategy, it is important to under-
stand the potential downstream effects of the imputation on ana-
lytical results. The effect of various imputation approaches on
differential and multivariate analysis results has been extensively
studied when analyzing a single biological matrix [7] but has not
been evaluated for multivariate analysis across multiple biological
matrices. In this study, we investigated the effects of several im-
putation methods in a multiple biological matrix setting and found
that imputation did not preserve the between-biological matrix
correlation structure of the true data and substantially impacted
significance testing results using MANOVA.

We found that imputing missing values reduced the magnitude
of the correlation between biological matrices, resulting in more
weakly correlated compounds. In extreme cases with large
amounts of missing values, strongly positively correlated com-
pounds could become weakly negatively correlated after imput-
ation. The failure of the imputation to preserve the correlation
structure could result from a discrepancy between the
assumptions of the imputation method and inherent mechanisms
producing missing values in MS-generated omics data. In MS stud-
ies, missing values arise from multiple processes including missing
at random and missing not at random processes [11]. Half
Minimum imputation assumes missing data arises from censoring
below a predetermined level of detection set by a signal-to-noise
ratio, while the other imputation methods assume that missing
data arise at random. Because missing values originate from mul-
tiple processes in MS studies, none of these imputation methods
fully reflects the genuine missing data mechanisms at work here.
This discrepancy could contribute to the failure of the imputation
methods to maintain the true correlation structure.

The correlation between variables can substantially affect
MANOVA results. For two variables, Cole et al. [18] found that
when the effect size and direction was similar in the two vari-
ables, MANOVA power is highest when the two variables are
strongly correlated in the opposite direction (i.e. for positive ef-
fects in both variables, power is highest for strongly negatively
correlated variables). If, however, one of the variables has a
weak or no effect, highest power occurs at strong correlations ir-
respective of the direction of the correlation. Clearly then,
changes in the correlation structure owing to imputation can
alter the results of significance testing. All other aspects being
the same (i.e. means and variances), reducing the magnitude of
the correlation would lead to fewer rejections of no difference
when Cases truly differ from Controls in only one of two biolo-
gical matrices. When there are differences in multiple biological
matrices, reducing the magnitude of the correlation would lead
to fewer rejections of no difference for strongly negatively

correlated matrices and more rejections for strongly positively
correlated matrices, assuming mean differences in the same
direction in both matrices.

When MS data are available from multiple biological matri-
ces from the same patient, using a testing procedure that draws
on information in all biological matrices could be advantageous.
However, our results highlight the need to carefully consider
the extent and pattern of missingness and the potential impacts
of imputation on multivariate analysis results. We found that

as the amount of missing data increased, the number of false
positives increased and the number of true positives decreased
substantially, which is an important issue for high-dimensional
data analysis. Similar to other imputation investigations, no
one method was universally optimal [7, 11, 28]. The two substi-
tution methods (Half Minimum and Mean) performed poorly.
With Half Minimum, any missing values for a compound are
imputed with the same small value based on detected com-
pounds, which tends to suppress differences between experi-
mental groups resulting in less statistical power. In contrast,
Mean imputation in which missing values are imputed using
the mean of the experimental group associated with the miss-
ing observation will tend to increase differences between ex-
perimental groups as well as reduce the variance, leading to
more rejections of the null hypothesis of no difference. The glo-
bal structure (BPCA and SVD) and local similarity methods
(KNN, LLS and RF) were more effective than the substitution
methods. By integrating information from multiple similar sam-
ples and compounds, these methods better preserved the be-
tween-matrix correlation structure and MANOVA properties.
Our results underscore the need for further methodological
research in multiple areas including developing imputation
methods appropriate for multiple biological matrix MS-based
omics data with unique missing mechanisms as well as devel-
opment of analytical methods for hypothesis testing of multi-
variate data such as Expectation-Maximization approaches or
two-part statistics that can accommodate missing values
without the need for imputation.

Key Points
• The imputation methods investigated here do not re-

tain the between-biological matrix correlation struc-
ture, and the degree of deviation from the true
correlation structure increases with increasing
missingness.

• Results of MANOVAs are strongly affected by the level
of missingness and the imputation method. In particu-
lar, the number of true positives decreased and the
number of false positives increased as the percentage
of missing values increased.

• No single imputation method was universally the
best, but the simple substitution methods (Half
Minimum and Mean) consistently performed poorly.

• Overall, our study highlights the need to carefully take
into account missingness behaviors when an analysis
method is chosen.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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