Lawrence Berkeley National Laboratory
Recent Work

Title
CRYSTAL FIELD SPLITTING OF ENERGY LEVELS OF THULIUM ETHYLSULFATE

Permalink
https://escholarship.org/uc/item/5ck1d7ts

Authors
Gruber, John B.
Conway, John G.

Publication Date
1959-08-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng-48

CRYSTAL FIELD SPLITTING OF ENERGY LEVELS
OF THULIUM ETHYLSULFATE

John B. Gruber and John G. Conway
August 1959

Printed for the U. S. Atomic Energy Commission
CRYSTAL FIELD SPLITTING OF ENERGY LEVELS
OF THULIUM ETHYLSULFATE

John B. Gruber and John G. Conway

University of California
Lawrence Radiation Laboratory
Berkeley, California

August 1959

ABSTRACT

The "operator-equivalence" method was employed to calculate the splitting of electronic energy levels in Tm \((\text{C}_2\text{H}_5\text{SO}_4)_3\cdot9\text{H}_2\text{O}\). The first-order perturbation treatment predicts the position of the crystal quantum states in reasonable agreement with experiment.
CRYSTAL FIELD SPLITTING OF ENERGY LEVELS
OF THULIUM ETHYLSULFATE*

John B. Gruber and John G. Conway
University of California
Lawrence Radiation Laboratory
Berkeley, California
August 1959
THEORY

In a Tm\((\ce{C_{2}H_{5}SO_{4}})_{3}\cdot9\ce{H_{2}O}\) single crystal, the perturbing influence of the water and ethylsulfate ligands on the energy-level system of the free ion can be shown by expanding the crystal-field electric potential in a series of spherical harmonics. In addition, it has been shown that the point symmetry at the metal-ion site in rare earth ethylsulfates is predominately \(C_{3h}\). Johnsen and the authors have found this to be consistent in the interpretation of the Tm\((\ce{C_{2}H_{5}SO_{4}})_{3}\cdot9\ce{H_{2}O}\) absorption spectra. 4,5

Stevens has used "operator equivalences" to find the matrix elements of \(V_{k}\) between states with the same value of \(J\). 6 Tables of calculated matrix elements for \(V_{2}, V_{4}, V_{6},\) and \(V_{8}\), the nonzero terms for the \(C_{3h}\) calculation, are given in papers by Elliott and Stevens and by Judd. 2,7 Judd has calculated the crystal-field splitting for energy levels of \(\text{Pr}^{3+}\) in \(\text{LaCl}_{3}\) and has given operator-equivalent values for \(3_{H_{4}}, 3P_{2,1,0}, 1P_{2},\) and \(1G_{4}.\) 8 Additional values were calculated by the authors for the intermediate-coupling case for \(3P_{2,3,4}\) (see Table I). Because of the breakdown of L-S coupling it is convenient to label a hybrid level with LSJ values of its principal components. Corrections have been made to the L-S operator-equivalent factors following Judd, and Elliott and Stevens. 8,3 A pure L-S calculation was made for the ground state \(3_{H_{6}}.\)

Once the operator-equivalent factors are known, the crystal-field splittings of the levels can be expressed in terms of four products, \(A_{2}^{0} < r^{2} >,\)

*This work was done under the auspices of the U. S. Atomic Energy Commission.
$A_4^0 < r^4 >$, $A_6^0 < r^6 >$, and $A_6^6 < r^6 >$. For Tm $(C_2H_{5}SO_4)_3 \cdot 9H_2O$, the authors used:

$$A_2^0 < r^2 > = 0 \pm 10 \text{ cm}^{-1} \quad A_6^0 < r^6 > = 40 \pm 10 \text{ cm}^{-1}$$

$$A_4^0 < r^4 > = -40 \pm 10 \text{ cm}^{-1} \quad A_6^6 < r^6 > = 570 \pm 30 \text{ cm}^{-1}.$$

Table I

<table>
<thead>
<tr>
<th>Operator Equivalents for Tm $(C_2H_{5}SO_4)_3 \cdot 9H_2O$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy level<sup>a</sup></td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>3H_6</td>
</tr>
<tr>
<td>1G_4</td>
</tr>
<tr>
<td>3F_4</td>
</tr>
<tr>
<td>3F_3</td>
</tr>
<tr>
<td>3F_2</td>
</tr>
<tr>
<td>1P_2</td>
</tr>
<tr>
<td>3P_2</td>
</tr>
</tbody>
</table>

^aSince $A_2^0 < r^2 > = 0$, all terms involving α in the matrix elements will be zero.

^bPure L-S operator equivalent values.
LIMITATIONS

The uncertainty in the $A_2^0 < r^2 >$ term could allow a small splitting of the $3P_1$ term. However, the experimental results do not seem to indicate a splitting within experimental error. All the splittings have been calculated according to first-order perturbation theory. The strong points of such a treatment are that the crystal quantum states appear in correct order, and in many cases reasonable agreement with experiment has been obtained. Just how rigorous is the assumption concerning the point symmetry C_{3h}, may be open to some question.

Interactions between nearby crystal quantum states of another multiplet of different J have been ignored. The $J \pm 1$ multiplets should be important in the cases of $3P_{2,1,0}$ and $3F_{4,3,2}$, since the spread of crystal quantum states is significant compared to the spin-orbit splitting. Interactions between the $3H_4$ and $3H_5$ on the $3H_6$ may explain some of the disagreement found between experiment and theory for the ground-state multiplet.

Intermediate-field correction was ignored for the $3H_6$ multiplet since the $1I_6$ is some 35,000 cm$^{-1}$ to the ultraviolet. A second-order treatment which would take into account $J \pm N$ terms, and a revised fitting of crystal-field splitting parameters should yield better harmony between theory and experiment.
REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>3P_2</th>
<th></th>
<th>1D_2</th>
<th></th>
<th>3F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>calc.</td>
<td></td>
<td>obs.</td>
<td>calc.</td>
<td>obs.</td>
<td>calc.</td>
</tr>
<tr>
<td>(cm$^{-1}$)</td>
<td>(cm$^{-1}$)</td>
<td>(cm$^{-1}$)</td>
<td>(cm$^{-1}$)</td>
<td>(cm$^{-1}$)</td>
<td>(cm$^{-1}$)</td>
</tr>
<tr>
<td>98</td>
<td>0</td>
<td>45</td>
<td>±1</td>
<td>27971</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>±2</td>
<td>38140</td>
<td>±1</td>
<td>-27900</td>
<td>24</td>
</tr>
<tr>
<td>-65</td>
<td>±1</td>
<td>38059</td>
<td>-11</td>
<td>-27876</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±2</td>
<td></td>
<td>±2</td>
</tr>
</tbody>
</table>

Fig. 1. The 3P_2, 1D_2, 3F_2 levels. The theoretical splitting of a particular J level is given on the left; the observed energy-level scheme on the right. Here μ is the crystal-quantum number.
<table>
<thead>
<tr>
<th>calc. (cm(^{-1}))</th>
<th>(\mu)</th>
<th>obs. (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>14505</td>
</tr>
<tr>
<td>16</td>
<td>±2</td>
<td>14487</td>
</tr>
<tr>
<td>-28</td>
<td>±1</td>
<td>14466</td>
</tr>
<tr>
<td>-86</td>
<td>3</td>
<td>14407</td>
</tr>
</tbody>
</table>

Fig. 2. The \(3F_3\) level.
\[\begin{array}{c|c|c|c|c|c}
\text{calc.} & \text{obs.} & \text{calc.} & \text{obs.} \\
\text{(cm}^{-1}\text{)} & \mu & \text{(cm}^{-1}\text{)} & \mu & \text{(cm}^{-1}\text{)} \\
\hline
1_g^4 & 21379 & \pm 2 & 12763 & \pm 2 \\
97 & 3 & 21341 & \pm 1 & 12720 & 3 \\
63 & 3 & 21279 & \pm 1 & 12704 & 1 \\
14 & \pm 2 & 21255 & \pm 2 & 12649 & \\
-5 & 0 & 21191 & -32 & 3 & 12586 \\
-23 & & & -35 & \pm 2 & \\
-41 & \pm 1 & & -51 & 3 & 3 \\
\hline
\end{array} \]

\[\begin{array}{c|c|c|c|c|c}
\text{3} \;\text{F}^+_4 & & & & & \\
\text{obs.} & \text{calc.} & \text{obs.} & \text{calc.} & \text{obs.} \\
\text{(cm}^{-1}\text{)} & \mu & \text{(cm}^{-1}\text{)} & \mu & \text{(cm}^{-1}\text{)} \\
\hline
-23 & \pm 1 & 21168 & & & \\
\end{array} \]

Fig. 3. The \(1_g^4\) and \(3\;\text{F}^+_4\) levels.
<table>
<thead>
<tr>
<th>calc. ((\text{cm}^{-1}))</th>
<th>(\mu)</th>
<th>obs. ((\text{cm}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>3</td>
<td>±2</td>
</tr>
<tr>
<td>122</td>
<td>±2</td>
<td>22 ±2</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>±2 231</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>3 195</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>±2</td>
</tr>
<tr>
<td>-18</td>
<td>±2</td>
<td>3 17 231</td>
</tr>
<tr>
<td>-23</td>
<td>±2</td>
<td>3 233</td>
</tr>
<tr>
<td>-113</td>
<td>±1</td>
<td>±1 33</td>
</tr>
<tr>
<td>-146</td>
<td>0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Fig. 4. The ground state, \(^3\text{H}_6\) level.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.