Lawrence Berkeley National Laboratory
Recent Work

Title
ENERGIES OF ISOBARIC MULTIPLETS IN A = 16, AND 20

Permalink
https://escholarship.org/uc/item/5d71034g

Authors
Garvey, G.T.
Cerny, Joseph
Pehl, Richard H.

Publication Date
1964-09-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
AEC Contract No. W-7405-eng-48

ENERGIES OF ISOBARIC MULTIPLETS IN A=16 AND 20
G. T. Garvey, Joseph Cerny and Richard H. Pehl
September 1964
If the specifically nuclear part of nuclear interactions is charge independent, then the energies of the various members of an isobaric multiplet will differ only because of the neutron-proton mass difference and the electromagnetic interactions among the protons. These electromagnetic contributions are calculable and could be removed; the remaining masses of the multiplets thus could be examined with regard to charge independence of nuclear forces. These calculations however are somewhat model dependent, but to first order in the Coulomb energy it has been shown, quite generally, that the masses within an isobaric multiplet are characterized by

\[M(A,T,T_z) = a(A,T) + b(A,T)T_z + c(A,T)T_z^2 \]

where \(M \) is the mass of a member of the multiplet, \(A \) is the number of nucleons, \(T \) is the isobaric spin and \(T_z = (n-p)/2 \); \(a(A,T), b(A,T) \) and \(c(A,T) \) are taken as constants within a given multiplet. The adequacy of this formula has never been tested because at most three members of a multiplet are known, so that no verifiable predictions can be made using Eq. (1).

Recent \((p,t)\) experiments however, have been able to find a \(T=2 \) level in certain \(T_z=0 \) nuclei. These \(T=2 \) levels are the isobaric analogs of the ground states of the \(T=2, T_z=2 \) isobars. For example a \(T=2 \) level is found in
Mg24 that is the analog of the ground state of Ne24. In the mass 24 system the three lowest lying T=1 levels with $T_z=0, \pm 1$ are also known. In a recent paper4 D. H. Wilkinson suggested that one assume the coefficients $b(A,T)$ and $c(A,T)$ within the same A to be T independent. With this assumption, using the levels mentioned above he was able to show that the resulting prediction for the mass of the ground state of Al24 is in agreement with the observed mass,5 though the experimental uncertainties are large.

We have recently completed a study6 of (p,t) and (p,He3) reactions on O18 and Ne22. These reactions on O18 allowed us to locate the analog of the ground state of C16 in N16 (9.91 \pm 0.1 MeV) and in O16 (22.9 \pm 0.1 MeV). Similarly with the Ne22 target the analogs of the O20 ground state were located in F20 (6.43 \pm 0.1 MeV) and in Ne20 (16.8 \pm 0.1 MeV). Thus in each case we have 3 members of a T=2 isobaric multiplet and in each case a set of T=1 isobars is also known.7,9 Therefore the coefficients $b(A,1)$, $c(A,1)$, $b(A,2)$, and $c(A,2)$ can be determined from the data and compared for A=16 and 20. Table I shows the values obtained. Two values are given for the T=1, A=16 multiplet because the spin of the ground state of F16 is not known9 with certainty. The ground state of N16 is 2-, but in O16 the lowest lying T=1 state is 0-. This inversion is probably due to the Thomas-Ehrenman effect8 which would be most pronounced for the s state proton. Thus it would seem that the ground state of F16 is also 0- but values for the coefficients assuming it to be 2- are also included. From the values given in Table I it would seem that the assumption suggested by Wilkinson is not generally valid.

It is however instructive to take a more detailed look at the factors which bring about this disagreement between the coefficients. In each case it seems to be the position of the T=1, $T_z=-1$ member of the multiplet. Using the above assumption (that $b(A,1) = b(A,2)$ and $c(A,1) = c(A,2)$) a prediction can
be made which does not involve the mass of the \(T=1, T_z=-1 \) member.

\[
E(A,2,1) = E(A,2,0) - E(A,1,0)
\]

(2)

where \(E \) stands for the excitation energy above the respective ground states and the terms in the parentheses have the same meaning as before. The results of this prediction are shown in Table II and show much better agreement than the coefficients in Table I. Furthermore, to demonstrate that the \(T=1, T_z=-1 \) levels are mainly responsible for the disagreement between the two sets of coefficients, one can use \(b(A,2) \) and \(c(A,2) \) to predict the mass differences in the \(T=1 \) multiplets. The resulting values obtained for \(N^{16}-N^{16} \) and \(F^{20}-Ne^{20} \) are in excellent agreement with experiment whereas the value obtained for \(F^{16}-F^{16} = 16.07 \pm 0.27 \) MeV (experimentally \(15.43 \pm 0.05 \) MeV is obtained) and for \(\text{Na}^{20}-\text{Ne}^{20} = 14.33 \pm 0.27 \) (reference 5 gives \(15.3 \pm 0.3 \)).* The lower value observed for the fluorine-oxygen mass difference is most certainly due to the Thomas-Ehrman shift as the \(\text{F}^{16} \) ground state is unbound to particle decay.

In mass 20 a different situation holds: If the mass of \(\text{Na}^{20} \) is calculated by adding to the lowest \(T=1 \) level in \(\text{Ne}^{20} \) the Coulomb energy difference obtained from \(\text{Na}^{21}-\text{Ne}^{21} \), adjusted for the radius change, one obtains \(\text{Na}^{20}-\text{Ne}^{20} = 13.86 \) MeV, which is in substantial disagreement with both the prediction in the paragraph above and the value currently accepted for this mass difference.\(^5\)

Considering the magnitude of the disagreement, the current value for the mass of \(\text{Na}^{20} \) is probably too high by at least 1 MeV. It should be noted that it has only been reported once,\(^10\) and therefore certainly should be remeasured.

\[\text{We believe the best number at present to be } \text{Na}^{20}-\text{Ne}^{20} = 15.0 \pm 0.3 \text{ based on a recent remeasurement of the mass of N}^{12} \text{ (B.A.P.S. 8, 598 (1963)) on which the Na}^{20} \text{ mass determination was based.}\(^10\)\]
It appears that one will certainly need an isobaric quartet to test Eq. (1) to a reasonable degree of exactness. Using this equation, which is presumably good within a given multiplet, we predict $\text{Mg}^{20} - \text{Ne}^{20} = 25.6 \pm 0.7$ MeV and $\text{Ne}^{16} - 0^{16} = 30.2 \pm 0.7$ MeV.

The authors wish to thank D. H. Wilkinson for his comments and F. Ajzenberg-Selove et al. for communication of results prior to their publication.
*Supported in part by the U.S. Atomic Energy Commission.
†Presently at the Nuclear Structure Laboratory, Yale University, New Haven, Connecticut.

9. F. Ajzenberg-Selove, C. D. Zafiratos, and F. Dietrich (private communication).
Table I. Table comparing the coefficients of Eq. (1) for A=16 and 20 in the T=1 and 2 multiplets. The two values shown for the A=16, T=1 case use the levels with the spin-parity listed before the set of coefficients.

<table>
<thead>
<tr>
<th></th>
<th>T=2</th>
<th>T=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=16</td>
<td>b = -2.93 ± 0.25 MeV</td>
<td>(2-) b = -2.61 ± 0.03 MeV</td>
</tr>
<tr>
<td></td>
<td>c = 0.35 ± 0.12 MeV</td>
<td>c = 0.05 ± 0.025 MeV</td>
</tr>
<tr>
<td>A=20</td>
<td>b = -3.69 ± 0.25 MeV</td>
<td>b = -4.15 ± 0.15 MeV</td>
</tr>
<tr>
<td></td>
<td>c = 0.35 ± 0.12 MeV</td>
<td>c = 0.91 ± 0.15 MeV</td>
</tr>
</tbody>
</table>
Table II. Table showing the results obtained using Eq. (2). The 2- states are used in the A=16 case as they are not shifted by the Thomas-Ehrman effect as severely as the 0- states.

<table>
<thead>
<tr>
<th></th>
<th>$E(A,2,1)$</th>
<th>$E(A,2,0) - E(A,1,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A=16$</td>
<td>9.91 ± 0.1 MeV</td>
<td>9.93 ± 0.1</td>
</tr>
<tr>
<td>$A=20$</td>
<td>6.43 ± 0.1</td>
<td>6.53 ± 0.1</td>
</tr>
</tbody>
</table>
This report was prepared as an account of Government-sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.