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Abstract: Over a decade ago, Pan et al. [IEEE TPAMI 25, 1552 (2003)]
performed face recognition using only the spectral reflectance of the face at
six points and reported around 95% recognition rate. Since their database
is private, no one has been able to replicate these results. Moreover, due
to the unavailability of public datasets, there has been no detailed study
in the literature on the viability of facial spectral reflectance for person
identification. In this study, we introduce a new public database of facial
spectral reflectance profiles measured with a high precision spectrometer.
For each of the 40 subjects, spectral reflectance was measured at the same
six points as Pan et al. [IEEE TPAMI 25, 1552 (2003)] in multiple sessions
and with time lapse. Furthermore, we sample the facial spectral reflectance
from two public hyperspectral face image datasets and analyzed the data
using state of the art face classification techniques. The best performing
classifier achieved the maximum rank-1 identification rate of 53.8%. We
conclude that facial spectral reflectance alone is not a reliable biometric for
unconstrained face recognition.

© 2015 Optical Society of America

OCIS codes: (300.0300) Spectroscopy; (070.5010) Pattern recognition.
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1. Introduction
Biometric identification refers to the recognition of target objects by analysing and quantifying
their physiological, chemical or behavioral characteristics [1]. Biometric identification has a
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wide range of applications in surveillance, security, border control, access control and law en-
forcement [2]. Any human physiological and/or behavioral characteristic that has the properties
of universality, distinctiveness, permanence and quantitative measurability can be used as a bio-
metric [3]. A practical biometric identification system should be accurate, non-invasive, socially
acceptable, cost-effective and robust to spoofing attacks [1]. Common biometric modalities for
human identification include face images, iris/retinal scans, finger/palm prints, hand geometry
and speech signals [4, 5].

Spectroscopy is the study of absorption, reflection, or scattering of the electromagnetic en-
ergy by a material in order to qualitatively or quantitatively characterize its composition and
identity [6]. In spectroscopy, usually the transmitted or reflected electromagnetic energy is
measured by a spectroscopic device and is then represented by a spectrum as a function of
wavelength versus intensity, distance and projection angle of the electromagnetic energy [7].
This spectrum is also called the spectral response of the material and provides hints about the
chemical composition or physical behaviour of the material.

The epidermal and dermal layers of human skin constitute a scattering medium and contain
tissue chromophores such as melanin and oxygenated or deoxygenated hemoglobin and other
chemicals such as β -carotene [8–10]. Reflectance spectroscopy involves the measurement and
study of the reflected electromagnetic energy from a material. Reflectance spectroscopy of the
skin surface can be performed non-invasively to sense the subsurface skin chemical distribu-
tions [9] and has been used by various researchers [11–16] for skin characterization.

Assuming that the spectral reflectance features of human skin are somewhat unique among
all humans and also consistent over time, then it may be possible to deploy reflectance spec-
troscopy for human identification. Pan et al. [17] acquired reflectance data from 200 human
subjects and were able to identify individuals with about 95% accuracy. The experimental
setup consisted of human faces being imaged in a single session (no time lapse), and spec-
tral reflectance features were acquired in 33 spectral bands (10 nm band width). A session
means a single sitting in which the spectral reflectance profiles of a subject are measured. How-
ever, the dataset is not publicly available; therefore, it has not been possible to validate their
research results. In fact, other researchers have been unable to replicate these results on their
own databases [18]. Therefore, the question whether spectral reflectance of the human face is a
viable biometric is still and open question.

In this paper, we perform reflectance spectroscopy to investigate practical significance of
human facial spectral reflectance for person identification. We present a database of high reso-
lution facial spectral reflectance features of 40 human subjects. Each spectral reflectance profile
has 1761 bands with 0.5nm bandwidth in wavelength range of 220-1100nm. The spectral re-
flectance of each subject is measured in multiple sessions and multiple times in each session.
The time lapse between each session varies from one day to nine months. For data collection,
a high resolution, high accuracy spectrometer under precisely calibrated lighting conditions is
used. The performance of the facial spectral response for person identification is evaluated us-
ing state-of-the-art classification algorithms. In our experiments, the best performing classifier
achieved the maximum rank-1 identification rate of 53.8%. This suggests that the facial spec-
tral reflectance alone does not provide good unconstrained human identification accuracy. We
believe that our new database and results are very important in order to advance the research in
the area of spectral reflectance based face recognition in particular and spectral biometrics in
general.

2. Related work
There are only two previous studies on the use of spectral reflectance for biometric recognition.
Both studies use hyperspectral cameras for reflectance spectroscopy. The first study on spectral
reflectance based face recognition was conducted by Pan et al. [17] using 2D hyperspectral
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(a) (b) (c) 

Fig. 1. (a) StellarNet CXR-SR-50 spectrometer and armoured reflectance fiber with 600µm
diameter. Apogee AS-003 reflectance probe with built-in light source. (b) Six facial points
from where the spectral reflectance profiles are sampled. (c) The measurement procedure.

images in the near-infrared range (700-1000nm). They manually sampled the 31 dimensional
(31 band) spectral reflectances from hand picked locations on the hair, forehead, cheeks, lips
and chin of each subject (Fig. 1(b)). The spectral reflectance profiles were classified using
the Mahalanobis distance based classifier to perform face recognition. Robila [19] extended
the previous study by expanding the wavelength range and using hyperspectral images of 120
bands (400nm-900nm). He also used spectral reflectance profiles of different face regions but
compared them using the spectral angle based distance. However, his experiments involved a
small proprietary database of only eight subjects.

Some researchers used both spatial and spectral features of hyperspectral images for face
recognition. Pan et al. [20] extracted spatio-spectral features, called the 2D spectral-face, by
recursively sampling each subsequent pixel from the next band. Di et al. [21] used 2D PCA to
extract low dimensional features from hyperspectral cubes. The 2D PCA based features were
then classified for face recognition. They also introduced a public hyperspectral face database
PolyU-HSFD [21] in the visible range (400-720nm) containing 25 subjects. However, the signal
to noise ratio in individual bands of this database is very low making the spectral response
unreliable. Shen and Zheng [22] extracted spatiospectral features from each hyperspectral cube
using 3D-Gabor wavelets. Uzair et al. [23] extracted spatiospectral features using the classical
3D-DCT transform and classified them using Partial Least Squares. They also introduced a
public hyperspectral face database UWA-HSFD [23] containing 70 subjects captured in the
visible range (400-720nm). The UWA-HSFD database is less noisy compared to the PolyU-
HSFD, however, the spectral resolution is low consisting of only 33 bands covering only the
visible range (400-720nm). All these studies utilize both the spatial and the spectral features.
Therefore, the role of spectral features alone for face recognition is not clear.

The databases used in previous studies are noisy [21], captured in a constrained setup, have
low spectral resolution and are not publicly available [17]. Therefore, the results from these
databases are limited and it is inconclusive as to whether the facial spectral reflectance alone can
be used as a unique person identifier. Moreover, these datasets do not encourage further studies
or comparisons on spectral reflectance based face recognition. In contrast, we introduce the first
ever public database of high resolution calibrated facial spectral reflectances that are measured
by a high precision spectrometer in an unconstrained manner. Our experimental results also
provide insight into the role of spectral reflectance for biometric recognition.

3. Database collection
We used the StellearNet CXR-SR-50 spectrometer for our database collection (Fig. 1(a)) which
can measure the spectral response of a material in the wavelength range of 220nm to 1100nm
with a step size of 0.5nm. The spectral response is recorded by connecting the spectrometer to
a personal computer via USB port using a fiber optic cable attached to the standard SMA905
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Fig. 2. (Left to right) Spectral power distribution of the illumination. Normalized spectral
reflectance of the standard white that we use for calibration. The number participants in
different sessions of the UWA Facial Spectral Reflectance Database (UWA-FSRD).

connector. We use an armoured, single strand, multimode, 2 meters fiber optic cable supplied
with the spectrometer by StellarNet. The detection fiber has a diameter of 600µm and an op-
erating range of 190-2200nm. We used the Apogee Instruments AS-003 reflectance probe with
built-in illumination which is designed specially for accurate spectroscopy. The main advantage
of choosing the reflectance probe is that it blocks the ambient illumination and ensures that a
constant distance and angle is maintained with the sample. The probe holder maintains a con-
stant distance of 20mm between the sample and the detection fibre. At this distance, the fiber
detection area is 51.0mm2. Figure 2(a) shows the Spectral Power Distribution (SPD) of the il-
lumination provided with the reflectance probe. We calibrate the spectrometer in the beginning
of each session with standard white and standard black materials. For calibration, the standard
white provided by the StellarNet is used. This standard white reflects over 99% of the incident
light (Fig. 2(a)). We use the SpectraWiz software for calibration and reflectance measurement
and keep the same calibration settings in our entire experiment. We set the detector integration
time to 170ms and store the average of 5 scans.

With the calibrated spectrometer, we measure the spectral reflectance from the same six
skin regions those selected by Pan et al. [17]. The regions include forehead, right cheek, left
cheek, lips, chin and hair (Fig. 1(b)). To measure the spectral reflectance, we place the probe
softly (without pressing) (Fig. 1(c)) on the skin region to be measured and capture the spectral
reflectance through the SpectraWiz software.

3.1. Database details

We have collected a database of 325 spectral reflectance profiles of six facial regions from
40 subjects (5 females, 35 males). We call our database the UWA Facial Spectral Re-
flectance Database (UWA-FSRD) (publicly available at: http://www.csse.uwa.edu.
au/˜ajmal/databases.html). Our database contains subjects from six different ethnic-
ities including African (2), Caucasian (12), Chinese (5), Indian (17), Middle Eastern and South
American (1). The ages of the subjects fall in the range 20-45 years. The spectral reflectances of
each subject are measured in multiple sessions. Figure 2(b) summarizes the number of subjects
present in different sessions. Specifically, a total of ten subjects are with four or more sessions,
ten with three sessions, 14 with two sessions and the remaining six subjects are with one ses-
sion. In each session we acquired 2-13 spectral reflectance profiles of each facial region within
a close proximity.

The time lapse between two sessions for a subject varies between a minimum of one day
and a maximum of more than nine months. This setting enables us to study the permanence of
the spectral reflectance biometric over time. Note that our main focus is on biometric identi-
fication where constraints on the subjects physical conditions are not desirable. Therefore, we
do not impose any constraints on the subjects such as cleaning the skin or shaving before data
collection.
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Fig. 3. (a) A hyperspectral face cube from the CMU-HSFD (bands from 450nm to 770nm).
Each band is rendered as RGB using the standard CIE Color Matching Functions [24].
(b) Normalized spectral reflectance profiles of six facial regions of 48 subjects in the CMU-
HSFD.

3.2. Facial spectral reflectance sampling from existing hyperspectral databases

In addition to our spectrometer based database, we also used two existing hyperspectral face
image databases in our experiments (Table 1). These databases were captured with hyperspec-
tral cameras and contain two dimensional (2D) images of the face at multiple wavelengths.
Therefore, both the spatial and spectral information of the face are available. However, we only
sample the spectral information of six facial points for our experiments.

CMU-HSFD: The first database is the CMU Hyperspectral Face Database (CMU-HSFD)
[25] (Fig. 3(a)) acquired with a prototype spectro-polarimetric camera. Each hyperspectral im-
age cube contains 65 bands covering the spectral range of 450-1090nm range with a step size
of 10nm. For illumination, three identical lamps with 600W halogen bulbs were used. The
database contains 48 subjects; each subject has 4 to 20 cubes acquired at different sessions and
different lighting combinations. We used only the images acquired with all lights turned on.
In order to sample the calibrated spectral reflectance, we normalized the hyperspectral images

Table 1. Details of the databases used in our study.
Database Type Size Subjects Spectra Spectral range Step size
CMU-HSFD [25] Images 640×80×65 48 882 450-1090nm 10nm
UWA-HSFD [23] Images 1024×1024×33 70 720 400-720nm 10nm
UWA-FSRD Spectra 6×1761 40 325 220-1100nm 0.5nm
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Fig. 4. (a) A hyperspectral face cube from the UWA-HSFD. Each band is rendered as RGB
using the standard CIE Color Matching Functions [24]. (b) Normalized spectral reflectance
profiles of six facial regions of 70 subjects in the UWA-HSFD.

using the provided calibration patch in the images. Our experimental data consists of 147 hyper-
spectral images of 48 subjects where each subject has 1 to 5 images (Table 1). Figure 3(b) shows
the normalized reflectance profiles of six facial regions of the 48 subjects in CMU-HSFD.

UWA-HSFD: The second database is our local UWA-Hyperspectral Face Database (UWA-
HSFD) (Fig. 4(a)) acquired with the CRI’s VariSpec LCTF integrated with a photon focus
camera. Each hyperspectral image cube contains 33 bands covering the spectral range of 400-
720nm with a 10nm step. The noise level in this database is relatively lower because an im-
proved calibration algorithm [26] is used that automatically adapts the camera exposure time to
the transmittance of the filter, illumination intensity and CCD sensitivity in each band. In order
to sample the exact spectral reflectance, the camera is calibrated with standard white in the be-
ginning of each imaging season. The UWA-HSFD consists of 120 hyperspectral images of 70
subjects.(Table 1). The time lapse between imaging sessions for a subject in the UWA-HSFD
varies from one week to 12 months. Figure 4(b) shows the normalized reflectance profiles of
six facial regions of the 70 subjects in UWA-HSFD.

From each subject in the UWA-HSFD and CMU-HSFD, we manually sample the spectral
reflectances of six facial points including forehead, left cheek, right cheek, lips, chin and hair.
We use the average spectral reflectance of 5 adjacent square regions of size 17×17 pixels ar-
ranged in a cross pattern to represent hair, forehead and cheeks. For lips we use square regions
of size 9× 9 pixels. Based on the relationship between the average physical distance and the
average number of pixels between the eye centers, a pixel in the UWA-HSFD and CMU-HSFD
roughly corresponds to 0.18mm2 and 0.32mm2 respectively. Therefore, the physical area cov-
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ered by 17x17 pixels roughly equals to 52.02mm2 for UWA-HSFD and 92.48mm2 for CMU-
HSFD. Recall that the fiber detection area in UWA-FSRD is 51.0mm2 (see Section 3). In the
case of UWA-HSFD each spectral reflectance vector is 33-dimensional, while for CMU-HSFD
database the spectral reflectance vector is 65-dimensional. Theses spectral reflectances are `2
normalized and subsequently used for classification. The normalization reduces scaling effects
in the spectral responses due to the sensor noise.

4. Recognition based on the facial spectral reflectance
In this section, we explain the machine learning algorithms we used for performing recogni-
tion using the facial spectral responses. Let sr = [sr(λ1),sr(λ2), ...,sr(λp)] ∈ Rp be the spectral
response vector of the facial region r that samples the reflected energy from p wavelengths.
Let Gr = {s j

r}g
j=1 ∈ Rp×g be the gallery containing g normalized spectral reflectances of facial

region r. Let c be the number of subject classes such that m j ≥ 1 is the number of spectral
responses for each class, g = ∑

c
j=1 m j and Y = {y j}g

j=1 be the class labels of the spectral re-
sponses in Gr. Let st

r ∈ Rp be the test spectral response. The problem of spectral reflectance
based face recognition involves estimating the label yt

r of st
r given the labelled gallery Gr.

We choose a mix of simple and more sophisticated classification algorithms for recognition.
The simple algorithms include Nearest Neighbor (NN) and Support Vector Machines (SVM)
which perform classification on the original spectral reflectance vectors. The sophisticated ones
include Kernel Linear Discriminant Analysis (KLDA) and Sparse Discriminant Analysis (SDA)
that extract discriminant features from the reflectance profiles.

Mahalanobis distance based nearest neighbour classifier: The Mahalanobis distance d be-
tween two spectral response vectors si

r and s j
r is defined as [27]

d = (si
r− s j

r)
>C−1

r (si
r− s j

r) (1)

where Cr is the p× p covariance matrix estimated from the training spectral responses of facial
region r. Since the amount of training data is limited, we estimate Cr to be a diagonal matrix
with elements that correspond to the variance of each wavelength in the spectra. To classify st

r
we first calculate the distance (d) from st

r to each of the samples in Gr and obtain a score vector
er ∈ Rg. Then, yt

r is estimated as the label of the class for which the distance in er is minimum.

Support vector machines (SVM) Support Vector Machine is an efficient classification al-
gorithm designed for binary classification problems where we assume that there are g training
samples {s j

r}g
j=1 with labels y j ∈ {1,−1}. SVM finds a hyper-plane that separates the two

classes with the largest margin by solving the following optimization problem:

min
w,b,ξ

(
1
2

w>w+C∑
j

ξ
j

)
(2)

s.t. y j(ws j
r +b)≥ 1−ξ

j,ξ j ≥ 0

Where C is the penalty parameter, w and b are the parameters of the hyperplane and ξ j are aux-
iliary variables that allow to handle non-separable problems. For kernel SVM, the constraint
can be replaced by y j(wφ(s j

r) + b) ≥ 1− ξ j,ξ j ≥ 0 to find the hyper-plane in a higher di-
mensional space. Once the parameters of the hyper-plane are obtained, the label yt

r of the test
spectral reflectance st

r is estimated using the sign of wst
r+b
‖w‖ . Since our experiments involve the

classification of 40 subjects (classes), therefore; we extend the binary SVM to multi-class clas-
sification using a one-versus-all approach. For a detailed explanation of the SVM algorithm,
we refer the reader to [28, 29]. We used the LibSVM [30] library to compute the parameters of
the hyper-plane.
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Kernel linear discriminant analysis (KLDA) extracts discriminative and low dimensional
features from the data. KLDA is especially useful in increasing the between class discrimination
when the classes are not linearly separable. It projects the p dimensional spectral response
features in Gr to a c−1 dimensional subspace where classification is performed.

Let φ be a non-linear mapping function that maps the spectral reflectances si
r ∈ Rp to a high

dimensional feature space φ : Rp 7→H . The features belonging to different classes are better
discriminated in the high dimensional non-linear space H . A kernel matrix Kr ∈ Rg×g can
be computed by means of dot products in the high dimensional feature space. However, rather
than explicitly mapping the data to H by implementing the non-linear mapping φ , the kernel
matrix is often computed by choosing a valid kernel function: Kr(i, j) = k(si

r,s
j
r). We choose

the polynomial kernel function k(si
r,s

j
r) = (si

r.s
j
r)

β , where (·) means dot product and β is the
order of polynomial.

Once Kr is computed, KLDA seeks to solve the following optimization problem [31]

αopt = argmax
α>KrWKrα

α>KrKrα
, (3)

where α = [α1, ...,αg]
>. W ∈ Rg×g is a block diagonal matrix:W = diag{W1,W2, ...,Wc},

where W j ∈ Rm j×m j is a matrix with all elements equal to 1
m j

. The optimal α is given by the

largest eigenvectors of (KrKr + εI)−1(KrWKr)α = λα . By selecting the (c− 1) dominant
eigenvectors, we obtain a transformation matrix Λ = [α1, ...,αc−1] ∈ Rp×(c−1). The gallery Gr

is then projected on Λ to obtain a low dimensional representation Ĝr = Λ
>Gr.

To predict the label of a test spectral reflectance st
r, first the c−1 dimensional KLDA feature

zt
r is computed by zt

r = Λ
>Kt

r. Here Kt
r = [k(st

r,s1
r ), ...,k(st

r,s
g
r )] ∈ Rc−1. Then the Euclidean

distance is computed from zt
r to each of the low dimensional samples in Ĝr and a score vector

er ∈Rg is obtained. Finally, yt
r is estimated as the label of the class for which the distance in er

is minimum.

Sparse discriminant analysis (SDA) extracts discriminative features as sparse combinations
of the input data. In our case of reflectance spectra, SDA will use a sparse combination of
the bands to extract features. Thus, SDA has an inbuilt feature/band selection step. SDA is
particularly useful when the number of variables are greater than the number of samples in
the training set. Let Q ∈ Rg×c denote a matrix of dummy variables for the c classes; Qi j is an
indicator variable for whether the i-th observation belongs to the j-th class. SDA is formulated
by combining the optimal scoring criterion with the elastic net [32]

min
β i,θ i

(
‖Qθ i−G>r β i‖+λ‖β i‖1 + γ‖β i‖2

)
(4)

s.t.
1
g

θ
>
i Q>Qθ i = 1,θ>i Q>Qθ l = 0∀l < i

where θi be the c-vector of scores for the c classes, and βi is a p-vector representing variable
coefficients for the p features. The problem is solved using the iterative algorithm presented
in [32] to obtain B = [β 1, ...,β (c−1)]. The gallery Gr is then projected on B to obtain a low

dimensional representation and discriminative features Ĝr = B>Gr.
To predict the label of a test spectral reflectance st

r, first the c−1 dimensional SDA features zt
r

are computed by zt
r =B>zt

r. Then the Euclidean distance from zt
r to each of the low dimensional

samples in Ĝr is calculated and a score vector er ∈ Rg is obtained. Finally, yt
r is estimated as

the label of the class for which the distance in er is minimum.
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Fig. 5. Normalized spectral responses of six facial regions of 40 subjects in our UWA-
FSRD. The very different spectral reflectance profiles of the chin are from individuals with
facial hairs.
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Fig. 6. Average and standard deviations of the spectral reflectances of the six facial regions
of 40 subjects in our UWA-FSRD.

Score level fusion: Since we have r = 6 facial regions of each subject, we train a separate
classifier for each region and combine their result at the score level. We use the sum rule of
classifier fusion due to its excellent performance for combining classifiers [33]. The sum rule
of classifier score fusion uses the simple sum operator to combine the output scores of multiple
classifiers. For a test subject, the r test spectral reflectances {st

k}r
k=1 generate r score vectors

{er}r
k=1. We first normalize each score vector er separately using min-max normalization. Next,

we use the sum operator to compute the fused score vector i.e. f = ∑
r
k=1 er. Finally, the test

subject is assigned the label of the class for which the distance in f is minimum.

5. Experiments
We do not use ultraviolet illumination because skin spectroscopy in the ultraviolet spectrum is
unsafe. Moreover, our probe light has very low power above 1000nm (Fig. 1) making measure-
ments above this range noisy. Light sources and spectrometers that operate in a broader spec-
trum are expensive and are less likely to be used in a practical spectral reflectance based face
recognition system. Therefore, in our experiments we only consider the reflectance profiles in
the 400-1000nm range. The `2 normalized spectral reflectances of the right cheek, lips and hair
of the 40 subjects in our database are shown in Fig. 5. Figure 6 shows the average spectral
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Fig. 7. Spectral reflectance features of the right cheek projected to a 3D PCA space. The
dimensions represent the three dominant principal components (PCs) and each dot repre-
sents the reflectance profile of a subject. Each subject is represented by a different color.
Notice the difficulty of separating different subjects.

reflectance profiles of the 40 subjects in our UWA-FSRD database. The standard deviations
along the profile curves are also shows using error bars. It can be observed that the spectral
reflectance curves of all subjects follow a similar pattern. To visualize the manifold structure of
spectral reflectance features, we performed Principal Component Analysis (PCA) on our entire
database. Figure 7 shows the manifold of right cheek by projecting its reflectance features on
the three most dominant principal components. Notice that different classes are overlapped and
there are no well defined clusters corresponding to each class. This leads to high correlation
both within class and between class spectral reflectance features, making the task of discrim-
ination between the reflectance profiles of different subjects very hard. The manifold of the
other five facial regions follows a similar trend.

5.1. Experimental setup

We simulate the settings of a practical real world biometric recognition process and design our
experiments to perform recognition on the facial spectral reflectances of the subjects measured
in different sessions. For all three databases, we divide the spectral reflectance spectra in gallery
and probes sets as follows. For every subject, we randomly select the spectral reflectances meas-
ured in one session as probes and the spectra in the rest of the sessions are used as gallery. We
repeat the experiments 10 times by randomly generating different gallery probe combinations
in each run (10 folds). For KLDA we empirically set the order of the polynomial kernel (pa-
rameter β ) to 3. The lib-SVM library is used for SVM classifier. We empirically choose the
radial basis kernel function with a scale γ = 10−2 and C = 100.

6. Results and discussion

Table 2 summarizes the average recognition rates and standard deviations of 10-fold experi-
ments on our UWA-FSRD. The accuracy of simple Mahalanobis distance based nearest neigh-
bour classifier and simple SVM is low. On the other hand the accuracy increases when the
spectral reflectances are projected into discriminative subspaces by performing Sparse Discrim-
inant Analysis or Kernel Linear Discriminant Analysis. The KLDA based classifier performs
the best due to its non-linear mapping of the spectral reflectances to a discriminative feature
space. Moreover, the accuracies of the spectral reflectances of different facial regions when
classified individually is lower than when the regions are combined using the sum rule for

Table 2. Average recognition rates and standard deviations of 10 fold experiments on our
UWA-FSRD.

Forehead Right Cheek Left Cheek Lips Chin Hair Sum Fusion
NN 17.93±3.26 20.73±2.69 24.41±3.28 14.56±1.79 22.70±2.15 10.12±2.50 36.54±3.51
SVM 10.65±3.65 20.31±2.89 16.33±3.41 13.07±1.38 11.22±5.69 10.22±2.64 -
SDA 25.55±3.84 28.09±2.16 24.17±4.79 21.28±2.98 30.22±2.39 15.21±2.86 44.82±5.89
KLDA 23.38±2.82 33.22±2.31 27.68±3.71 22.96±2.69 33.01±2.76 12.97±3.79 53.83±4.06
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Fig. 8. Cumulative Match Characteristics Curves of the (a) Mahalanobis (b) SDA and (c)
KLDA based classifier on UWA-FSRD database.

score level fusion. The KLDA based classifier achieved a rank-1 recognition rate of 53.83%
using the sum based score level fusion of the six facial regions. We also performed recognition
experiments by excluding the lips and hair reflectance profiles. The NN, SDA and KLDA clas-
sifiers achieved 32.86%, 39.02% and 46.14% accuracies respectively which are lower than that
of the combined six regions (Table 2).

Figure 8 gives the Cumulative Match Characteristics (CMC) [34] of different classification
methods for 10-fold experiments on our UWA-FSRD. The classification accuracy reaches to its
maximum at very higher ranks which suggests the poor performance of spectral reflectances
for unconstrained person identification.

Table 3 summarizes the average recognition rates and standard deviations of 10-fold exper-
iments on the facial spectral reflectances in the CMU database. Similar to the results on our
spectrometer database, the accuracy of individual facial regions are lower than when combined
using the sum rule based score fusion. Compared to our spectrometer based database, the CMU
database has lower spectral resolution (step size of 10). Therefore, the classification accuracy
of all the algorithms is lower compared to our spectrometer based database. The KLDA based
classifier achieves a rank-1 recognition rate of 40.89% on this database.

Figure 9 shows the CMC curves of different classifiers on the facial spectral reflectances in
CMU database. The spectral reflectances achieve their highest recognition rates at very high
ranks. This further suggests that the strength of spectral reflectance alone is not enough to
discriminate faces.

Table 4 summarizes the average recognition rates and standard deviations of 10-fold experi-

Table 3. Average recognition rates (%) and standard deviations of 10 fold experiments on
the CMU-HSFD.

Forehead Right Cheek Left Cheek Lips Chin Hair Sum Fusion
NN 16.94±4.32 15.56±2.36 16.39±1.18 10.33±2.36 12.50±0.39 10.17±1.18 33.89±4.79
SVM 16.06±3.54 19.72±5.11 21.67±1.57 16.11±3.14 15.61±1.18 14.17±1.96 -
SDA 16.11±1.57 11.39±1.18 10.83±5.11 10.08±3.14 13.61±3.54 10.56±2.36 30.28±4.32
KLDA 16.67±4.71 18.61±1.96 16.39±5.11 11.67±1.57 16.96±1.18 13.89±1.96 40.89±4.71
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Fig. 9. Cumulative Match Characteristics Curves of the (a) Mahalanobis (b) SDA and (c)
KLDA based classifier on CMU-HSFD database.
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Table 4. Average recognition rates (%) and standard deviations of 10 fold experiments on
the UWA-HSFD.

Forehead Right Cheek Left Cheek Lips Chin Hair Sum Fusion
NN 11.25±3.54 21.25±4.32 13.75±3.82 11.25±2.05 16.26±2.01 4.00±3.84 20.00±3.58
SVM 13.75±3.66 18.75±4.23 13.75±2.81 7.5±3.84 15.00±2.31 4.50±3.61 -
SDA 13.75±3.25 11.25±3.44 10.00±2.11 6.25±3.58 13.75±3.33 4.78±3.01 27.50±3.55
KLDA 10.50±3.85 18.00±2.99 15.50±3.86 11.50±1.75 17.00±2.35 5.00±3.75 25.00±3.92
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Fig. 10. Cumulative Match Characteristics Curves of the (left) Mahalanobis (center) SDA
and (right) KLDA based classifier on UWA-HSFD database.

ments on the facial spectral reflectances in the UWA-HSFD database. The UWA-HSFD covers
only the visible range of electromagnetic spectrum and therefore contains lesser information
than the CMU database and the proposed spectrometer based database. The spectral resolu-
tion is also low compared to our spectrometer database. Therefore, the accuracy of spectral
reflectance based face recognition on this database is very low. The SDA based classifier boosts
the accuracy by projecting the data to a discriminative subspace. However the rank-1 recogni-
tion rate of 27.50% is still not satisfactory.

Figure 10 shows the CMC curves of different classifiers on the facial spectral reflectances
in the UWA-HSFD. Similar to the CMU-HSFD and our spectrometer database, the spectral
reflectances fail to achieve good rank-1 recognition accuracy.

6.1. Reasons of the low recognition rate

Pan et al. [17] reported 95% rank-1 recognition accuracy using only the facial spectral re-
flectance and Nearest Neighbour classifier. However, their experiments involved subjects that
were imaged in only one session without any time lapse. To further verify this, we repeated
our experiments on the UWA spectrometer database (UWA-FSRD) using facial spectral re-
flectances of the same session in the gallery and probes. We obtained 86.0±2.9% accuracy in
10-fold experiments using KLDA. Note that this is over three times higher than the different
session accuracy given in Table 4.

The main reason of the drop of accuracy from same session to different sessions is that
the spectral reflectance of a subject’s face can significantly change with location and time de-
pending on the subject’s physical conditions such as blood pressure, body water percentage,
sweating and the use of cosmetics etc. For example, inflammation caused by infection or ir-
ritation can lead to hyperpigmentation i.e. excess production of melanin [35, 36]. Changes in
the melanin distribution and oxygen saturation in the hemoglobin can induce significant devi-
ations in the spectral reflectance of the same person [37, 38]. Moreover, ultraviolet exposure
of human skin has been shown to increase the epidermal thickness in addition to increasing
its melanin content [10, 39, 40]. Similarly, smoking has also been shown to decrease epidermal
thickness [41]. Other factors such as the use of cosmetics, along with sensor drift and sensi-
tivity, reduce the discrimination capability of the skin spectral reflectance. Figure 11 shows an
example of how the spectral reflectance profiles of the same subject change with time. In this
example, the time lapse between the two measurement sessions was three weeks. As the fa-
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Fig. 11. Variations in the spectral reflectance profiles of the same subject measured in dif-
ferent sessions. In this example, the time lapse between the two sessions was three weeks.

cial spectral reflectance of all the subjects follows a very similar pattern, a small change in the
spectra of one subject leads to a large intra-class difference and inter-class correlations. Since
the uniqueness of spectral reflectance is poor, the rank-1 recognition rate of spectral reflectance
based face recognition is low.

6.2. Significance of results

Although, the number of subjects involved in our study was small, our results are significant
because the accuracy of face recognition systems generally decrease when the number of sub-
jects increase. The most significant part of our experiments is that we collected the data using
a standard white light source and a high precision spectrometer with 1441 bands covering the
visible and infra-red range. Therefore, the only variations that occurred between sessions were
due to physical conditions of the skin. Finally, we are making our UWA-FSRD database public
so that other researchers can reproduce our results and/or advance this research field.

7. Conclusion
We studied the practical significance of facial spectral reflectance for human identification and
introduced a new database acquired with a high precision spectrometer for this purpose. We
performed extensive face recognition experiments on the acquired data as well as two public
hyperspectral datasets using state-of-the-art face recognition algorithms. Due to the high spec-
tral resolution, the rank-1 recognition rates on our dataset was higher compared to the other
two databases. However, the overall recognition rates of the facial spectral reflectance alone
for unconstrained face recognition were unsatisfactory. Our experiments show that the spectral
reflectance profiles of the human faces follow a similar pattern (see Fig. 5 and Fig. 6). On the
average, the between person variations are not significantly different from the within person
temporal variations (see Fig. 11). Therefore, we conclude that the spectral reflectance profile
alone is not a reliable biometric for person identification. Our future study involves investigat-
ing the facial spectral reflectance for gender classification and liveness detection in biometric
applications.
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