Recent Work

Title
SIMULATION OF THE DEPLETION OF TWO-PHASE GEOTHERMAL RESERVOIRS

Permalink
https://escholarship.org/uc/item/5d82s430

Authors
Pruess, K.
Bodvarsson, G.
Schroeder, R.C.
et al.

Publication Date
1979-08-01
SIMULATION OF THE DEPLETION OF TWO-PHASE GEOTHERMAL RESERVOIRS

August 1979

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
SIMULATION OF THE DEPLETION OF TWO-PHASE GEOTHERMAL RESERVOIRS

by K. Pruess, G. Bodvarsson, R. C. Schroeder, P. A. Witherspoon, Members SPE-AIME, Lawrence Berkeley Laboratory, University of California, Berkeley, California

and R. Marconcini, G. Neri, C. Ruffilli, ENEL, Firenze, Italy

ABSTRACT

The simulator SHAFT79 of Lawrence Berkeley Laboratory has been used to study the depletion of different types of geothermal reservoirs. Investigations of idealized systems include effects of gravity and fluid injection. Pressure decline is analyzed as a function of cumulative production. The main conclusions are as follows: 1) The well-known p/Z-method for estimating fluid reserves is not applicable to two-phase geothermal reservoirs. 2) There is a strong tendency towards spatially uniform boiling. This causes a pressure decline which allows in many cases estimates of the total reservoir volume and of the total heat content of the reservoir rock; 3) Propagation of a boiling front through a deep water table, as a consequence of fluid injection, gives rise to a peculiar pattern of pressure decline. This may allow prediction of the distance of the water table from the producing wells and of the vertical thickness of the water zone, thereby giving important clues to estimating fluid reserves. 4) The pressure effects of injection of colder fluid depend strongly on (one- or two-) phase conditions in the reservoir, upon injection rate, and upon absolute permeability. Average pressure may actually decline in two-phase reservoirs rather than increase due to injection. Preliminary results of a case-history investigation of the Serrazzano zone at Larderello, Italy, are presented. SHAFT79 has been used for a fully three-dimensional simulation of a geologically accurate model of the Serrazzano reservoir. Comparison of computed results with field data allows improved estimates of reservoir conditions and parameters.

1. INTRODUCTION

There are only a few geothermal areas in the world where a significant portion of the in situ reservoir volume is believed to contain vapor instead of liquid. Although the liquid-dominated systems are far more prevalent, the vapor-dominated systems are more readily exploitable and currently provide the major source of steam for geothermal electrical power.

Several studies have shown that most of the mass reserves of vapor-dominated reservoirs consist of liquid water. This is usually concluded on the basis of the cumulative production of steam, and the corresponding pore volume that would be required if the reservoir fluid were saturated or superheated steam. The major uncertainty is not whether liquid exists in vapor-dominated systems, but whether there are significant amounts dispersed throughout the reservoir. This, of course, will be site specific to some extent. With respect to the mass reserves in place, then, vapor-dominated reservoirs should more appropriately be termed "two-phase reservoirs." Liquid-dominated systems eventually develop into two-phase reservoirs after significant production has taken place. This has occurred at Wairakei, Ahuachapan, and Cerro Prieto. Thus the important fundamental questions to be answered about two-phase geothermal reservoir phenomenology are applicable to all high temperature hydrothermal resources.

The present paper investigates, for a variety of idealized model reservoirs, the phenomena occurring during production from and injection into two-phase geothermal systems. Using numerical simulation and an analytically solvable lumped-parameter reservoir model, we study systems with uniform initial conditions as well as systems with steam/water interfaces. Our main objective is to identify the signature of reservoir characteristics in pressure decline curves for different production and injection strategies.

Complementing the idealized model studies is a fully threedimensional simulation of a geologically accurate model of the Serrazzano reservoir. Comparison of computed results with field data allows improved estimates of reservoir conditions and parameters.

References and illustrations at end of paper

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Mass transport \[\frac{\partial F}{\partial t} = - \text{div} \ F + q \]

Energy transport \[\frac{\partial U}{\partial t} = - \text{div} \ G + \dot{Q} \]

Mass flow is approximated with Darcy's law

\[F = \sum_{a} F_{a} = \sum_{a} \frac{k_{a} \alpha}{\mu_{a}} \ (\dot{V}_{p} - \dot{p}_{a} g) \]

and energy flux contains conductive and convective terms:

\[\dot{Q} = -k_{p} T + \sum_{a} F_{a} \Delta \alpha \]

The physical model represented by these equations involves the following assumptions and approximations:

1. Geothermal reservoirs are approximated as systems of porous rock saturated with one-component fluid in liquid and vapor form.
2. All rock properties - porosity, density, specific heat, thermal conductivity, absolute permeability - are independent of temperature, pressure, or vapor saturation;
3. Liquid, vapor, and rock matrix are in local thermodynamic equilibrium, i.e., at the same temperature and pressure, at all times;
4. Capillary pressure \(p_{c} = p_{l} - p_{v} \) is neglected.

For more details the reader is referred to ref. 8. The main new feature in SHAFT79 is a completely simultaneous, iterative solution of the coupled mass- and energy-transport equations. This allows between ten and one hundred times larger time steps than the sequential method employed in SHAFT78. In particular, phase transitions can be computed accurately and efficiently. SHAFT79 offers a choice of several methods for solving the coupled non-linear equations for mass- and energy-flow. The preferred solution method is fully implicit, employs a Newton-Raphson iteration for simultaneous solution of the non-linear mass- and energy-transport equations, and uses an efficient sparse solver. SHAFT79 has been applied to problems with up to 250 elements in three dimensions. Throughput of up to 65 per time step have been achieved with good accuracy. Here throughput is defined as ratio of the fluid mass flowing through the surface of an element, divided by the fluid mass initially in place in that element.

3. Reservoirs with Uniform Initial Conditions

The model reservoir used in the depletion studies is specified in Table 1. For the studies with uniform initial conditions it was subdivided into 20 equal sized elements with horizontal interfaces of 1 km² area at 50 m intervals.

Relative permeabilities were computed from a version of Corey’s equations:

\[k_{v} = \begin{cases} \frac{(2r - S)}{S} \times 3/r & \text{for } S < r \\ 1 & \text{for } S > r \end{cases} \]

\[k_{h} = \begin{cases} \frac{(r - S)^{4/2}}{S} & \text{for } S < r \\ 0 & \text{for } S > r \end{cases} \]

with the residual immobile water saturation \(l-r = 0.7 \). Initial conditions were chosen as \(T = 252°C \), \(S = 0.50 \) throughout the reservoir. The investigated cases (see Table 2) include production at constant flow rate as well as a somewhat more realistic production with constant external (wellbore) pressure, for which flow rates diminish with time. Various injection schemes were explored, and simulations were made for high- and low-permeability cases, with and without inclusion of gravitational forces.

3.1. Boiling Rates

Fig. 1a shows that, in many cases, the depletion process tends to give rise to a pattern of very nearly uniform boiling throughout the reservoir (cases #1, 6, 8). Only for case #2, which involves a large flow rate at low permeability, do boiling rates strongly diminish with increasing distance from the well. A higher boiling rate in some part of the reservoir causes a more rapid decline in temperature, hence in pressure. This in turn increases the flow of steam towards the region which boils more rapidly, diminishing the rate of boiling and counteracting the pressure decline associated with it. Thus there exists a negative feedback, which diminishes spatial variations in boiling rates upon depletion. The feedback is more effective for higher permeability. At the low permeability of \(10^{-14} \) m² the feedback is still sufficiently strong to maintain constant boiling rates throughout the reservoir for the slower depletion process with constant pressure (case #8). For a high production rate of 50 kg/sec at low permeability (case #2), pressure gradients near the wellblock increase with time, as temperatures and steam densities drop. Then boiling rates near the wellblock become very large.

3.2 Pressure Decline

The well known method of extrapolating reserves in natural gas reservoirs from a plot of pressure decline vs. cumulative production \((p/R) vs. Q \) is based on the fact that for these systems average pressure \(p/R \) is proportional to average density, hence proportional to reserves (see eqs. A-10, A-11). We showed in ref. 8 that this method is not applicable to geothermal reservoirs, which contain a considerably larger fraction of the fluid in place in the form of liquid water. For two-phase geothermal reservoirs the mechanism causing pressure decline is entirely different from that in one-phase systems. Namely, pressure declines because of heat loss and associated temperature drop in boiling, not because of mass loss. Pressure and density are independent variables in two-phase systems.

From the above it is clear that, for two-phase geothermal reservoirs, pressure decline upon production depends upon the heat capacity of the reservoir, not upon fluid reserves.

In Appendix A we present a lumped parameter model, which is an extension and improvement on a similar model in ref. 8. From eq. (A-9) we obtain, for a two-phase reservoir which produces pure steam \((h_{v} = h_{v}) \), the following approximate relationship between the total heat capacity of the reservoir rock and pressure decline \(dp/dQ \):

\[V(1+\beta) \frac{dp}{dQ} = \frac{1}{(h_{v} - h_{v})^{2}} \frac{\Delta T}{273.15} \]

Eq. (6) is applicable to two-phase reservoirs with approximately uniform initial conditions, if the depletion process is such ("slow enough") that the reservoir will stay near the limit of uniform boiling. The equation shows that the total heat capacity of the reser-
As depletion proceeds, boiling becomes increasingly wellblock, giving rise to an acceleration of pressure decline. Of course, we do not know how well these reservoir volumes reflect injection effects, and will be discussed in 3.3.

Namely, the Serrazzano zone of the field near Larderello (Italy) and the shallow (old) zone of the systems are approximated as having uniform initial conditions, and how well the depletion process conforms to the limit of uniform boiling. In ref. 8 we showed, that virtually indistinguishable pressure decline curves are obtained for two-phase reservoirs with the same volume but widely different permeability and mass reservoirs. From the slopes dp/dQ we can estimate reservoir rock volumes by using eq. (6). Table 3 shows that the estimates agree well with the actual value of 0.9 km³ for our model reservoir.

From the discussion in 3.1 it should be clear why case #2 shows a different pattern of pressure decline. As depletion proceeds, boiling becomes increasingly concentrated in a region of the reservoir near the wellblock, giving rise to an acceleration of pressure decline beyond what is observed when boiling is (nearly) uniformly distributed throughout the entire reservoir volume.

The different slopes for cases #3, #4, and #9 reflect injection effects, and will be discussed in 3.3.

We have applied eq. (6) to two real systems, namely, the Serrazzano zone of the field near Larderello (Italy) and the shallow (old) zone of the Geysers. Of course, we do not know how well these systems are approximated as having uniform initial conditions, and how well the depletion process conforms to the limit of uniform boiling. Therefore, our estimates as given in Table 3 are tentative, and we do not know the error margins involved. The volume estimates should indicate some average drainage volume of the wells involved in the pressure decline analysis; they should represent lower limits for the actual reservoir volumes.

For the Serrazzano reservoir enough geological information is available to define the reservoir geometry in detail. Table 3 shows that the volume estimated from the pressure decline is only about one third of the volume of the geological mesh. There are several possible explanations for this discrepancy:

1. The distribution of temperatures, pressures, and vapor saturations may be quite non-uniform. (2) Even in regions with fairly uniform thermodynamic conditions boiling rates may show strong spatial variations. E.g., boiling rates will diminish towards the reservoir margins. (3) The observed pressure decline may be enhanced by effects of colder natural recharge. (4) Finally, there may be inaccuracies both in the estimate of pressure decline vs. cumulative production (ref. 11) and in the geometrical definition of the reservoir from geological data.

3.3 Production with Injection

In recent years, the reinjection of produced geothermal brines has received increasing attention as a possible means for (i) safe disposal, (ii) controlling subsidence, and (iii) enhancing energy recovery. In this connection it is of great importance to understand the pressure response of a geothermal system upon injection of colder fluid. Two effects occur, namely, a decrease in temperature and pressure; and a pressure increase near the injection well from density increase. The actual response of the reservoir depends on how these effects balance out. If injection is made into a liquid water region, density effects upon pressure are much larger than temperature effects, and pressure will increase. A similar situation holds for injection into a superheated steam zone, as long as no two-phase zone develops near the injection well. However, injection of colder water into a two-phase zone will cause temperature and hence pressure to decline, as long as injection flow rates are low enough (reservoir permeability high enough) to maintain two-phase conditions near the injection well. Thus, injection into a two-phase zone may defeat purposes (ii) and (iii) above.

A more quantitative analysis can be made using the lumped parameter model of Appendix A. From eq. (A-9) we deduce that pressure will stay constant if fluid is uniformly injected with a specific enthalpy h₄ such that

\[h_c = h_l - \frac{\rho_v}{\rho_l - \rho_v} (h_w - h_l) \]

(7)

h_c is typically a few percent less than h₄, the specific enthalpy of the saturated liquid at average reservoir temperature. Practically, the injected fluid will always have lower temperature and specific enthalpy than the water in place in the reservoir, giving rise to a pressure decline in two-phase systems.

This point is illustrated in fig. 1b. For the case with constant production rate of 50 kg/sec (#1, #3, #4) pressure decline declines more rapidly with injection, and more rapidly when the injection rate is increased. On the other hand, the lifespan of the reservoir is extended with injection, and more so for higher injection rate. Figs. 2a,b,c illustrate injection effects for a reservoir which is produced at constant pressure (case #9). Fig. 2a gives some saturation and temperature profiles. Under the given conditions of permeability and injection rate, water percolates down to the bottom of the reservoir quite rapidly. The injection region maintains two-phase conditions until, after 13.5 years, the reservoir has filled up from the bottom. In figure 2b we show that, because of the pressure decline caused by injection, production flow rates drop more rapidly than in the case without injection (#6).

Thus in our examples injection slows down production, but enhances the amount of energy that can ultimately be recovered. Fig. 2c shows, as a function of time, cumulative energy production and total internal energy of the reservoir fluid for the cases #6 (no injection) and #9 (injection). In case #6 the total internal energy of the reservoir fluid diminishes as production proceeds. The amount of energy produced exceeds the energy lost by the fluid by a factor 2 - 3 reflecting a transfer of large quantities of heat from the rock to the fluid, as produced steam is replenished.
4.2 Sustained Upflow of Water

Two regimes of flow rates can be distinguished, depending upon whether the pressure gradient required for the steam flux does or does not exceed ρ_g. The limiting situation, for which a "sustained upflow" of water will occur, corresponds to a steam flux

$$P_v, \lim_{t \to \infty} \frac{k}{\rho_v} \left(\frac{\rho_v - \rho_g}{\rho_v} \right)$$ (8)

Eventually, steam saturation in the upper region of the water zone will increase such that relative permeability of steam approaches 1. Only if the applied steam flux exceeds the value given by eq. (8) will water continue to flow up. If steam flux is less than the limiting value of eq. (8) water upflow will occur only and as long as small relative permeability of steam causes larger pressure gradients to occur in the two-phase zone.

It is clear that a SSWI does not represent very difficult problems for numerical analysis in the case of "sustained upflow" of water, when average pressure gradients exceed the hydrostatic head ρ_g. Figs. 3a through 3c present results for a reservoir as defined in Table 4 with steam flux exceeding the limiting value of eq. (8). Pressure decline at the wellblock shows characteristic bumps associated with phase transitions in subsequent elements as water moves upwards. These bumps provide a nice illustration of the effects of water injection as discussed above and in Appendix A. When water begins to enter an element (analogy to injection) boiling occurs and temperature declines. As long as steam leaves the element at a higher rate than water enters $(F_w/F_s < 1)$ density and pressure both decline. Once F_w exceeds F_v, the ensuing increase in steam density causes pressure increase while temperature decline accelerates due to increased rate of boiling. Eventually, the element undergoes a transition to two-phase conditions after which pressure drops quite rapidly due to continued temperature decline in boiling. Additional computer runs show that finer discretization diminishes the amplitude of and the time interval between the pressure oscillations. The "true" response of the system, corresponding to infinite resolution, would be given by averaging over the bumps in fig. 3a.

The bumps in pressure decline and flow rate for case 9 (figs. 1b and 2b) are much more pronounced for the following reasons. (1) The spatial discretization employed in case 9 is rather coarse (25 meters vs. 1 meter in figs. 3a,b,c). (2) Phase transitions in case 9 occur towards liquid water, the pressure of which responds more sensitively than that of steam to density changes.

Fig. 3c shows the evolution of saturation profiles as the depletion proceeds. It is evident that the boiling front spreads more rapidly below the interface, into the water region, than above the interface. It is of interest to note that the saturation S at a given time is approximately constant throughout the two-phase region, while S gradually increases with time.

4.3 Slow Depletion

Our second example of SSWI involves a reservoir with parameters as defined in Table 1. Initial conditions were generated by careful gravitational equilibration of a 500 m thick steam column above a 500 m thick water column, both at $T = 2520^\circ$ C. This was done in such a way as to obtain a minute pressure change across the interface between slightly superheated steam above and slightly subcooled water below. The reservoir was produced at the top at a rate of 50 kg/sec.
corresponding to a steam flux of $5 \times 10^{-5} \text{ kg/m}^2\text{sec}$. With an initial fluid mass in place of 40.9 x 10^6 tons, the depletion requires 25.9 years. In order to examine discretization effects on the upflow of water, two different grids were used. The coarser grid consists of 400 elements with 25 m vertical width. In the finer grid, the two elements just above and below the interface were subdivided into three elements each, with spacings of 5 m, 5 m and 15 m. Thus there are two 5 m elements above and below the interface respectively.

In the finer discretization water upflow quickly establishes a two-phase zone in the bottom element of the steam region (see fig. 4a). In the coarse grid, water upflow and temperature drop from boiling are not sufficient to cause a phase transition in the bottom of the steam zone. Except for this difference, both grids produce almost identical results. Minor differences in saturation profiles persist for some time, but the average pressure response is completely identical in both cases (see fig. 4a).

This agreement is somewhat surprising, and it may indicate that discretization problems at a SSWI are less severe than anticipated in our general considerations, above.

Figure 4b gives profiles of vapor saturation, flow rates and boiling rates after 5.6 years of production. These are typical for the kind of systematics which evolve before the boiling front reaches the bottom of the water region (after 6.34 years, see fig. 4a). It is interesting to note that, in the top 300 m of the two-phase zone, vapor saturation decreases rather slowly with depth, while boiling rates are small and nearly constant. Near 850 m depth occurs a sudden drop in vapor saturation, which is connected with a large downflow of water, a rapidly decreasing upflow of steam and a maximum in the rate of boiling. These peculiar phenomena are caused by the transition, near the bottom of the two-phase zone, from a small pressure gradient (slightly exceeding ρg) to a very large pressure gradient (slightly exceeding ρg), which gives rise to a convergent flow of water.

The peculiar pattern of pressure decline (see fig. 4a) can be readily understood from the boiling rate profile. Initially, pressure drops rapidly, because boiling is confined to a rather narrow two-phase zone, where it causes rapid temperature decline. As the two-phase zone spreads the decline in temperature and pressure is slowed down beyond what would result from the increased rock mass in contact with boiling water, because boiling rates are smaller near the top of the two-phase zone than near the bottom. This provides a supply of hotter steam, which flows up from depth and tends to maintain temperature and hence pressure at the top of the two-phase zone. From this results a plateau in the pressure decline curve, which extends to the time where the boiling front reaches the bottom of the reservoir. Soon thereafter pressure starts declining at a nearly constant rate, reflecting a situation of nearly uniform boiling throughout the two-phase zone.

Using eq. (6) we infer, at $t = 10$ years, a volume of 0.5 km^3 for the boiling zone from the slope of pressure decline vs. cumulative production, to be compared with an actual volume of 0.5 km^3.

In summary, propagation of a boiling front through a deep water table gives rise to a peculiar pattern of pressure decline. This may allow identification of an impermeable basement, and to estimate volume and thickness of the boiling zone, thereby giving important information for estimating fluid reserves.

5. Simulation of the Reservoir at Serrazzano (Italy)

Serrazzano is one of the distinct zones of the extensive geothermal area near Larderello in central Tuscany. Natural manifestations and utilization of steam and hot water from shallow holes in this region have occurred for centuries. Deep drilling was begun after 1930, and since 1939 electric power has been generated at Serrazzano from geothermal steam. Extensive production data have been gathered over a period of forty years. Fig. 5 shows aggregate flow rates of all wells in the post-1950 period. These data as well as the detailed geological and hydrological information available make the Serrazzano zone an attractive example for developing methodology and tools for numerical simulation of geothermal reservoirs. Moreover, for environmental reasons surface disposal of produced brines is no longer acceptable in Italy, and numerical studies are needed to aid in developing an appropriate injection program.

5.1 Conceptual Model of the Serrazzano Zone, Larderello, Italy

There is an extensive body of work covering geology, geochemistry, and hydrothermal activity in the Larderello area. This and the accumulated experience of extended geothermal development provide a conceptual model for the reservoir. In brief, the Serrazzano reservoir can be characterized as a rather isolated flat inverted cup. Steam is trapped near the structural high (see fig. 6), with most of the mass of reserves residing in a boiling aquifer at unknown depth, with temperature $T > 275^\circ$ C. The reservoir appears bounded to the north by impermeable formations, with possible recharge areas in the southeast and southwest. High permeability zones are encountered in the densely fractured formations near the structural high.

In fig. 6 we show (labeled A to Z) the lines along which cross sections were constructed from drill logs. In Figure 7a a typical cross section is shown with the grid element locations indicated by plus signs. The solid lines are the approximate locations, respectively, of the overlying impermeable shale caprock, the carbonate/anhydrite reservoir section, and the location of the top of the basement schist. When all of the cross sections are fed into the computer program OGRE, a geologically accurate three-dimensional mesh is generated with all element volumes and surfaces accurately computed. In Figure 7b a picture of the generated Serrazzano computational grid is shown in two different (rotated) views. The grid represents a reservoir that is a curved thin sheet approximately 1 km from top to bottom, and areally covers about 25 km2. It has 234 polyhedral elements, with 679 polygonal interfaces between them. There are up to 10 interfaces per element. Element volumes range from $3.5 \times 10^6 \text{ m}^3$ to $2.9 \times 10^8 \text{ m}^3$, and interface areas range from 0.4 m^2 to $9.4 \times 10^3 \text{ m}^2$.

5.2 Method of Simulation

Our first goal was to simulate the pre-exploitation phase, in order to obtain initial conditions applicable to 1935 when major production began. Using the mesh as given in fig. 7b, we started out with the entire reservoir filled with liquid water at $T=275^\circ$ C.
and applied constant discharge near the structural high (elements in the NO4-ZO2 area in fig. 6). The simulation was continued until the temperatures at the top had dropped to 205 °C, as required by typical measured well temperatures. At this point the top 500 m of the reservoir were boiling (two-phase). While this appears reasonable in comparison with the general conceptual model, it was also evident that this approach would not allow us to model the very sizable spatial variations in temperature throughout the reservoir (some well temperatures vary as much as 80 °C over less than 1 km distance). Therefore, we (temporarily) abandoned the attempt to model the pre-exploitation phase. Instead, we began a simulation starting in January 1960, at which time a partial definition of initial conditions is available from field measurements. We intend to cover a more extensive time span once a satisfactory simulation is achieved for the post-1960 period.

Input data to be provided for the simulation include (a) reservoir parameters (geometry, rock properties), (b) initial conditions for January 1960 (distribution of temperature, pressure and vapor saturation), and (c) production flow rates at the wells. For the latter detailed and accurate field data are available. Reservoir parameters are known to some extent. Rock parameters used in the simulation are as follows: \(C_R = 2600 \text{ kg/m}^2 \text{s}^2, C_p = 775 \text{ J/kg} \text{ °C}, K_p = 2.1 \text{ W/m} \text{ °C}, \phi = 10\% \). Only gross features are known of the permeability distribution. The greatest uncertainty exists with regard to initial conditions. Well measurements and previous work on pressure distributions allow some of the required data, but most of the initial conditions are unknown. In particular, little is known about the distribution of pore water. We begin by assuming superheated conditions near the structural high, and a rather arbitrary vapor saturation of \(S = 0.70 \) elsewhere. With this, our reservoir model contains \(1.7 \times 10^8 \) tons of water, which is close to twice the total production to date.

Determination of most of the initial conditions as well as of some other parameters is an essential part of the modeling effort. A trial-and-error process is applied, in which parameters are varied such as to reduce discrepancies between field observations (mainly temperatures and pressures) and computed reservoir behavior. A valuable criterion for appropriate parameter adjustments is that well blocks must remain very close to a steady flow situation, as pressures would change rapidly otherwise.

5.3 Present Status and Results

After a rather tedious trial-and-error procedure, we arrived at initial conditions for 1960 and permeability distributions which were consistent with the required nearly-steady flow situation in the well elements. Four zones were introduced with permeabilities very close to -1 in all cases except at the well LS PRATA4 (element C31). This enabled us to extend the simulation over a longer time period. Using time steps of 10 - 20 days, corresponding to maximum throughputs of 20 m^3/day, the simulation was carried out to 1400 days. The results at 720 days are not bad, indicating a steady flow situation near the walls and small changes in pressure, as required. Large pressure drops, however, occur for a number of days after 1400 days. Fig. 8 shows mass production and simulated average steam pressure for the time from 1 January 1960 until late 1963 (1400 days later). Some imbalances in initial conditions are evident from the fact that initially average steam pressure increases. This is caused by boiling at depth, whereby additional amounts of high-temperature high-pressure steam are generated. The subsequent decline is slower by a factor of about 4 than the field observation, and is even somewhat (25%) slower than would be expected for uniform boiling. This indicates that either the rock mass in contact with boiling water should be reduced by a factor of 4, by extending the superheated zone and concentrating liquid water near the margins, or that permeability towards the reservoir margins should be reduced to concentrate boiling in a smaller area (or combinations of the two).

We plan to continue our simulation effort until a satisfactory history match up to the present time is achieved. Subsequently, we shall extrapolate the simulation into the future, examining different reinjection scenarios.

6. Conclusions

We have simulated the behavior of idealized two-phase geothermal systems under production and injection. Our numerical results, as well as an analytically solvable lumped-parameter model show that the two-phase nature of these systems determines their pressure response upon production. Systems with (nearly) uniform initial conditions show a simple behavior, which often allows to infer heat reserves and reservoir volume from pressure decline during production.

We derive a relationship between the heat capacity of the reservoir rock and the slope of pressure decline vs. cumulative production, which is verified by our numerical simulation results. It should be applicable, in an approximate way, to many natural geothermal reservoirs.

Subtle effects occur at steam/water interfaces. The propagation of a boiling front through a liquid water table, as a consequence of production from an overlying steam zone, gives rise to a peculiar pattern of pressure decline. This may give clues to an estimate of fluid reserves. We find that, even in reservoirs with large spatial variations in initial conditions, there is a strong tendency towards establishing a pattern of nearly uniform boiling throughout the two-phase zone.

Our idealized model studies are complemented by a fully 3-dimensional simulation of the highly irregular shaped reservoir near Serrazzano (Italy). We discuss methodology for developing a history match and present results for our first extended simulation covering a time period of almost four years.

Nomenclature

\(C_R \) specific heat of rock, \(\text{J/°C kg} \)
\(F \) mass flux, \(\text{kg/m}^2\text{s} \)
\(F_L \) flux of liquid, \(\text{kg/m}^2\text{s} \)
\(F_v \) flux of vapor, \(\text{kg/m}^2\text{s} \)
\(G \) energy flux, \(\text{J/m}^2\text{s} \)
gravitational acceleration, m/s²

specific enthalpy of fluid, J/kg

specific enthalpy of liquid, J/kg

specific enthalpy of produced fluid, J/kg

specific enthalpy of vapor, J/kg

thermal conductivity of rock/fluid mixture, J/ms°C

thermal conductivity of rock, J/ms°C

relative permeability of liquid, fraction

relative permeability of vapor, fraction

molecular weight of steam, kg

pressure, N/m²

pressure at initial time, N/m²

volumetric rate of mass production or injection, kg/m³s

volumetric production, kg

volumetric rate of energy production or injection, J/m³s

parameter for relative permeability curves, dimensionless

volumetric vapor saturation, fraction

temperature, °C

time, s

initial time, s

specific internal energy of fluid, J/kg

specific volumetric energy of rock/fluid mixture, J/m³

gas compressibility, dimensionless

fluid density, kg/m³

initial fluid density, kg/m³

density of liquid, kg/m³

density of vapor, kg/m³

density of phase α, kg/m³

density of rock, kg/m³

rate of density change in well elements due to influx from neighboring elements, kg/m³s

rate of density change in well elements due to fluid production, kg/m³s

viscosity of liquid, Ns/m²

viscosity of vapor, Ns/m²

viscosity of phase α, Ns/m²

porosity, dimensionless

Subscripts

α liquid or vapor phase

liquid

rock

referring to density

u referring to energy

v vapor

ACKNOWLEDGEMENT

This work was supported by the U.S. Department of Energy under contract No. W-7405-ENG-48.

REFERENCES

Appendix A: Lumped Parameter Reservoir Model for Production and Injection

We consider production from and injection into a reservoir with initial conditions and rock properties independent of position. Cumulative net fluid production is (positive for production, negative for injection)

\[Q = Q_1 + Q_2 \] (A-1)

and the "effective" specific enthalpy of produced/injected fluid at time \(t \) is

\[h_{Q} = \frac{h_{Q1} + h_{Q2}}{dQ_1 + dQ_2} \] (A-2)

Mass and energy balance equations reduce to

\[d\rho = -\frac{dQ}{V} \] (A-3)

\[\dot{\phi} + (1-\phi)\frac{\partial}{\partial t} \rho C_R \frac{dT}{dt} = -h_{Q} \frac{dQ}{V} \] (A-4)

Expanding \(\dot{\phi} \) in terms of \(d\rho \) and \(dT \) we obtain the slope of average temperature decline vs. cumulative production (and/or injection):

\[\frac{dT}{dQ} = \frac{(\dot{\phi}(\rho C_R)_{T} T_{eq} (q_1 + q_2)) - (\dot{h}_{Q1} q_1 + \dot{h}_{Q2} q_2)}{V (\dot{\phi}(\rho C_R)_{T} T_{eq} + (1-\phi)\rho C_R)} \] (A-5)

For some applications, e.g., if \(dQ = 0 \) (production and injection at the same rate), it is more useful to use time as independent variable. With the definitions

\[dQ_1 = q_1 \frac{dt}{dQ} \] (A-6a)

\[dQ_2 = q_2 \frac{dt}{dQ} \] (A-6b)

we obtain,

\[\frac{dT}{dt} = \frac{(\dot{\phi}(\rho C_R)_{T} T_{eq} (q_1 + q_2)) - (\dot{h}_{Q1} q_1 + \dot{h}_{Q2} q_2)}{V (\dot{\phi}(\rho C_R)_{T} T_{eq} + (1-\phi)\rho C_R)} \] (A-7)

For the slope of pressure decline vs. cumulative production (and/or injection) we have from eqs. (A-3) and (A-5)

\[\frac{dp}{dQ} = \frac{(\dot{\phi}(\rho C_R)_{T} T_{eq} (q_1 + q_2)) - (\dot{h}_{Q1} q_1 + \dot{h}_{Q2} q_2)}{V (\dot{\phi}(\rho C_R)_{T} T_{eq} + (1-\phi)\rho C_R)} \] (A-8)

(1) Two-phase reservoirs.

We get from eq. (A-8)

\[\frac{dp}{dQ} \rho V (h_q - h_h) = \rho \frac{(\rho C_R) T + (1-\phi)\rho C_R}{\dot{\phi}(\rho C_R)_{T} T_{eq} + (1-\phi)\rho C_R} \times \frac{\dot{\phi}(\rho C_R) T_{eq} (h_q - h_h)}{(\dot{\phi}(\rho C_R)_{T} T_{eq} + (1-\phi)\rho C_R)} \] (T + 273.15) (A-9)

(11) Dry steam reservoirs.

The derivatives can be computed from the gas law,

\[p/\rho = 2R(T + 273.15)/M. \]

Neglecting derivatives of the compressibility factor \(Z \) we have, approximately,

\[\frac{dp}{dQ} = \frac{p(u - h_q)}{V(1+\phi)\rho C_R (T + 273.15) - Z} \] (A-10)

In practical cases, with \(\phi \) considerably less than 1, the first term on the r.h.s. is negligible in comparison to the second term. Neglecting variations in \(Z \) and...
Through integration we obtain the well known linear relationship between \(\frac{p}{Z} \) and cumulative production \(Q \):

\[
\frac{p}{Z} = \left(\frac{p}{Z_o} \right) \left(1 - \frac{Q}{V \phi_o} \right)
\]

(A-11)

Table 1: Reservoir Parameters

Rock Properties:
- \(\rho_R = 2000 \text{ kg/m}^3 \)
- \(c_R = 1232 \text{ J/kg°C} \)
- \(k_R = 0 \)
- \(k = 10^{-13}, 10^{-14} \text{ m}^2 \)
- \(\phi = 10\% \)

Reservoir Geometry: The reservoir is a vertical column of 1 km depth with a volume of 1 km³. All boundaries are "no flow."

Table 2: Depletion Studies with Uniform Initial Conditions

<table>
<thead>
<tr>
<th>Case</th>
<th>Production</th>
<th>Injection</th>
<th>(k (\text{m}^2))</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>50 kg/sec at top of reservoir</td>
<td>-</td>
<td>10^{-13}</td>
<td>no gravity</td>
</tr>
<tr>
<td>#2</td>
<td>"</td>
<td>-</td>
<td>10^{-14}</td>
<td>with gravity</td>
</tr>
<tr>
<td>#3</td>
<td>"</td>
<td>50 kg/sec saturated water of (T = 100 \text{°C}) at -1000 m depth</td>
<td>10^{-13}</td>
<td>no gravity</td>
</tr>
<tr>
<td>#4</td>
<td>"</td>
<td>25 kg/sec saturated water of (T = 100 \text{°C}) at -1000 m depth</td>
<td>10^{-13}</td>
<td>no gravity</td>
</tr>
<tr>
<td>#5</td>
<td>with (p = 10 \text{ bars}) at top of reservoir; initial flow rate 50 kg/sec</td>
<td>-</td>
<td>10^{-13}</td>
<td>no gravity</td>
</tr>
<tr>
<td>#6</td>
<td>"</td>
<td>-</td>
<td>10^{-13}</td>
<td>with gravity</td>
</tr>
<tr>
<td>#7</td>
<td>"</td>
<td>-</td>
<td>10^{-13}</td>
<td>with gravity</td>
</tr>
<tr>
<td>#8</td>
<td>"</td>
<td>-</td>
<td>10^{-14}</td>
<td>with gravity</td>
</tr>
<tr>
<td>#9</td>
<td>"</td>
<td>50 kg/sec saturated water of (T = 100 \text{°C}) at -500 m depth</td>
<td>10^{-13}</td>
<td>with gravity</td>
</tr>
</tbody>
</table>
Table 3: Reservoir Volumes Estimated from Pressure Decline Curves

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Pressure Decline dp/dQ (bar/kg)</th>
<th>Temp (°C)</th>
<th>Total Heat Capacity (1-ϕ)PRCR (M[kWyears/°C])</th>
<th>Total Reservoir Rock Volume (km³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1, after 1.3 years</td>
<td>-4.788 x 10⁻¹⁰</td>
<td>250</td>
<td>74.4</td>
<td>.95</td>
</tr>
<tr>
<td>#1, after 15.2 years</td>
<td>-4.248 x 10⁻¹⁰</td>
<td>234</td>
<td>71.2</td>
<td>.91</td>
</tr>
<tr>
<td>#9, after 8.2 years</td>
<td>+1.202 x 10⁻⁹</td>
<td>242</td>
<td>65.5</td>
<td>.84</td>
</tr>
<tr>
<td>#9, after 16.3 years</td>
<td>+5.836 x 10⁻⁹</td>
<td>230</td>
<td>56.4</td>
<td>.72</td>
</tr>
<tr>
<td>#4, after 2.5 years</td>
<td>-1.160 x 10⁻⁹</td>
<td>249</td>
<td>71.7</td>
<td>.92</td>
</tr>
<tr>
<td>Big Geysers (Shallow Zone)</td>
<td>-1.22 x 10⁻¹¹ (ref. 3)</td>
<td>250</td>
<td>2915</td>
<td>46</td>
</tr>
<tr>
<td>Serrazzano</td>
<td>-1.89 x 10⁻¹⁰ (ref. 11)</td>
<td>218</td>
<td>132</td>
<td>2.1</td>
</tr>
<tr>
<td>Serrazzano (geologically accurate mesh)¹²,¹³</td>
<td></td>
<td>218</td>
<td>396</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Table 4: Reservoir with Sustained Upflow of Water

Rock Properties:

\[ρ_R = 2650 \text{ kg/m}^3 \]
\[c_R = 710 \text{ J/kg°C} \]
\[k_R = 1.83 \text{ W/m°C} \]
\[k = 10^{-13} \text{ m}^2 \]
\[ϕ = 20\% \]

Reservoir Geometry: The reservoir is a vertical column of 30 m depth and 1 m² horizontal cross section. It was subdivided into 30 equal sized elements with horizontal interfaces at 1 m spacing. All outer boundaries are "no flow."

Initial Conditions: The top 20 m of the reservoir contain superheated steam, and the bottom 10 m, subcooled water, both at a temperature \(T = 200 \text{ °C} \), with pressures carefully equilibrated under gravity.

Production: The reservoir was produced from the top element at a constant rate of \(6.8 \times 10^{-4} \text{ kg/sec} \), corresponding to a depletion within 30 days.

Relative permeabilities were computed from eqs. 5a,b with a residual immobile water saturation of \(1-r = 0.35 \).
Table 5: Flowing Wells in the Serrazzano Reservoir

<table>
<thead>
<tr>
<th>Well</th>
<th>Producing Since</th>
<th>Location</th>
<th>Flow Rate (kg/sec)</th>
<th>$\frac{\dot{m}_w}{\dot{m}_q}$</th>
<th>p (bars)</th>
<th>$\frac{\dot{m}_w}{\dot{m}_q}$</th>
<th>p (bars)</th>
<th>$\frac{\dot{m}_w}{\dot{m}_q}$</th>
<th>p (bars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conserva</td>
<td>1940</td>
<td>PO2</td>
<td>4.25</td>
<td>0.9998</td>
<td>5.4</td>
<td>1.0016</td>
<td>5.2</td>
<td>0.9804</td>
<td>1.9</td>
</tr>
<tr>
<td>Capanna</td>
<td>1940</td>
<td>PO3</td>
<td>6.14</td>
<td>0.9988</td>
<td>5.7</td>
<td>1.00081</td>
<td>6.3</td>
<td>0.9920</td>
<td>3.7</td>
</tr>
<tr>
<td>Avalle 2</td>
<td>1950</td>
<td>PO3</td>
<td>4.86</td>
<td>1.0026</td>
<td>9.9</td>
<td>0.99942</td>
<td>9.4</td>
<td>0.9893</td>
<td>7.7</td>
</tr>
<tr>
<td>BCF 3</td>
<td>1956</td>
<td>PO3</td>
<td>5.19</td>
<td>1.00081</td>
<td>9.9</td>
<td>0.999936</td>
<td>8.5</td>
<td>0.9933</td>
<td>5.5</td>
</tr>
<tr>
<td>Soff. 1</td>
<td>1954</td>
<td>PO3</td>
<td>7.67</td>
<td>0.9978</td>
<td>7.2</td>
<td>1.00018</td>
<td>6.8</td>
<td>0.9978</td>
<td>8.0</td>
</tr>
<tr>
<td>Cioccaia</td>
<td>1957</td>
<td>PO3</td>
<td>3.36</td>
<td>1.00058</td>
<td>8.0</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>Soff. 2</td>
<td>1958</td>
<td>NO4</td>
<td>16.36</td>
<td>0.99962</td>
<td>6.2</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>Le Prata 4</td>
<td>1959</td>
<td>C31</td>
<td>7.94</td>
<td>1.14</td>
<td>5.9</td>
<td>1.00015</td>
<td>5.5</td>
<td>0.9914</td>
<td>3.7</td>
</tr>
<tr>
<td>Le Vasche</td>
<td>1959</td>
<td>GO3</td>
<td>5.50</td>
<td>0.9982</td>
<td>5.9</td>
<td>1.00027</td>
<td>6.9</td>
<td>0.9750</td>
<td>5.2</td>
</tr>
<tr>
<td>Oliveta</td>
<td>1961</td>
<td>DO3</td>
<td>10.03</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00268</td>
<td>4.8</td>
<td>1.0026</td>
<td>6.8</td>
</tr>
<tr>
<td>VC 2</td>
<td>1963</td>
<td>CO7</td>
<td>17.1</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>VC 5</td>
<td>1963</td>
<td>CR8</td>
<td>38.6</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>VC 10</td>
<td>1963</td>
<td>EO8</td>
<td>46.6</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>Campoalperil</td>
<td>1965</td>
<td>SA0</td>
<td>8.0</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>Vignacce</td>
<td>1966</td>
<td>GO4</td>
<td>10.5</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>Grottitana</td>
<td>1968</td>
<td>DO6</td>
<td>13.7</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>Capriola</td>
<td>1970</td>
<td>BO8</td>
<td>23.1</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
<tr>
<td>Lustigniano</td>
<td>1970</td>
<td>PI2</td>
<td>22.1</td>
<td>1.0026</td>
<td>6.3</td>
<td>1.00018</td>
<td>5.9</td>
<td>1.00036</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Fig. 1: Boiling Rate Profiles (a) and Pressure Decline Curves (b) during Depletion of Various Two-Phase Reservoirs. The examples shown are defined in Tables 1 and 2.
Fig. 2: Effects of Injection of Cold Water in a Producing Two-Phase Reservoir. (a) Saturation and temperature profiles for case #9 (Table 2); (b) flow rates and cumulative production with (#9) and without (#6) injection; (c) energy production and energy content of reservoir fluid.
Fig. 3: Fast Depletion of a Reservoir with Sharp Steam/Water Interface. The problem is defined in Table 4. (a) Pressure in well-block; (b) parameter changes in element 18 during phase transition; (c) saturation profiles.
Fig. 4: Slow Depletion of a Reservoir with Sharp Steam/Water Interface. Reservoir parameters are given in Table 1. (a) Time evolution; (b) vertical profiles.
Fig. 5:
Aggregated Production Rates as Measured for the Serrazzano Geothermal Reservoir.

Fig. 6:
Caprock Elevations and Geological Cross Sections for Serrazzano.
Fig. 7:
Serrazzano Grid. (a) Typical Cross Section; (b) rotated perspective views of entire grid.
Fig. 8: Average Reservoir Steam Pressure and Cumulative Fluid Production as Calculated in Serrazzano Simulation.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.
Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.