Title
Draft genome sequence of the lignin-degrading Burkholderia sp. strain LIG30, isolated from wet tropical forest soil

Permalink
https://escholarship.org/uc/item/5bw3x48h

Journal
Genome Announcements, 2(3)

Authors
Woo, HL
Utturkar, S
Klingeman, D
et al.

Publication Date
2014

DOI
10.1128/genomeA.00637-14

Peer reviewed
Draft Genome Sequence of the Lignin-Degrading \textit{Burkholderia} sp. Strain LIG30, Isolated from Wet Tropical Forest Soil

\textbf{Hannah L. Woo,a,b Sagar Utturkar,b Dawn Klingeman,c Blake A. Simmons,d,e Kristen M. DeAngelis,f Steven D. Brown,b,c Terry C. Hazena,b,c,f,g,h}

Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, USA; Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, California, USA; Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA; Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA; Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA.

\textit{Burkholderia} species are common soil \textit{Betaproteobacteria} capable of degrading recalcitrant aromatic compounds and xenobiotics. \textit{Burkholderia} sp. strain LIG30 was isolated from wet tropical forest soil and is capable of utilizing lignin as a sole carbon source. Here we report the draft genome sequence of \textit{Burkholderia} sp. strain LIG30.

\textbf{Received 4 June 2014 Accepted 6 June 2014 Published 19 June 2014}

\textbf{ACKNOWLEDGMENTS}

Brian H. Davison and Antony V. Palumbo provided guidance.

This work was funded by the Genomic Sciences Program of the Office of Biological and Environmental Research (BER), in the U.S. Department of Energy (DOE), under FWP ERKP752, the Biofuels SFA. The Illumina sequencer and computational infrastructure were provided from the Bioenergy Science Center (BESC), funded under grant ERKFP95, which is a DOE Bioenergy Research Center supported by BER. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. The portion of the work conducted by the Joint Bioenergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

\textbf{REFERENCES}

6. Reference deleted.