Title
A High-Performance Micromachined Amperometric

Permalink
https://escholarship.org/uc/item/5ck1f0h4

Authors
Dohyun Kim
Ira B. Goldberg
Jack W. Judy

Publication Date
2005
A High-Performance Micromachined Amperometric Nitrate Sensor for Environmental Monitoring

Dohyun Kim, Ira B. Goldberg and Jack W. Judy
UCLA Electrical Engineering Department – www.ee.ucla.edu/research/judylab

Introduction: Why a Micromachined Amperometric Nitrate Sensor?

Why Nitrate (NO₃⁻) Sensor Important?
- Nitrate is a major contaminant in ground water
- Nitrate-sensor applications
 - In-situ nitrate monitoring, environmental science/biology research, and precision farming

Electrochemical Methods
- Sensor requirements
 - Inexpensive, small, remotely operable, detection range (1 µM to 1 mM)
 - Electrochemical techniques meet the requirements
 - Amperometry and Potentiometry
 - Simple design and operation
 - Easily miniaturized
 - Low power & voltage
 - Sensitive

Working Principle: Electroanalytical Chemistry and Anion Permeable Membrane

Removal of Oxygen Interference
- Oxygen in electrolyte (≤ 0.26 mM) interferes with detection
- Nitrate reduction current = (nitrate + oxygen reduction current) – (oxygen reduction current)

Sensor Design, Fabrication, Experimental Results, and Summary

Sensor System Integration
- Pt counter electrode (7.7x10⁻⁵ cm²)
- Ag working electrode (0.7x10⁻³ cm²)
- Silver oxide reference electrode (0.038x10⁻³ cm²)
- polyimide insulation layer

SEM of electrodes & microfluidic channel

SEM of polyurethane-coated Ag/AgCl reference electrode and its potential drift (a) in comparison to silver oxide electrode (b). The minimal potential drift observed (3 mV for 27 hours)

Experiment: Calibration Curves and Sensor Selectivity

- Calibration curves
 - 1 to 1000 µM detection range
 - r²=0.99 linearity
- Detection limit: ~1 µM
- Sensor selectivity to interfering ions
 - Sensor output to a mixture of 100-µM nitrate and interfering ions (100 µM each of PO₄³⁻, SO₄²⁻, F⁻, Cl⁻) is only 13.9% higher than the average response for the sample consisting of nitrate

Summary and Future Work
- Electrochemical study proves that amperometric nitrate sensors are feasible with Ag working electrode and NaOH supporting electrolyte
- Integrated micromachined nitrate sensor units have been fabricated
 - Micromachined electrodes and fluidic channels
 - Anion-permeable membrane
 - Achieved a detection limit of ~1 µM and linear calibration curves
- Future work
 - Integration of PL-coated Ag/AgCl reference electrode
 - Long-term qualification test
 - Integrate into wireless sensor motes and network
 - Explore chip-scale and board-scale potentiostats for miniaturization
 - Field test