Title
Combinatorial congruences and ψ-operators

Permalink
https://escholarship.org/uc/item/5cv4b5q6

Journal
Finite Fields and their Applications, 12(4)

ISSN
1071-5797

Author
Wan, D

Publication Date
2006-11-01

DOI
10.1016/j.ffa.2005.08.006

Peer reviewed
Combinatorial Congruences and ψ-Operators

Daqing Wan*
dwan@math.uci.edu
Department of Mathematics
University of California, Irvine
CA 92697-3875

December 23, 2013

Abstract

The ψ-operator for (φ, Γ)-modules plays an important role in the study of Iwasawa theory via Fontaine’s big rings. In this note, we prove several sharp estimates for the ψ-operator in the cyclotomic case. These estimates immediately imply a number of sharp p-adic combinatorial congruences, one of which extends the classical congruences of Fleck (1913) and Weisman (1977).

1 Combinatorial Congruences

Let p be a prime, $n \in \mathbb{Z}_{>0}$. Throughout this paper, let $[x]$ denote the integer part of x if $x \geq 0$ and $[x] = 0$ if $x < 0$. In the author’s course lectures [4] on Fontaine’s theory and p-adic L-functions given at UC Irvine (spring 2005) and at the Morningside Center of Mathematics (summer 2005), the following two congruences were discovered.

Theorem 1.1. For integers $r \in \mathbb{Z}$, $j \geq 0$, we have

$$\sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \binom{k-r}{j} \equiv 0 \pmod{p \left[\frac{n-1-j}{p-j} \right]}.$$

We shall see that the theorem comes from a simple estimate of $\psi(\pi^n)$ for the cyclotomic φ-module.

*Partially supported by NSF. The author thanks Z.W. Sun for helpful discussions on combinatorial congruences.
Theorem 1.2. For integer \(j \geq 0 \), we have

\[
\sum_{i_0 + \cdots + i_{p-1} = n \atop i_1 + 2i_2 + \cdots + r(\text{mod } p)} \binom{n}{i_0i_1 \cdots i_{p-1}} \left(\frac{i_1 + 2i_2 + \cdots - r}{j} \right) \equiv 0 \pmod{\frac{n(p-1)-jp-1}{p-1}}.
\]

As we shall see, this theorem comes from a simple estimate of \(\psi(\pi^{-n}) \) for the cyclotomic \(\varphi \)-module. Note that when \(p = 2 \), Theorem 1.2 is equivalent to Theorem 1.1.

The above two congruences can be extended from \(p \) to \(q = p^a \), where \(a \) is a positive integer. To do so, it suffices to estimate the \(a \)-th iterate \(\psi^a(\pi^n) \). This can be done by induction. The estimate of \(\psi^a(\pi^n) \) for \(n > 0 \) leads to

Theorem 1.3. For integers \(r \in \mathbb{Z} \), \(j \geq 0 \) and \(a > 0 \), we have

\[
\sum_{k \equiv r(\text{mod } p^a)} (-1)^{n-k} \binom{n}{k} \left(\frac{k-r}{p^a} \right) \equiv 0 \pmod{\frac{n^{p^a-1}-jp^{a^2}}{p^{a^2-1}(p-1)}}.
\]

The estimate of \(\psi^a(\pi^n) \) for \(n < 0 \) leads to

Theorem 1.4. Let

\[
S_j(n, r, p^a) = \sum_{i_0 + \cdots + i_{p^a-1} = n \atop i_1 + 2i_2 + \cdots \equiv r(\text{mod } p^a)} \binom{n}{i_0 \cdots i_{p^a-1}} \left(\frac{i_1 + 2i_2 + \cdots - r}{j} \right).
\]

Then for integer \(j \geq 0 \), we have

\[
S_j(n, r, p^a) \equiv 0 \pmod{\frac{(an-a+1)(p-1)-j(ap-a+1)-1}{p-1}}.
\]

As Z.W. Sun informed me, the special case \(j = 0 \) of Theorem 1.1.1 was first proved by Fleck [1] in 1913, and the special case of Theorem 1.1.3 for \(j = 0 \) was first proved by Weisman [5] in 1977. A different extension of Theorem 1.1.1 and Weisman’s congruence has been obtained by Z.W. Sun [2] using different combinatorial arguments. Motivated by applications in algebraic topology, Sun-Davis [3] proved yet another extension:

\[
\sum_{k \equiv r(\text{mod } p^a)} (-1)^{n-k} \binom{n}{k} \left(\frac{k-r}{p^a} \right) \equiv 0 \pmod{\text{ord}_p((n/p^{a-1})!)-j-\text{ord}_p(j^a)}.
\]
2 The operator ψ

Let p be a fixed prime. Let π be a formal variable. Let

$$A^+ = \mathbb{Z}_p[[\pi]]$$

be the formal power series ring over the ring of p-adic integers. Let A be the p-adic completion of $A^+[\frac{1}{\pi}]$, and let $B = A[\frac{1}{p}]$ be the fraction field of A. The rings A^+, A and B correspond to $A^+_{\overline{Q}_p}, A_{\overline{Q}_p}$ and $B_{\overline{Q}_p}$ in Fontaine’s theory.

We shall not discuss the Galois action on A, which is not needed for our present purpose. The Frobenius map φ acts on the above rings by

$$\varphi(\pi) = (1 + \pi)^p - 1.$$

If we let $[\varepsilon] = 1 + \pi$, then $\varphi([\varepsilon]) = [\varepsilon]^p$. The map φ is injective of degree p. This gives

Proposition 2.1. \{1, π, \cdots, π^{p-1}\} (and \{1, [\varepsilon], \cdots, [\varepsilon]^{p-1}\}) is a basis of A over the subring $\varphi(A)$.

Definition 2.2. The operator $\psi : A \to A$ is defined by

$$\psi(x) = \varphi\left(\sum_{i=0}^{p-1}[\varepsilon]^i \varphi(x_i)\right) = x_0 = \frac{1}{p} \varphi^{-1}(\text{Tr}_{A/\varphi(A)}(x)),$$

where $x : A \to A$ denotes the multiplication by x as $\varphi(A)$-linear map.

Example 2.3.

$$\psi([\varepsilon]^n) = \begin{cases} [\varepsilon]^{n/p}, & \text{if } p \mid n; \\ 0, & \text{if } p \nmid n. \end{cases}$$

It is clear that ψ is φ^{-1}-linear:

$$\psi(\varphi(a)x) = a\psi(x) \ \forall \ a, x \in A.$$

Example 2.4. Let a be a positive integer relatively prime to p. Then

$$\psi\left(\frac{1}{(1 + \pi)^a - 1}\right) = \frac{1}{(1 + \pi)^a - 1}.$$

In fact,

$$\psi\left(\frac{1}{[\varepsilon]^a - 1}\right) = \psi\left(\frac{1}{[\varepsilon]^a - 1}\cdot [\varepsilon]^{ap-1}
ight) = \frac{1}{[\varepsilon]^a - 1}\psi\left(1 + [\varepsilon]^a + \cdots + [\varepsilon]^{(p-1)a}\right) = \frac{1}{[\varepsilon]^a - 1} = \frac{1}{(1 + \pi)^a - 1}.$$
By p-adic continuity, the above example holds for any p-adic unit $a \in \mathbb{Z}_p^*$. In the general theory of (φ, Γ)-modules, it is important to find the fix points of ψ for applications to p-adic L-functions and Iwasawa theory. In the simplest cyclotomic case, we have the following description for the fixed points (see [4]).

Proposition 2.5.

\[
A^{\psi=1} = \frac{1}{\pi} \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \left\{ \sum_{k=0}^{\infty} \varphi^k(x) \mid x \in \bigoplus_{i=1}^{p-1} \varphi(\varepsilon^i \mathbb{Z}_p[[\varepsilon]]) \right\},
\]

where $a_i \in \mathbb{Z}_p$.

For example, if a is a positive integer relatively prime to p, then the element

\[
\frac{a}{(1+p)^{a} - 1} - \frac{1}{\pi} \in (A^+)^{\psi=1}
\]

gives the cyclotomic units and the Euler system. This element is the Amice transform of a p-adic measure which produces the p-adic zeta function of \mathbb{Q}. This type of connections is conjectured to be a general phenomenon for (φ, Γ)-modules coming from global p-adic Galois representations.

3 Sharp estimates for ψ

The ring A is a topological ring with respect to the (p, π)-topology. A basis of neighborhoods of 0 is the sets $p^kA + \pi^nA^+$, where $k \in \mathbb{Z}$ and $n \in \mathbb{N}$. The operator ψ is uniformly continuous. This continuity will give rise to combinatorial congruences.

For $s \in A^+$, one checks that

\[
\psi(p^k s) = \psi((\varepsilon - 1)^p s) = \psi((\varepsilon^p - 1)s + pss_1) = \pi \psi(s) + p \psi(s_1) \in (p, \pi) \psi(sA^+).
\]

In particular,

\[
\psi(p^k A^+) \subset (p, \pi) A^+.
\]

Thus, by iteration, we get
Proposition 3.1 (Weak Estimate). Let $n \geq 0$. Then
\[
\psi(\pi^n A^+) \subset (p, \pi)^{[n/p]} A^+ = \sum_{j=0}^{[n/p]} \pi^j p^{[n/p] - j} A^+.
\]

Since the exponent $[(n - j p)/p]$ is decreasing in j, this proposition implies that for $x \in \pi^n A^+$, we have
\[
\psi(x) = \sum_{j=0}^{\infty} a_j \pi^j, \ a_j \in \mathbb{Z}_p, \ \text{ord}_p(a_j) \geq [(n - j p)/p].
\]

This already gives a non-trivial combinatorial congruence. Let r be an integer. Let us calculate $\psi(\pi^n [\varepsilon]^{-r})$ in a different way.

Lemma 3.2.
\[
\psi(\pi^n [\varepsilon]^{-r}) = \sum_{j \geq 0} \pi^j \sum_{k \equiv r \pmod{p}} (-1)^{n-k} \left(\binom{n}{k} \varepsilon^{(k-r)/j} \right).
\]

Proof. Since $\pi = [\varepsilon] - 1$ and $[\varepsilon] = 1 + \pi$, we have
\[
\psi(\pi^n [\varepsilon]^{-r}) = \psi(([\varepsilon] - 1)^n [\varepsilon]^{-r}) = \psi\left(\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} [\varepsilon]^{(k-r)/j} \right) = \sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} [\varepsilon]^{(k-r)/j} \pi^j = \sum_{j \geq 0} \pi^j \sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \left(\frac{(k-r)/p}{j} \right) \pi^j.
\]

Comparing the coefficients of π^j in this equation and the weak estimate, we get

Corollary 3.3 (Weak Congruence). Let $n \geq 0$. We have
\[
\sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \left(\frac{(k-r)/p}{j} \right) \equiv 0 (\text{mod} p^{[(n-jp)/p]}).
\]
The above simple estimate is crude and certainly not optimal since we ignored a factor of π. We now improve on it.

Theorem 3.4 (Sharp Estimate I). For $n \geq 0$, we have

$$
\psi(\pi^n A^+) \subset \sum_{j=0}^{\lfloor n/p \rfloor} \pi^j p^{\lfloor n-1-jp \rfloor/p-1} A^+.
$$

Proof. We prove the theorem by induction. The theorem is trivial if $n \leq p-1$. Write

$$
\phi(\pi) = (1 + \pi)^p - 1 = \pi^p - p\pi s_1, \; s_1 \in A^+.
$$

Then,

$$
\psi(\pi^p s) = \psi(\phi(\pi) + p\pi s_1)s = \pi\psi(s) + p\psi(s_1 s).
$$

This proves that the theorem is true for $n = p$. Let $n > p$. Assume the theorem holds for $\leq n - 1$. It follows that

$$
\psi(\pi^n A^+) = \psi(\pi^p \pi^{n-p} A^+) \subseteq \pi\psi(\pi^{n-p} A^+) + p\psi(\pi^{n+1-p} A^+).
$$

By the induction hypothesis, the right side is contained in

$$
\pi \sum_{j=0}^{\lfloor (n-p)/p \rfloor} \pi^j p^{\lfloor n-p-1-jp \rfloor/p-1} A^+ + p \sum_{j=0}^{\lfloor (n+1-p)/p \rfloor} \pi^j p^{\lfloor 2n-1-jp \rfloor/p-1} A^+
$$

$$
= \sum_{j=1}^{\lfloor n/p \rfloor} \pi^j p^{\lfloor n-1-jp \rfloor/p-1} A^+ + \sum_{j=0}^{\lfloor (n+1-p)/p \rfloor} \pi^j p^{\lfloor 2n-1-jp \rfloor/p-1} A^+.
$$

The function $\lfloor (n-1-jp)/(p-1) \rfloor$ is decreasing in j and vanishes for $j \geq \lfloor n/p \rfloor$. Comparing the coefficients of π^j in the lemma and the above sharp estimate, we deduce

Corollary 3.5 (Sharp Congruence I). Let $r \in \mathbb{Z}$.

$$
\sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \binom{(k-r)/p}{j} \equiv 0 \pmod{p^{\lfloor n-1-jp \rfloor/p-1}},
$$

where $j \geq 0$ is a non-negative integer.
Theorem 3.6 (Sharp Estimate II). For $n > 0$, we have

$$
\psi \left(\frac{1}{\pi} A^+ \right) \subseteq \sum_{j=0}^{[n(p-1)/p]} \frac{1}{\pi^{n-j} p^{[n(p-1)-jp-1]/p}} A^+.
$$

Proof. Note that

$$
\varphi(\pi) = \pi^{p-1} + \left(\frac{p}{1} \right) \pi^{p-2} + \cdots + \left(\frac{p}{p-1} \right) \in (\pi^{p-1}, p),
$$

so $(\varphi(\pi)/\pi)^n \in (\pi^{p-1}, p)^n$. Then

$$
\psi \left(\frac{1}{\pi} A^+ \right) = \psi \left(\frac{1}{\varphi(\pi)} \left(\frac{\varphi(\pi)}{p} \right)^n A^+ \right) = \frac{1}{\pi^n} \psi \left(\left(\frac{\varphi(\pi)}{p} \right)^n A^+ \right) \subseteq \frac{1}{\pi^n} \sum_{i=0}^{n} p^{n-i} \psi(\pi^{i(p-1)} A^+).
$$

By Sharp Estimate I, we have

$$
\psi(\pi^{i(p-1)} A^+) \subseteq \sum_{j=0}^{[i(p-1)/p]} \pi^{j} p^{[i(p-1)-jp-1]/p-1} A^+.
$$

Then,

$$
\psi \left(\frac{1}{\pi} A^+ \right) \subseteq \sum_{j=0}^{[n(p-1)/p]} \frac{1}{\pi^{n-j}} \sum_{[jp/(p-1)] \leq i \leq n} p^{n-i+[(i(p-1)-jp-1)/p-1]} A^+ \subseteq \sum_{j=0}^{[n(p-1)/p]} \frac{1}{\pi^{n-j}} p^{[n(p-1)-jp-1]/p-1} A^+.
$$

\[\square \]

Corollary 3.7 (Sharp Congruence II). Let

$$
S_j(n, r, p) = \sum_{\substack{i_0 + \cdots + i_{p-1} = n \atop i_1 + 2i_2 + \cdots = r \mod p}} \binom{n}{i_0 \cdots i_{p-1}} \binom{(i_1 + 2i_2 + \cdots - r)/p}{j}.
$$

Then integer $j \geq 0$, we have

$$
S_j(n, r, p) \equiv 0 \mod p^{[n(p-1)-1]/p-1}.
$$
Proof.

\[\psi \left(\frac{1}{\pi^n} [\varepsilon]^{-r} \right) \]
\[= \frac{1}{\pi^n} \psi \left(\left(\left[\frac{p-1}{\varepsilon} \right] \right)^n \left[\varepsilon \right]^{-r} \right) \]
\[= \frac{1}{\pi^n} \psi((1 + [\varepsilon] + \cdots + [\varepsilon]^{p-1})^n \cdot [\varepsilon]^{-r}) \]
\[= \frac{1}{\pi^n} \sum_{i_0 + \cdots + i_{p-1} = n} [\varepsilon]^{(i_1 + 2i_2 + \cdots - r)/p} \binom{n}{i_0 \cdots i_{p-1}} \]
\[= \frac{1}{\pi^n} \sum_{i_0 + \cdots + i_{p-1} = n} \sum_{j \geq 0} \pi^j \binom{n}{i_0 \cdots i_{p-1}} \frac{(i_1 + 2i_2 + \cdots - r)/p}{j} \]
\[= \sum_{j=0}^{\infty} \frac{1}{\pi^{n-j}} S_j(n, r, p). \]

The function \([n(p-1) - j(p-1)/(p-1)]\) is decreasing in \(j\) and vanishes for \(j \geq [n(p-1)/p]\). Comparing the coefficients of \(\frac{1}{\pi^n}\), the congruence follows. \(\square\)

4 Sharp estimates for \(\psi^a\)

Let \(a\) be a positive integer. In this section, we extend the sharp estimates for \(\psi\) to \(\psi^a\).

Theorem 4.1 (Sharp Estimate I). For \(n \geq 0\), we have

\[\psi^a \left(\pi^n A^+ \right) \subseteq \sum_{j=0}^{[n/p^a]} \pi^j p^{ \left[\frac{n-p^{a-1}-1}{p-1} \right] } A^+. \]

Proof. We prove the theorem by induction on \(a\). The theorem is true if \(a = 1\). Assume now \(a \geq 2\) and assume that the theorem holds for \(a - 1\).
Then,
\[
\psi^a(\pi^n A^+) = \psi(\psi^{a-1}\pi^n A^+)
\]
\[
\subseteq \psi\left(\sum_{i=0}^{[n/p^{a-1}]} \pi^i \frac{n-p^{a-2} - j p^{a-1}}{p^{a-2}(p-1)} A^+ \right)
\]
\[
\subseteq \sum_{i=0}^{[n/p^{a-1}]} \sum_{j=0}^{[n/p]} \pi^j \frac{n-p^{a-2} - j p^{a-1}}{p^{a-2}(p-1)} + \frac{[n/p^{a-1}] - 1 - j p}{p-1} A^+
\]
\[
\subseteq \sum_{j=0}^{[n/p]} \pi^j \sum_{p j \leq i \leq [n/p^{a-1}]} \frac{n-p^{a-2} - j p^{a-1}}{p^{a-2}(p-1)} + \frac{[n/p^{a-1}] - 1 - j p}{p-1} A^+.
\]

The exponent of \(p \) for a fixed \(j \) is decreasing in \(i \) and hence the minimum exponent of \(p \) is attained when \(i = [n/p^{a-1}] \). The minimum exponent is computed to be
\[
\frac{n - p^{a-2} - [n/p^{a-1}] p^{a-1}}{p^{a-1} - p^{a-2}} + \frac{[n/p^{a-1}] - 1 - j p}{p-1} = \frac{n - p^{a-1} - j p^a}{p^{a-1}(p-1)}.
\]

The proof of the lemma gives more general

Lemma 4.2.
\[
\psi^a(\pi^n [\varepsilon]^{-r}) = \sum_{j \geq 0} \pi^j \sum_{k \equiv r \pmod{p^a}} (-1)^{n-k} \binom{n}{k} \left(\frac{(k-r)/p^a}{j} \right).
\]

Comparing the coefficients of \(\pi^j \) in the lemma and the sharp estimate for \(\psi^a \), we get

Corollary 4.3 (Sharp Congruence I). Let \(r \in \mathbb{Z} \). Then
\[
\sum_{k \equiv r \pmod{p^a}} (-1)^{n-k} \binom{n}{k} \left(\frac{(k-r)/p^a}{j} \right) \equiv 0 \pmod{\frac{n-p^{a-1} - j p^a}{p^{a-1}(p-1)}},
\]
where \(j \geq 0 \) is a non-negative integer.

Theorem 4.4 (Sharp Estimate II). For \(n > 0 \) and \(a > 0 \), we have
\[
\psi^a\left(\frac{1}{\pi^n} A^+ \right) \subseteq \sum_{j=0}^{\frac{(an-a+1)(p-1)}{ap^a-a+1}} \frac{1}{\pi^{n-j} p^{\frac{(an-a+1)(p-1) - j (ap-a+1) - 1}{p-1}}} A^+.
\]
Proof. The theorem is true for $a = 1$. Assume now that $a > 1$ and assume that the theorem is true for $a - 1$. Then

$$
\psi^a \left(\frac{1}{n^n A^+} \right) = \psi \left(\psi^{a-1} \left(\frac{1}{n^n A^+} \right) \right)
$$

$$\subseteq \psi \left(\sum_{j=0}^{[(a-1)n-a+2)(p-1)]} \frac{1}{\pi^{n-j}} \psi_{\pi^{n-j}}^{-1}(a-1)p-\alpha+2 \right) A^+ \right) \right)
$$

$$\subseteq \sum_{j} \sum_{i} \frac{1}{\pi^{n-j-i}} \psi_{\pi^{n-j-i}}^{(n-j)(p-1)/p} \left(\frac{a-1}{p-a+2}\right) A^+,
$$

where the indices i and j satisfy

$$0 \leq j \leq \left[\frac{(a-1)n-a+2)(p-1)}{(a-1)p-a+2}\right], \quad 0 \leq i \leq \left[(n-j)(p-1)/p \right].$$

For fixed $i + j = k$, the exponent of p is decreasing in j and the minimum value is attained when $j = k$ and $i = 0$. It follows that

$$\psi^a \left(\frac{1}{n^n A^+} \right) \subseteq \sum_{k=0}^{\left[\frac{(a-n)(p-1)}{p-a+1}\right]} \frac{\psi_{\pi^{n-k}}^{(a-n)(p-1)/p-a+1}}{\pi^{n-k}} A^+,$$

where we stop at $k = \left[\frac{(a-n)(p-1)}{p-a+1}\right]$ in the summation as the exponent of p is zero if $k \geq \left[\frac{(a-n)(p-1)}{p-a+1}\right]$. \hfill \Box

Corollary 4.5 (Sharp Congruence II). Let

$$S_j(n, r, p^a) = \sum_{i_0 + \cdots + i_{p^a-1} = n \atop i_1 + 2i_2 + \cdots + r \equiv r (mod p^a)} \binom{n}{i_0 \cdots i_{p^a-1}} \binom{i_1 + 2i_2 + \cdots + r}{j}.$$

Then for integer $j \geq 0$, we have

$$S_j(n, r, p^a) \equiv 0 (mod p^\left[(a-n)(p-1)/p-a+1 \right].$$
References

