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Robust Optimization for Amplify-and-Forward
MIMO Relaying from a Worst-Case Perspective

Hong Shen, Student Member, IEEE, Jiaheng Wang, Member, IEEE, Bernard C. Levy, Fellow, IEEE,
and Chunming Zhao, Member, IEEE

Abstract— In this paper, we consider robust optimization
of amplify-and-forward (AF) multiple-input multiple-output
(MIMO) relay precoders in presence of deterministic imperfect
channel state information (CSI), when the CSI uncertainty lies in
a norm bounded region. Two widely used performance metrics,
mutual information (MI) and mean square error (MSE), are
adopted as design objectives. According to the philosophy of
worst-case robustness, the robust optimization problems with re-
spect to maximizing the worst-case MI and minimizing the worst-
case MSE are formulated as maximin and minimax problems,
respectively. Due to the fact that these two problems do not
have a concave-convex or convex-concave structure, we cannot
rely on the conventional saddle point theory to find the robust
solutions. Nevertheless, by exploiting majorization theory, we
show that the formulated maximin and minimax problems both
admit saddle points. We further analytically characterize the
saddle points, and provide closed-form solutions to robust relay
precoder designs. Interestingly, we find that, under both MI and
MSE metrics, the robust relay optimization leads to a channel-
diagonalizing structure, meaning that eigenmode transmission is
optimal from the worst-case robustness perspective. The proposed
robust designs can improve the spectral efficiency and reliability
of AF MIMO relaying against CSI uncertainties at the similar
cost of computational complexity as the existing non-robust
schemes.

Index Terms— Multiple-input multiple-output (MIMO) coop-
erative transmission, mutual information (MI), mean square
error (MSE), worst-case robust design, relay precoding, imperfect
channel state information (CSI).

I. INTRODUCTION

Cooperative relay networking has emerged as a promis-
ing technique for enhancing communication reliability and
expanding coverage of next generation wireless systems
[1]. Meanwhile, multiple-input multiple-output (MIMO) tech-
niques which are widely used to improve the capacity and/or
reliability of wireless channels, have been introduced into relay
systems, namely MIMO relaying, in order to gain further
performance enhancement [2] [3]. Among various existing
relay protocols, amplify-and-forward (AF) MIMO relaying is
a very promising strategy well known for its simplicity, as the
relay only performs linear transformation (or precoding) on
the received signal and re-transmits it to the destination.

H. Shen, J. Wang, and C. Zhao are with National Mobile Communications
Research Laboratory, Southeast University, Nanjing 210096, China. H. Shen is
also with the Department of Electrical and Computer Engineering, University
of California, Davis, CA 95616, USA (e-mail: shenhongseu@gmail.com,
jhwangee@gmail.com, cmzhao@seu.edu.cn).

B. Levy is with the Department of Electrical and Computer En-
gineering, University of California, Davis, CA 95616, USA (e-mail:
bclevy@ucdavis.edu).

Transceiver optimization for AF MIMO relays is an impor-
tant research topic that has received significant attention [4]–
[8]. To be more specific, the authors in [4] and [5] optimized
the relay precoder to maximize the mutual information (MI)
between the source and destination. In [6] and [7], an alter-
native relay design based on the mean square error (MSE),
was considered for transceiver optimization. The authors in
[8] proposed a unified optimization framework for AF MIMO
relaying by means of majorization theory. Interestingly, a
common conclusion of the aforementioned works is that the
optimal transceiver design has a simple channel-diagonalizing
structure, implying that eigenmode transmission is still optimal
as in the case of point-to-point MIMO communications [9].
This attractive feature greatly simplifies the original matrix-
variable optimization problem by converting it to a simpler
scalar-based power allocation problem.

As the performance of a MIMO relay system is sensitive
to the accuracy of available channel state information (CSI),
ignoring the deviation between the true CSI and the estimated
CSI as in [4]–[8] may lead to severe performance degradation
in practical systems, where CSI errors generally exist as a re-
sult of inaccurate channel estimation, quantization and delayed
feedback. Accordingly, in order to mitigate the degradation
caused by CSI imperfection, it is necessary to perform a
robust design taking CSI mismatch into consideration. Thus
far, two types of robustness have been considered in existing
works, namely statistical and worst-case robustness. In partic-
ular, statistically robust optimization [10]–[16] assumes that
statistical information about the CSI such as its mean and/or
covariance can be acquired. When CSI statistics are available,
the statistically robust design usually seeks to enhance the
average or outage performance. In contrast with the philosophy
of statistical robustness, the worst-case robust designs [17]–
[25] assume no other CSI knowledge except that the actual
channel belongs to a bounded uncertainty set centered by
a nominal channel. In this context, optimizing the worst-
case performance becomes a meaningful approach to achieve
robustness.

The statistically robust transceiver design for AF MIMO
relaying has been examined in prior works such as [13]–
[15], where the channel-diagonalizing structure is shown to
be optimal, hence being consistent with the results under
the perfect CSI assumption [4]–[8]. In light of these existing
results, it is natural to ask whether similar conclusions also
apply to AF MIMO relay systems subject to deterministic
CSI uncertainties. Although there have been a few works [22]–
[25] on the worst-case robust optimization of AF MIMO relay
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Fig. 1. A two-hop AF MIMO relay system.

precoding, to the best of our knowledge, whether the optimal
robust design diagonalizes the MIMO channel is still unknown
yet. Our goal is to address this open problem.

In this paper, we investigate robust optimization for a
two-hop AF MIMO relay system from the worst-case CSI
uncertainty perspective and give a positive answer to the above
proposed question. Specifically, we address two robust design
problems with respect to the MI and MSE objectives, aiming
at enhancing the transmission efficiency and reliability of
MIMO relay systems in presence of bounded CSI errors. The
two robust optimization problems are formulated as maximin
and minimax problems, respectively. The common way to
address these problems is to use saddle point theory, e.g. Von
Neumann’s theorem. However, the considered maximin and
minimax problems do not have a classical concave-convex
(resp., convex-concave) structure and hence there is even
no guarantee of the existence of a saddle point. Neverthe-
less, by applying majorization theory, we show that there
indeed exist saddle point solutions for both problems, and
moreover, they can be obtained in explicit analytical forms.
An interesting implication arising from the solution is that
eigenmode transmission is still the optimal strategy even for
the case of bounded CSI uncertainties, which is consistent
with the conclusions for the perfect and stochastic CSI cases.
As verified by numerical results, our proposed robust designs
achieve a noticeable performance gain over the non-robust
schemes of [4] [6].

The manuscript is organized as follows. A system model for
AF MIMO relaying is introduced in Section II. In Section III,
we obtain the optimal AF relay precoder for maximizing the
worst-case MI of MIMO relaying. We then derive the optimal
transceiver for minimizing the worst-case MSE of AF MIMO
relay systems in Section IV. Simulation results are described
in Section V and conclusions are presented in Section VI.

Notation: We use uppercase and lowercase boldface letters
to denote matrices and vectors, respectively. Notations A−1,
AT and AH represent the inverse, transpose and conjugate
transpose of matrix A, respectively. The determinant, trace and
rank of A are denoted by |A|, tr(A) and rank(A), respectively.
Notations x ≺ y and x ≺w y indicate that x is majorized
by y and x is weakly majorized by y, respectively (see
Appendix I for a brief introduction of majorization theory).
(A)i,j represents the (ith, jth) element of A. The spectral
and Frobenius norms of A are denoted by ∥A∥2 and ∥A∥F ,
respectively. 0M×N represents a zero matrix of size M ×N .
diag{a} denotes a diagonal matrix whose diagonal elements
are the entries of a. (x)+ denotes max{x, 0}. Finally, Cn×m

and Rn×m denote the ensemble of all n × m complex and
real matrices, respectively, and E{·} represents the expectation

operation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Signal Model Description

We consider a dual-hop AF MIMO relay system as shown
in Fig. 1, where the source, relay and destination are equipped
with Ns, Nr and Nd antennas, respectively. The direct link be-
tween the source and destination is assumed to be sufficiently
weak so that it can be ignored. At the first hop, the source
transmits a symbol vector s ∈ CNs to the relay node, where
E{ssH} = Ps

Ns
I with Ps being the source transmit power. The

received signal yr ∈ CNr at the relay takes the form

yr = Hsrs+ nr, (1)

where Hsr ∈ CNr×Ns represents the source-relay channel and
nr ∈ CNr is the additive white Gaussian noise (AWGN) vector
at the relay with zero mean and covariance matrix Rnr = σ2

rI.
At the second hop, the relay multiplies the received signal
yr by a precoding matrix Fr ∈ CNr×Nr , which results in
xr = Fryr. Generally, the relay imposes a power constraint
on the precoder Fr as

tr
(
Fr

(
Ps

Ns
HsrH

H
sr + σ2

rI

)
FH

r

)
≤ Pr, (2)

where Pr is the maximum transmit power of the relay. After
the relay forwards xr to the destination, the received signal
yd ∈ CNd at the destination is given by

yd = HrdFrHsrs+HrdFrnr + nd, (3)

where Hrd ∈ CNd×Nr denotes the relay-destination channel
and nd ∈ CNd is the AWGN vector at the destination with
zero mean and covariance matrix Rnd

= σ2
dI.

In this paper, we consider two widely used performance
metrics: the mutual information (MI) and the mean square
error (MSE), which are often used to characterize the trans-
mission efficiency and reliability of a communication system,
respectively. Assuming that the source uses a Gaussian code,
the MI of the above MIMO relay system is given by [4]

MI =
1

2
log2

∣∣∣∣I+ Ps

Ns
H̃HR−1H̃

∣∣∣∣ , (4)

where H̃ = HrdFrHsr, R = σ2
rHrdFrF

H
r HH

rd+σ2
dI and the

coefficient 1/2 accounts for the half-duplex loss. In practice,
to reduce the implementation complexity at the receiver, a
linear decoder matrix G ∈ CNs×Nd is usually applied on the
received signal yd to obtain the estimate ŝ = Gyd of transmit
signal s, and the corresponding MSE takes the form

MSE = E
{
(̂s− s)H (̂s− s)

}
= E

{
(Gyd − s)H(Gyd − s)

}
. (5)

The optimal G that minimizes the MSE is known as the
Wiener filter and given by [26]

G =
Ps

Ns

(
Ps

Ns
H̃H̃H +R

)−1

H̃H . (6)
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max
Fr

min
∆rd

1

2
log2

∣∣∣∣I+ Ps

Ns
HH

srF
H
r (Ĥrd +∆rd)

H
(
σ2
r(Ĥrd +∆rd)FrF

H
r (Ĥrd +∆rd)

H + σ2
dI
)−1

× (Ĥrd +∆rd)FrHsr

∣∣∣∣
subject to tr

(
Fr

(
Ps

Ns
HsrH

H
sr + σ2

nr
I

)
FH

r

)
≤ Pr,

∀∆rd : ∥∆rd∥2 ≤ ϵrd (10)

min
Fr

max
∆rd

Ps

Ns
tr
((

I+
Ps

Ns
HH

srF
H
r (Ĥrd +∆rd)

H
(
σ2
r(Ĥrd +∆rd)FrF

H
r (Ĥrd +∆rd)

H + σ2
dI
)−1

× (Ĥrd +∆rd)FrHsr

)−1)
subject to tr

(
Fr

(
Ps

Ns
HsrH

H
sr + σ2

nr
I

)
FH

r

)
≤ Pr,

∀∆rd : ∥∆rd∥2 ≤ ϵrd (11)

By substituting the above expression inside (5), we have

MSE =
Ps

Ns
tr

((
I+

Ps

Ns
H̃HR−1H̃

)−1
)
, (7)

While the relay precoder design under the maximum MI and
minimum MSE criteria has been well investigated in [4] [6]
with perfect CSI, in practice CSI is seldom perfect, which thus
calls for a robust design taking into account the imperfection
of CSI.

B. Imperfect CSI Model

In general, it is reasonable to assume that perfect CSI at the
receiver (CSIR) is available since CSIR is relatively easy to
acquire with the aid of training sequences, whereas it is much
harder to obtain accurate CSI at the transmitter (CSIT) due
to practical factors such as quantization, delays or feedback
errors. Thereby, imperfect CSIT has to be considered in the
system design. For the AF MIMO relay system, we assume
that the relay knows the perfect source-relay channel Hsr

and the destination knows perfectly the equivalent channels
H̃ and HrdFr, while the relay can only acquire imperfect
information about the relay-destination channel Hrd. Note that
these assumptions have also been widely adopted in previous
studies such as [15] [22] [25] [27].

To characterize the mismatched relay-destination CSI, we
adopt a common deterministic imperfect CSI model as in [19]–
[21]. Specifically, the actual Hrd takes the form

Hrd =Ĥrd +∆rd (8)

and

∆rd ∈ U , {∆rd : ∥∆rd∥2 ≤ ϵrd}, (9)

where Ĥrd represents the mismatched channel obtained by
means of channel estimation or quantization, ∆rd denotes

the channel uncertainty lying in a spectral norm bounded
uncertainty region U with a given radius ϵrd. In practice,
there are several ways to determine ϵrd. One approach consists
of using a channel emulator to simulate wireless channels
based on the specified parameters, and record the generated
channel matrices Hrd. The mismatched channel matrices Ĥrd

are found by estimating or quantizing the channels generated
by the channel emulator. The channel error matrix ∆rd is
obtained as the difference between the true and mismatched
channels. Then ϵrd corresponds to the upper bound of the
spectral norms of all channel error matrices. One can also
determine ϵrd in a stochastic way when the distribution of the
channel error is known, and satisfies for example a Gaussian
distribution. In this case, one can apply numerical methods
to evaluate ϵrd to ensure that the norms of possible errors
are upper bounded with a certain probability. It is necessary
to point out that we can carry out the aforementioned offline
computation for different channel parameters and make a look-
up table storing all calculated ϵrd. In this way, we update the
value of ϵrd when the channel conditions change.

The norm bounded CSI error model has been extensively
used in robust precoder designs for point-to-point MIMO
channels [17] [18], downlink multiuser channels [28]–[30],
cognitive radio systems [31] [32] and so on. As pointed out in
[18] [28], the shape of the uncertainty region corresponding
to channel quantization is a bounded polytope P with the
quantized channel at its center. Hence, from a geometric
perspective, one can always find a value of ϵrd such that the
uncertainty region ∥∆rd∥2 ≤ ϵrd covers the entire polytope
P . In contrast with the quantization error which naturally
belongs to a bounded region, the CSI imperfection caused by
feedback delay or error is usually assumed to be Gaussian
distributed [33] [34] (similar to the estimation error) and
hence lies inside the norm bounded uncertainty region with
a certain probability Pin, i.e., Pr (∥∆rd∥2 ≤ ϵrd) = Pin < 1.
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In other words, given any probability Pin, it is always possible
to choose a proper radius ϵrd and let the norm bounded
uncertainty region cover the channel errors with probability
Pin. In particular, we would like to note that using the spectral
norm in defining the uncertainty region has a number of
advantages [20]. Specifically, it is a unitary-invariant matrix
norm which indicates that the uncertainties in the spectral
norm bounded region are statistically equal in all directions.
Furthermore, the spectral norm serves as a lower bound of any
unitary-invariant matrix norm, meaning that given the same
error radius, it models the largest uncertainty set among all
unitary-invariant matrix norms. Besides, it is also an indicator
of the strongest eigenmode of the uncertainty. It is important
to note that, since the inequality ∥∆rd∥2 ≤ ∥∆rd∥F ≤√
min{Nd, Nr}∥∆rd∥2 always holds, studying spectral norm

bounded uncertainties provides some insight on the case where
Frobenius norm bounded errors are considered.

C. Problem Formulation

According to the philosophy of worst-case robustness [17]–
[25], [28]–[32], a robust design is obtained by ensuring the
best possible level of MI (or MSE) performance for all
channel realizations within the uncertainty region given by (9),
which is equivalent to optimizing the worst-case MI (or MSE)
performance in our system. To be more exact, the robust design
problem with respect to optimizing the worst-case MI can be
expressed as (10). Similarly, the worst-case MSE optimization
can be formulated as (11).

In the context of AF MIMO relaying, the MI maximization
and MSE minimization problems with perfect CSI have been
solved in [4] and [6], respectively, where the optimal relay
precoder was obtained in closed form. Different from [4] and
[6], we here consider the relay precoder optimization problems
from the worst-case robust perspective, which, to the best of
our knowledge, have not been studied by others before. It can
be observed that problems (10) and (11) are quite difficult
to solve due to the intricate form of maximin (minimax)
optimization and semi-infinite constraint with respect to ∆rd.
Moreover, the above two problems do not have a classical
concave-convex (resp., convex-concave) structure and hence
there may not exist a saddle point. Despite these difficulties, in
the rest of this paper, we will show that the optimal solutions to
both problems can be achieved in analytical forms. Due to their
complicated structure, problems (10) and (11) are examined
separately in Sections III and IV.

III. WORST-CASE MI MAXIMIZATION FOR AF MIMO
RELAYING

In this section, we focus on the worst-case MI maximiza-
tion, i.e., the maximin problem (10). As pointed out above,
(10) is difficult to solve, because there is even no guarantee
of the existence of a saddle point as the solution to (10).
Nevertheless, we will prove that the maximin problem (10)
indeed admits a saddle point, and therefore can be optimally
solved. More importantly, we analytically characterize such
a saddle point and provide a closed-form solution to (10).
Our result implies that eigenmode transmission is the optimal

transmit strategy in presence of deterministic CSI errors as in
the cases of perfect CSI [4]–[8] and stochastic CSI [13]–[15].

Since the optimization variables Fr and ∆rd appear both in-
side and outside the matrix inversion of the objective function,
we first apply the matrix inversion lemma [35] and perform
some manipulations to rewrite it into the following form:

1

2
log2

∣∣∣∣I+ γrHsrH
H
sr − γrHsrH

H
sr

(
I+ F̃H

r

×(Ĥrd +∆rd)
H(Ĥrd +∆rd)F̃r

)−1
∣∣∣∣

,MI(F̃r,∆rd),

where F̃r , σr

σd
Fr and γr , Ps

Nsσ2
r

denotes the signal to noise
ratio (SNR) at the relay. Then, the problem (10) becomes

max
F̃r

min
∆rd

MI(F̃r,∆rd)

subject to tr(F̃r(γrHsrH
H
sr + I)F̃H

r ) ≤ γdNr,

∀∆rd : ∥∆rd∥2 ≤ ϵrd, (12)

where γd , Pr

Nrσ2
d

represents the destination SNR. At this
point, it is worth pointing out that the main difficulty in solving
the maximin problem (12) is that although the scaled precoder
F̃r and channel perturbation ∆rd belong to convex sets, the
objective function MI(F̃r,∆rd) is not concave in F̃r and
convex in ∆rd so that classical saddle point theory results,
such as Von Neumann’s theorem [36, Section 6.2, Theorem
8] is not applicable. We would also like to point out that,
although the S-lemma [37] is a powerful tool for handling
worst-case robust design problems [30] [32], it can not be
applied to our problem to obtain the optimal robust solution.

To proceed, let us consider the following minimax problem
as a counterpart to the maximin problem (12)

min
∆rd

max
F̃r

MI(F̃r,∆rd)

subject to tr(F̃r(γrHsrH
H
sr + I)F̃H

r ) ≤ γdNr,

∀∆rd : ∥∆rd∥2 ≤ ϵrd. (13)

As will be shown later, studying this problem indeed paves
the way to solving the original maximin problem (12). Let
us introduce eigenvalue decomposition (EVD) HsrH

H
sr =

UsrΣsrU
H
sr and singular value decomposition (SVD) Ĥrd =

ÛrdΛ̂rdV̂
H
rd, where Σsr = diag{σ2

sr,1, · · · , σ2
sr,Ns

, 0, · · · , 0}
and Λ̂rd = diag{σ̂rd,1, · · · , σ̂rd,Np

, 0, · · · , 0} with Np =
min{Nr, Nd}. Then, the minimax problem (13) admits a
closed-form solution that can be described as follows.

Proposition 1: The worst-case CSI error ∆w
rd and the op-

timal relay precoder F̃opt
r that together solve the minimax

problem (13) are given respectively by (14) and

F̃opt
r = V̂rdΛ

opt

f̃r
(I+ γrΣsr)

−1/2UH
sr, (15)

where Λopt

f̃r
= diag{f̃opt

r,1 , · · · , f̃
opt
r,Ns

, 0, · · · , 0} and its ith
diagonal entry takes the form of (16), where µ > 0 is chosen
such that

∑Ns

i=1(f̃
opt
r,i )

2 = γdNr is satisfied. In addition, the
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∆w
rd =

{
−Ûrd[diag {min {σ̂rd,1, ϵrd} , · · · ,min {σ̂rd,Nd

, ϵrd}} 0Nd×(Nr−Nd)]V̂
H
rd, Nr > Nd

−Ûrd[diag {min {σ̂rd,1, ϵrd} , · · · ,min {σ̂rd,Nr , ϵrd}} 0Nr×(Nd−Nr)]
T V̂H

rd, Nd ≥ Nr

(14)

f̃opt
r,i =


√

(
√

γ2
rσ

4
sr,i+4µγrσ2

sr,i(σ̂rd,i−ϵrd)2−γrσ2
sr,i−2)

+

2(σ̂rd,i−ϵrd)2
, σ̂rd,i > ϵrd

0, σ̂rd,i ≤ ϵrd

(16)

optimal value of the problem is

MImin,max

=
1

2

Ns∑
i=1

log2

(
1 +

γrσ
2
sr,i(f̃

opt
r,i )

2(σ̂rd,i − ϵrd)
2
+

1 + γrσ2
sr,i + (f̃opt

r,i )
2(σ̂rd,i − ϵrd)2+

)
.

(17)
Proof: See Appendix II.

In general, the optimal solution of the minimax problem
is not necessarily the same as that of the maximin problem.
Nevertheless, from [36, Section 6.2, Proposition 1] (see also
[38, Corollary 9.16]), we know that if there exists a saddle
point in MI(F̃r,∆rd), then it is optimal for both problems
at the same time. In the sequel, we prove that (F̃opt

r ,∆w
rd)

obtained in Proposition 1 is indeed a saddle point. Before
presenting this main result, we first introduce two lemmas that
will be used.

Lemma 1: Given a Hermitian matrix W ∈ CN×N ,
suppose that its ith diagonal element di(W) is lower
bounded by d

′

i(W), i.e., di(W) ≥ d
′

i(W), i = 1, · · · , N .
Denote d

′
(W) = [d

′

i1
(W), · · · , d′

iN
(W)]T whose ele-

ments are arranged in decreasing order. Let λ(W) =
[λ1(W), · · · , λN (W)]T be a vector formed by arranging all
the eigenvalues of W in descending order. Then, λ(W) ≻w

d
′
(W).

Proof: See Appendix III.
Lemma 2 ( [39, Chapter 3, Theorem A.8]): A real-valued

function ϕ defined on a set A ⊂ Rn satisfies

x ≺w y on A ⇒ ϕ(x) ≥ ϕ(y), (18)

if and only if ϕ is decreasing and Schur-convex on A.
Now we show the main conclusion of this section in the

following theorem.
Theorem 1: The inequality MI(F̃r,∆

w
rd) ≤

MI(F̃opt
r ,∆w

rd) ≤ MI(F̃opt
r ,∆rd) holds for any admissible

F̃r and ∆rd, meaning that (F̃opt
r ,∆w

rd) is a saddle point of
MI(F̃r,∆rd) and is hence optimal for both maximin problem
(12) and minimax problem (13).

Proof: By fixing ∆rd = ∆w
rd in MI(F̃r,∆rd),

it is easy to verify that MI(F̃r,∆
w
rd) ≤ MI(F̃opt

r ,∆w
rd)

holds based on the results in [4]. However, showing
MI(F̃opt

r ,∆rd) ≥ MI(F̃opt
r ,∆w

rd) is more intricate. We first

express MI(F̃opt
r ,∆rd) as

MI(F̃opt
r ,∆rd) = log2 |I+ γrΣsr|

+ log2

∣∣∣I+Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

∣∣∣∣∣∣I+ γrΣsr +Λopt

f̃r
(Λ̂rd + ∆̃rd)H(Λ̂rd + ∆̃rd)Λ

opt

f̃r

∣∣∣ ,
(19)

where ∆̃rd = ÛH
rd∆rdV̂rd. Then, proving MI(F̃opt

r ,∆rd) ≥
MI(F̃opt

r ,∆w
rd) is equivalent to showing

∣∣∣I+Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

∣∣∣∣∣∣I+ γrΣsr +Λopt

f̃r
(Λ̂rd + ∆̃rd)H(Λ̂rd + ∆̃rd)Λ

opt

f̃r

∣∣∣
≥

Ns∏
i=1

1 + (f̃opt
r,i )

2(σ̂rd,i − ϵrd)
2
+

1 + γrσ2
sr,i + (f̃opt

r,i )
2(σ̂rd,i − ϵrd)2+

. (20)

Note that the matrix ∆̃rd appears in both the nominator and
denominator of the left-hand side of (20), which complicates
the proof.

Let us consider the following inequality from taking the
reciprocal of both sides of (20)

∣∣∣I+ γrΣsr +Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

∣∣∣∣∣∣I+Λopt

f̃r
(Λ̂rd + ∆̃rd)H(Λ̂rd + ∆̃rd)Λ

opt

f̃r

∣∣∣
≤

Ns∏
i=1

1 + γrσ
2
sr,i + (f̃opt

r,i )
2(σ̂rd,i − ϵrd)

2
+

1 + (f̃opt
r,i )

2(σ̂rd,i − ϵrd)2+
. (21)

Without loss of generality, we assume that the first Nl di-
agonal elements of matrix Σsr are non-zero, i.e., Σsr =
diag{σ2

sr,1, · · · , σ2
sr,Nl

, 0, · · · , 0} with σ2
sr,i > 0, i =

1, · · · , Nl. Then, based on (16), f̃opt
r,i = 0, i = Nl+1, · · · , Nr.

Moreover, the (Nl+1)th to Nrth rows and columns of matrix
Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r
all become zero. We

denote the first Nl rows and columns of matrix γrΣsr with
Σ̃sr = diag{σ̃2

sr,1, · · · , σ̃2
sr,Nl

}, let Ω be the first Nl rows
and columns of matrix Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

and also denote Ψ = Σ̃−1
sr +Σ̃

−1/2
sr ΩΣ̃

−1/2
sr . Accordingly, the
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left-hand side of (21) can be rewritten as∣∣∣I+ Σ̃sr +Ω
∣∣∣

|I+Ω|
=
∣∣∣I+ Σ̃sr(I+Ω)−1

∣∣∣
=
∣∣∣I+ Σ̃1/2

sr (I+Ω)−1Σ̃1/2
sr

∣∣∣
=
∣∣∣I+ (Σ̃−1

sr + Σ̃−1/2
sr ΩΣ̃−1/2

sr )−1
∣∣∣

=

Nl∏
i=1

(
1 + λ−1

i (Ψ)
)
. (22)

We consider the ith diagonal element of matrix Ψ, which is
given by

di(Ψ)

=σ̃−2
sr,i + σ̃−2

sr,i(f̃
opt
r,i )

2

∑
j ̸=i

∣∣∣(∆̃rd)i,j

∣∣∣2 + ∣∣∣σ̂rd,i + (∆̃rd)i,i

∣∣∣2


≥σ̃−2
sr,i + σ̃−2

sr,i(f̃
opt
r,i )

2
∣∣∣σ̂rd,i + (∆̃rd)i,i

∣∣∣2
≥σ̃−2

sr,i + σ̃−2
sr,i(f̃

opt
r,i )

2
(
σ̂rd,i −

∣∣∣(∆̃rd)i,i

∣∣∣)2
+
. (23)

Since
∣∣∣(∆̃rd)i,i

∣∣∣ ≤ ∥∆̃rd∥2 [39, Chapter 9, Theorem D.1] and

∥∆̃rd∥2 = ∥∆rd∥2 ≤ ϵrd , di(Ψ) is lower bounded by

di(Ψ) ≥ σ̃−2
sr,i + σ̃−2

sr,i(f̃
opt
r,i )

2 (σ̂rd,i − ϵrd)
2
+ , d

′

i(Ψ). (24)

Then, by applying Lemma 1, we have λ(Ψ) ≻w d
′
(Ψ).

Note that, given xi > 0, f(x) =
∏Nl

i=1

(
1 + 1

xi

)
is de-

creasing in each xi. In addition, as the function log
(
1 + 1

xi

)
is convex, f(x) is a Schur-convex function (according to
Lemma 4 in Appendix I). By using Lemma 2, we immediately
find

Nl∏
i=1

(1 + λ−1
i (Ψ)) ≤

Nl∏
i=1

(1 + (d
′

i(Ψ))−1)

=

Nl∏
i=1

1 + γrσ
2
sr,i + (f̃opt

r,i )
2(σ̂rd,i − ϵrd)

2
+

1 + (f̃opt
r,i )

2(σ̂rd,i − ϵrd)2+
,

which is equivalent to (21). Therefore, we have proved that the
inequality MI(F̃r,∆

w
rd) ≤ MI(F̃opt

r ,∆w
rd) ≤ MI(F̃opt

r ,∆rd)
holds. Then, according to [36, Section 6.2, Proposition 1],
(F̃opt

r ,∆w
rd) is a saddle point in MI(F̃opt

r ,∆rd) and hence is
the optimal solution to both the maximin problem (12) and
minimax problem (13).

The importance of such a result lies in:
• Theorem 1 provides some interesting insights into the

worst-case MI maximization for MIMO relaying. It can
be found from (14) that, the worst-case CSI uncertainty
∆w

rd has the similar SVD structure as the nominal channel
Ĥrd and it decreases the ith singular value of Ĥrd by
min{σ̂rd,i, ϵrd}, which, intuitively, can be explained by
the fact that the worst-case CSI perturbation shall attempt
to degrade the nominal channel as much as possible.
From (15), we observe that the optimal relay precoder
has a channel-diagonalizing structure, where the unitary
matrices UH

sr and V̂rd match the eigen-directions of

the source-relay channel Hsr and the nominal relay-
destination channel Ĥrd, respectively. The power alloca-
tion matrix Λopt

f̃r
is similar to the one obtained under the

perfect CSI assumption [4], but with the original singular
value σ̂rd,i replaced by a degraded version (σ̂rd,i−ϵrd)+.
Therefore, our proposed robust design requires nearly the
same computational complexity as the non-robust scheme
in [4].

• In prior works [20] and [21], the worst-case MI maxi-
mization for point-to-point MIMO systems with spectral
norm bounded CSI errors was studied. The latter work
proved that the optimal solution is actually a saddle point
to the original maximin problem and that eigenmode
transmission is the optimum transmit strategy. The main
technical challenge of [21] lies in the proof of inequality
(19) in that paper. As a byproduct, it is easy to verify
that the inequality used in [21] can be alternatively
derived by following the proof of Theorem 1 with mild
modifications.

IV. WORST-CASE MSE MINIMIZATION FOR AF MIMO
RELAYING

In the previous section, we have examined the problem of
mutual information maximization against worst-case channel
uncertainties for improving the spectral efficiency of AF
MIMO relaying. In this section, we consider the worst-case
MSE minimization problem (11) to enhance the reliability
of the MIMO relay system subject to norm-bounded CSI
uncertainties. Different from the worst-case MI maximization,
the MSE minimization problem contains joint optimization of
the transceiver, where the optimal receiver is given by the
linear MMSE decoder in (6).

Note that the objective function of problem (11) is more
involved than that of problem (10) due to the multiple levels
of matrix inversions. To overcome this difficulty, we use
variables F̃r, γr and γd defined in (12) and perform some
matrix manipulations to express the MSE as (25), where (a) is
obtained from the matrix inversion lemma and (b) holds since
tr(AB) = tr(BA). Then, the problem (11) becomes

min
F̃r

max
∆rd

MSE(F̃r,∆rd)

subject to tr(F̃r(γrHsrH
H
sr + I)F̃H

r ) ≤ γdNr,

∀∆rd : ∥∆rd∥2 ≤ ϵrd. (26)

Like the MI objective function considered in the previous
section, the function MSE(F̃r,∆rd) does not have a convex-
concave structure which makes searching the solution of
problem (26) rather challenging. As before, instead of directly
solving the above problem, we first consider its counterpart
maximin problem, whose solution is given by the following
proposition.

Proposition 2: The maximin problem

max
∆rd

min
F̃r

MSE(F̃r,∆rd)

subject to tr(F̃r(γrHsrH
H
sr + I)F̃H

r ) ≤ γdNr,

∀∆rd : ∥∆rd∥2 ≤ ϵrd (27)
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Ps

Ns
tr

((
I+ γrH

H
srF̃

H
r (Ĥrd +∆rd)

H
(
I+ (Ĥrd +∆rd)F̃rF̃

H
r (Ĥrd +∆rd)

H
)−1

(Ĥrd +∆rd)F̃rHsr

)−1
)

(a)
=

Ps

Ns
tr
(
I− γrH

H
srF̃

H
r (Ĥrd +∆rd)

H
(
I+ (Ĥrd +∆rd)F̃rF̃

H
r (Ĥrd +∆rd)

H + γr(Ĥrd +∆rd)F̃rHsr

×HH
srF̃

H
r (Ĥrd +∆rd)

H
)−1

(Ĥrd +∆rd)F̃rHsr

)
(b)
=

Ps

Ns
tr
(
I− γr(Ĥrd +∆rd)F̃rHsrH

H
srF̃

H
r (Ĥrd +∆rd)

H
(
I+ (Ĥrd +∆rd)F̃rF̃

H
r (Ĥrd +∆rd)

H

+γr(Ĥrd +∆rd)F̃rHsrH
H
srF̃

H
r (Ĥrd +∆rd)

H
)−1

)
=
Ps

Ns
tr
((

I+ (Ĥrd +∆rd)F̃r(I+ γrHsrH
H
sr)F̃

H
r (Ĥrd +∆rd)

H
)−1 (

I+ (Ĥrd +∆rd)F̃rF̃
H
r (Ĥrd +∆rd)

H
))

,MSE(F̃r,∆rd) (25)

∆w
rd =

{
−Ûrd[diag {min {σ̂rd,1, ϵrd} , · · · ,min {σ̂rd,Nd

, ϵrd}} 0Nd×(Nr−Nd)]V̂
H
rd, Nr > Nd

−Ûrd[diag {min {σ̂rd,1, ϵrd} , · · · ,min {σ̂rd,Nr , ϵrd}} 0Nr×(Nd−Nr)]
T V̂H

rd, Nd ≥ Nr

(28)

has a closed-form solution where the worst-case CSI uncer-
tainty is (28) and the optimal relay precoder is given by

F̃opt
r = V̂rdΛ

opt

f̃r
(I+ γrΣsr)

−1/2UH
sr, (29)

with Λopt

f̃r
= diag{f̃opt

r,1 , · · · , f̃
opt
r,Ns

, 0, · · · , 0}, whose ith diag-
onal element is

f̃opt
r,i =


√√√√(√

γrσ2
sr,i

(σ̂rd,i−ϵrd)2

ν(1+γrσ2
sr,i

)
−1

)
+

(σ̂rd,i−ϵrd)2
, σ̂rd,i > ϵrd

0, σ̂rd,i ≤ ϵrd,

(30)

where ν > 0 is chosen such that
∑Ns

i=1(f̃
opt
r,i )

2 = γdNr is
satisfied. Moreover, the optimal value of this problem is

MSEmax,min

=
Ps

Ns

Ns∑
i=1

1 + γrσ
2
sr,i + (f̃opt

r,i )
2(σ̂rd,i − ϵrd)

2
+

(1 + γrσ2
sr,i)(1 + (f̃opt

r,i )
2(σ̂rd,i − ϵrd)2+)

. (31)

Proof: Please refer to Appendix IV.
Like the worst-case MI optimization problem studied in the

previous section, the worst-case MSE minimization problem
also admits a saddle point, which, according to the following
theorem, is given exactly by the solution in Proposition 2.

Theorem 2: The inequality MSE(F̃opt
r ,∆rd) ≤

MSE(F̃opt
r ,∆w

rd) ≤ MSE(F̃r,∆
w
rd) holds for any admissible

F̃r and ∆rd. Hence, (F̃opt
r ,∆w

rd) is a saddle point of
MSE(F̃r,∆rd) and hence optimal for both minimax problem
(26) and maximin problem (27).

Proof: See Appendix V.
The results derived up to this point lead to the following

observations:
• Interestingly, by comparing the above theorem and The-

orem 1, we find that their conclusions are consistent in

that they both imply the optimality of eigenmode trans-
mission. The major difference between them lies in the
power allocation matrices due to the fact that the design
objective functions are different. At this moment, we are
able to conclude that the optimal robust transceiver that
minimizes the worst-case MSE of AF MIMO relaying
consists of the relay precoder in (29) and the Wiener
filter in (6).

• In both Sections III and IV, we consider the robust opti-
mization under the additive channel uncertainty model.
Note that [20] studied another type of multiplicative
uncertainty model that can be used to characterize calibra-
tion errors. Under this channel model, the actual relay-
destination channel is given by Hrd = (I + Erd)Ĥrd,
where the multiplicative CSI uncertainty Erd satisfies
∥Erd∥2 ≤ κrd < 1. For the multiplicative uncertainty
model, we can also obtain the closed-form solution to
the corresponding robust optimization problem using the
analogous techniques as in the additive uncertainty case
and we omit the detailed steps for brevity. We find that
the solution to the worst-case MI maximization problem
with multiplicative uncertainty differs from that of the
additive case in two aspects: 1) (σ̂rd,i − ϵrd)+ in (16)
is replaced by (1 − κrd)σ̂rd,i; 2) the worst-case CSI
perturbation is Ew

rd = −κrdI. This finding also applies to
the solution of the worst-case MSE minimization problem
with multiplicative uncertainty.

V. SIMULATION RESULTS

In this section, we present some numerical results for our
proposed robust designs concerning a two-hop AF MIMO
relay system. The channels on both hops are assumed to
have independent and identically distributed (i.i.d.) complex
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Fig. 2. Worst-case MI performance versus SNRd with different ρ (Ns =
Nr = Nd = 4, SNRr = 20 dB).
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Fig. 3. Worst-case MI performance versus ρ (Ns = Nr = Nd = 4, SNRr

= 20 dB, SNRd = 10 dB).

Gaussian entries with zero mean and unit variance. We de-
fine the relay and destination SNR by SNRr = Ps

Nsσ2
r

and
SNRd = Pr

Nrσ2
d

, respectively. We also use the parameter

ρ = ϵrd/∥Ĥrd∥2 to denote the normalized radius of the
norm bounded channel uncertainty region which reflects the
quality of CSI, i.e., the larger ρ is, the poorer CSI quality
will be. In our simulations, we fix ρ and hence ϵrd is adapted
to each mismatched channel realization. We investigate the
performance of the following schemes for AF MIMO relaying:

• Non-robust MI maximization in [4] (NRMI)
• Robust MI maximization in Theorem 1 (RMI)
• Non-robust MSE minimization in [6] (NRMSE)
• Robust MSE minimization in Theorem 2 (RMSE)
• Naive AF transmit strategy (NAF)

where in NAF, the relay utilizes no special precoding
and simply scales the received signal with the constant
σd

σr

√
γdNr

tr(I+γrHsrHH
sr)

according to the power constraint (2).
For the numerical tests below, we generate estimated relay-
destination channels with random matrices whose entries are
independent and identically distributed (i.i.d.) complex Gaus-
sian variables with zero mean and unit variance. Moreover, for
the above schemes, the worst-case channel error changes with
Ĥrd according to (14) which can be readily verified from the
proof of Theorem 1.

A. Worst-Case Performance Evaluation

Fig. 2 shows the worst-case MI performance of the NAF,
NRMI, RMSE and RMI schemes as a function of SNRd, the
destination SNR. The SNR at the relay SNRr is fixed at 20 dB.
It can be observed that when the uncertainty size is relatively
large, the performance gain of the robust scheme over the non-
robust one is evident under various SNRd. The NAF scheme
exhibits the worst performance among all of three strategies
and the performance of the RMSE scheme is inferior to that
of the RMI scheme as expected, since it aims to minimize
the worst-case MSE instead of maximizing the worst-case
MI. Interestingly, the RMSE method still outperforms NRMI
and NAF strategies when ρ is large, which is due to the fact
that it takes into account the CSI mismatch when performing
the precoder optimization. Also, as shown in Fig. 3, if we
fix SNRd, the gap between the RMI and NRMI schemes
increases as ρ becomes larger. Therefore, our proposed RMI
design technique indeed improves the spectral efficiency of
AF MIMO relaying with bounded CSI uncertainties.

Figs. 4 and 5 compare the worst-case MSE performance
of the NAF, NRMSE, RMI and RMSE schemes. We observe
that RMSE can achieve a noticeable performance gain over
NRMSE, especially for a large uncertainty size or high SNR.
The RMI scheme performs worse than RMSE because its opti-
mization goal is worst-case MI. The RMI scheme outperforms
NRMSE and NAF methods for large ρ since it considers CSI
uncertainties when optimizing the relay precoder, however, it
performs worse than RMSE because its optimization goal is
worst-case MI. Accordingly, our proposed RMSE design can
provide robustness against CSI errors in terms of the MSE
metric compared to other strategies.

Finally, we evaluate the worst-case bit error rate (BER)
performance of our proposed RMSE scheme in Figs. 6 and 7,
where we adopt binary phase shift keying (BPSK) modulation.
It can be found from Fig. 6 that the robust scheme RMSE
outperforms other methods especially in the low and medium
SNR regimes. The RMI scheme performs worse than RMSE
since it aims to improve the system efficiency instead of
reliability. However, since RMI incorporates CSI errors into
the precoder optimization, it exhibits better performance than
NRMSE and NAF schemes when ρ is large. Fig. 7 shows
that RMSE has the lowest worst-case BER under different ρ,
and its superiority over the NRMSE scheme becomes more
pronounced as ρ increases. Thereby, we conclude that RMSE
can enhance the reliability of AF MIMO relay systems with
bounded CSI errors.
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B. QoS Consideration

The robust design can not only improve the worst-case
performance of an AF MIMO relay system, but also effectively
enhance its QoS performance with presence of deterministic
CSI errors. Specifically, we can formulate the QoS problems
with respect to MI and MSE metrics as

minimize
F̃r,p

p

subject to σ2
dtr(F̃r(γrHsrH

H
sr + I)F̃H

r ) ≤ p,

MI(F̃r,∆rd) ≥ τMI,

∀∆rd : ∥∆rd∥2 ≤ ϵrd, (32)
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Fig. 6. Worst-case BER performance versus SNRd with different ρ (Ns =
Nd = 4, Nr = 5, SNRr = 20 dB)
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Fig. 7. Worst-case BER performance versus ρ (Ns = Nd = 4, Nr = 5,
SNRr = 20 dB, SNRd = 5 dB).

minimize
F̃r,p

p

subject to σ2
dtr(F̃r(γrHsrH

H
sr + I)F̃H

r ) ≤ p,

MSE(F̃r,∆rd) ≤ τMSE,

∀∆rd : ∥∆rd∥2 ≤ ϵrd. (33)

The above two problems are complementary to problems (12)
and (26), respectively. For instance, the problem (32) can be
solved by searching the relay transmit power Pr such that the
optimal value of the problem (12) equals to the threshold τMI.
This can be implemented via a simple bi-section search over
Pr and the same approach also applies to the problem (33).

We compare the minimum relay transmit power required to
satisfy different QoS thresholds with respect to MI in Fig. 8.
It can be found that the robust scheme RMI requires less
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power than other approaches under various MI thresholds and
uncertainty sizes. In addition, the RMSE method outperforms
NRMI and NAF schemes when ρ gets large since channel un-
certainties are considered in this strategy. Similar observations
can be made in Fig. 9 where the QoS metric is the MSE.
Therefore, our proposed robust designs can provide better
power efficiency with a prescribed QoS constraint involving
bounded CSI errors.

C. Performance Evaluation with Random CSI Errors

In this part, we present numerical results for random CSI
errors instead of the worst-case errors considered before. In
our test, random CSI error matrices are generated according
to an i.i.d. Gaussian distribution and restricted to lying in a
spectral norm bounded region. We compare robust and non-
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Fig. 10. Comparison of non-robust and robust methods for MIMO relaying
with an MI QoS constraint (MI threshold = 7 bps/Hz, Ns = Nr = Nd = 4,
σ2
r = 0.0079, σ2

d = 0.025, ρ = 0.05).
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robust designs in MIMO relay systems with an MI or MSE
QoS constraint. Fig. 10 shows the cumulative distribution of
MI using robust and non-robust design methods, where we
can find that for the non-robust design, the MI QoS constraint
cannot be satisfied for almost 50% channel realizations. This is
due to the fact that the non-robust design does not incorporate
channel uncertainties in the precoder optimization. On the
other hand, the robust design can guarantee that all MI values
are beyond the threshold. Note that a similar conclusion also
applies to the case with an MSE QoS constraint, as shown
in Fig. 11. Therefore, in presence of randomly generated CSI
errors, the robust design outperforms the non-robust one in
terms of the feasibility of QoS constraint.



11

VI. CONCLUSIONS

We studied optimal worst-case robust designs for AF MIMO
relay systems adopting either MI or MSE as the design
objective. Although the formulated optimization problems do
not have a conventional concave-convex or convex-concave
structure, we have derived their optimal solutions in closed
form. Specifically, we proved that eigenmode transmission is
the best strategy even with deterministic but bounded CSI
errors, which is consistent with the results under perfect and
stochastic CSI assumptions. Thus in practice, the same eigen-
mode architecture can be utilized regardless of CSI knowledge.
The available information about CSI errors affects the optimal
precoder only through the diagonal power allocation design.
The proposed robust designs can enhance the transmission
efficiency and reliability of AF MIMO relaying with norm-
bounded CSI uncertainties without increasing computational
requirements beyond those needed for conventional non-robust
schemes.

The work presented in this paper can be extended in several
directions. It would be of interest to study worst-case robust
relay transceiver optimization with a direct line of sight, which
is a non-trivial extension of the current work. In addition,
whereas we assumed here that perfect CSI knowledge is
available at the receiver, it will be both meaningful and
challenging to analyze the effect of imperfect CSIR in the
robust design.

APPENDIX I
A BRIEF INTRODUCTION TO MAJORIZATION THEORY

We herein introduce some basic definitions and results of
majorization theory that are necessary for this paper. Interested
readers are referred to [39] for a comprehensive presentation
of this subject.

Definition 1 ( [39, Chapter 1, Definition A.1]): For x,y ∈
RN , x is said to be majorized by y (denoted as x ≺ y) if

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, · · · , N − 1,

N∑
i=1

x[i] =

N∑
i=1

y[i], (34)

where x[1], · · · , x[N ] (and y[1], · · · , y[N ]) are the components
of x (and y) arranged in decreasing order.

Definition 2 ( [39, Chapter 1, Definition A.2]): For x,y ∈
RN , x is said to be weakly majorized by y (denoted as x ≺w

y) if

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, · · · , N. (35)

Definition 3 ( [39, Chapter 3, Definition A.1]): A real-
valued function ϕ defined on a set A ⊂ Rn is said to be
Schur-convex on A if

x ≺ y on A ⇒ ϕ(x) ≤ ϕ(y). (36)
In the following lemmas, we present two kinds of Schur-

convex functions that will be used in the paper.

Lemma 3 ( [39, Chapter 3, Proposition C.1]): If I ⊂ R is
an interval and g : I → R is convex, then

ϕ(x) =
n∑

i=1

g(xi), x ∈ In (37)

is Schur-convex on In.
Lemma 4 ( [39, Chapter 3, Proposition E.1]): Let g be a

continuous nonnegative function defined on an interval I ⊂ R.
Then

ϕ(x) =

n∏
i=1

g(xi), x ∈ In (38)

is Schur-convex on In if and only if log g is convex on I .

APPENDIX II
PROOF OF PROPOSITION 1

Denote the EVD of (Ĥrd + ∆rd)
H(Ĥrd + ∆rd) as

(Ĥrd + ∆rd)
H(Ĥrd + ∆rd) = VrdΣrdV

H
rd, where Σrd =

diag{σ2
rd,1, · · · , σ2

rd,Np
, 0, · · · , 0} with Np = min{Nr, Nd}.

Then, the optimal solution to the inner maximization problem
is [4]

F̃∗
r = VrdΛf̃∗

r
(I+ γrΣsr)

−1/2UH
sr, (39)

where Λf̃∗
r

= diag{f̃∗
r,1, · · · , f̃∗

r,Ns
, 0, · · · , 0} and its ith

diagonal element f̃∗
r,i is determined by

f̃∗
r,i =


√

(
√

γ2
rσ

4
sr,i+4µγrσ2

sr,iσ
2
rd,i−γrσ2

sr,i−2)
+

2σ2
rd,i

, σrd,i > 0

0, σrd,i = 0,

(40)

where µ > 0 is chosen such that
∑Ns

i=1(f̃
∗
r,i)

2 = γdNr is
satisfied. In addition, the maximum value of the inner problem
is obtained as

1

2
log2 |I+ γrΣsr|+

1

2
log2

∣∣∣I+Λf̃∗
r
ΣrdΛf̃∗

r

∣∣∣∣∣∣I+ γrΣsr +Λf̃∗
r
ΣrdΛf̃∗

r

∣∣∣ .
(41)

Note that the first term of (41) is a constant and the second
term can be expressed as (42). The inequality holds due to the
facts that σi(A+B) ≥ (σi(A)−σ1(B))+ and σ1(∆rd) ≤ ϵrd,
where σ1(·) denotes the largest singular value of a matrix.
We can achieve the lower bound in the above expression by
selecting the worst-case CSI error ∆w

rd as indicated in (14)
and letting the relay precoder be F̃opt

r in (15). Therefore,
we conclude that (∆w

rd, F̃
opt
r ) is the optimal solution to the

minimax problem (13) and its optimal value is (17).

APPENDIX III
PROOF OF LEMMA 1

We first construct a column vector d(W) whose entries are
the diagonal elements of matrix W arranged in decreasing
order, i.e., d1(W) ≥ · · · ≥ dN (W). Concerning the first entry
of d(W), i.e., d1(W), we have d1(W) ≥ di1(W) ≥ d

′

i1
(W)

since i1 ≥ 1 and di(W) ≥ d
′

i(W). Similarly, for the last
entry of d(W), i.e., dN (W), it can be readily shown that
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1

2
log2

∣∣∣I+Λf̃∗
r
ΣrdΛf̃∗

r

∣∣∣∣∣∣I+ γrΣsr +Λf̃∗
r
ΣrdΛf̃∗

r

∣∣∣
=
1

2
log2

∏Ns

i=1

(
1 + (f̃∗

r,i)
2σ2

rd,i

)
∏Ns

i=1

(
1 + γrσ2

sr,i + (f̃∗
r,i)

2σ2
rd,i

)
=
1

2

Ns∑
i=1

log2

(
1−

γrσ
2
sr,i

1 + γrσ2
sr,i + (f̃∗

r,i)
2σ2

rd,i

)

=
1

2

Ns∑
i=1

log2

1−
γrσ

2
sr,i

1 + γrσ2
sr,i +

1
2

(√
γ2
rσ

4
sr,i + 4µγrσ2

sr,iσ
2
rd,i − γrσ2

sr,i − 2
)
+


≥1

2

Ns∑
i=1

log2

1−
γrσ

2
sr,i

1 + γrσ2
sr,i +

1
2

(√
γ2
rσ

4
sr,i + 4µγrσ2

sr,i(σ̂rd,i − ϵrd)2+ − γrσ2
sr,i − 2

)
+

 (42)

dN (W) ≥ d
′

N (W) ≥ d
′

iN
(W). Now let us compare dp(W)

with d
′

ip
(W) where 1 < p < N . We consider the following

three cases:
a) ip > p. For this case, we can readily verify that dp(W) ≥

dip(W) ≥ d
′

ip
(W) holds.

b) ip ≤ p and d
′

ip
(W) ≤ d

′

p(W). In this context, it is easy
to show that dp(W) ≥ d

′

p(W) ≥ d
′

ip
(W).

c) ip ≤ p and d
′

ip
(W) > d

′

p(W). For this case, there must
exist a t > 0 such that d

′

p+t(W) ≥ d
′

ip
(W), and hence we

have dp(W) ≥ dp+t(W) ≥ d
′

p+t(W) ≥ d
′

ip
(W).

Therefore, we conclude that dk(W) ≥ d
′

ik
(W),∀1 ≤ k ≤

N . Considering that λ(W) ≻ d(W) holds for any Hermitian
matrix W [39, Chapter 9, Theorem B.1], we eventually arrive
at the conclusion that λ(W) ≻w d

′
(W).

APPENDIX IV
PROOF OF PROPOSITION 2

As shown in [6], the optimal solution to the inner minimiza-
tion problem is given by

F̃
′

r = VrdΛf̃ ′
r
(I+ γrΣsr)

−1/2UH
sr, (43)

where the diagonal elements of Λf̃ ′
r

=

diag{f̃ ′

r,1, · · · , f̃
′

r,Ns
, 0, · · · , 0} can be expressed as

f̃
′

r,i =


√√√√(√

γrσ2
sr,i

σ2
rd,i

ν(1+γrσ2
sr,i

)
−1

)
+

σ2
rd,i

, σrd,i > 0

0, σrd,i = 0,

(44)

with ν > 0 chosen such that
∑Ns

i=1(f̃
′

r,i)
2 = γdNr holds. In

addition, the optimal value takes the form

Ps

Ns

Ns∑
i=1

1 + γrσ
2
sr,i + (f̃

′

r,i)
2σ2

rd,i

(1 + γrσ2
sr,i)(1 + (f̃

′
r,i)

2σ2
rd,i)

. (45)

With techniques similar to those used to derive (42), we can
show that (45) is upper bounded by

Ps

Ns

Ns∑
i=1

1 + γrσ
2
sr,i +

(√
γrσ2

sr,i(σ̂rd,i−ϵrd)2+
ν(1+γrσ2

sr,i)
− 1

)
+

(1 + γrσ2
sr,i)

(
1 +

(√
γrσ2

sr,i(σ̂rd,i−ϵrd)2+
ν(1+γrσ2

sr,i)
− 1

)
+

) ,

(46)

which can be achieved by selecting the worst-case CSI per-
turbation as indicated in (28) and letting the relay precoder be
(29). Therefore, we arrive at the conclusion that (∆w

rd, F̃
opt
r )

is the optimal solution to the maximin problem (27) whose
optimal value is given by (31).

APPENDIX V
PROOF OF THEOREM 2

By fixing ∆rd in MSE(F̃opt
r ,∆rd) with ∆w

rd, it is easy to
verify that MSE(F̃opt

r ,∆w
rd) ≤ MSE(F̃r,∆

w
rd) holds based

on the results in [6]. However, verifying MSE(F̃opt
r ,∆w

rd) ≥
MSE(F̃opt

r ,∆rd) requires proving the following trace inequal-
ity

tr
((

I+ (Λ̂rd + ∆̃rd)(Λ
opt

f̃r
)2(Λ̂rd + ∆̃rd)

H
)−1

×
(
I+ (Λ̂rd + ∆̃rd)(Λ

opt

f̃r
)2(I+ γrΣsr)

−1
(
Λ̂rd

+ ∆̃rd

)H))
≤

Ns∑
i=1

1 + γrσ
2
sr,i + (f̃opt

r,i )
2(σ̂rd,i − ϵrd)

2
+

(1 + γrσ2
sr,i)(1 + (f̃opt

r,i )
2(σ̂rd,i − ϵrd)2+)

. (47)

Note that the above inequality is quite different from (21) in
the proof of Theorem 1. Before proceeding, we introduce the
following lemma that will be used to simplify the left-hand
side of (47).
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Nd −Nr + tr
((

I+Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

)−1
)
+ tr

(
(Λ̂rd + ∆̃rd)Λ

opt

f̃r

×
(
I+Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

)−1

Λopt

f̃r
(I+ γrΣsr)

−1(Λ̂rd + ∆̃rd)
H

)
=Nd −Nr + tr

((
I+Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

)−1
)
+ tr

(
(I+ γrΣsr)

−1Λopt

f̃r

× (Λ̂rd + ∆̃rd)
H(Λ̂rd + ∆̃rd)Λ

opt

f̃r

(
I+Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

)−1
)

=Nd −Nr + tr
((

I+ (I+ γrΣsr)
−1Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

)(
I+Λopt

f̃r

× (Λ̂rd + ∆̃rd)
H(Λ̂rd + ∆̃rd)Λ

opt

f̃r

)−1
)

=Nd −Nr + tr
(
(I+ γrΣsr)

−1

(
I+ γrΣsr

(
I+Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

)−1
))

=C + γrtr
(
Σsr(I+ γrΣsr)

−1/2
(
I+Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r

)−1

(I+ γrΣsr)
−1/2

)
=C + γrtr

(
Σsr

(
(I+ γrΣsr) + (I+ γrΣsr)

1/2Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r
(I+ γrΣsr)

1/2
)−1

)
(48)

Lemma 5: For any matrix P ∈ CM×N , the trace equality
tr((I+PHP)−1) = tr((I+PPH)−1) +N −M holds.

Proof: Denote the SVD of P with P = UpΣpV
H
p , then

we have tr((I + PHP)−1) = tr((I + VpΣ
H
p ΣpV

H
p )−1) =

tr((I+ΣH
p Σp)

−1) and tr((I+PPH)−1) = tr((I+ΣpΣ
H
p )−1).

Let us assume M < N temporarily, then Σp can be expressed
as Σp = [Σ

′

p 0M×(N−M)], where Σ
′

p is an M × M real
diagonal matrix. Accordingly, tr((I + PHP)−1) = tr((I +
(Σ

′

p)
2)−1) + N − M and tr((I + PPH)−1) = tr((I +

(Σ
′

p)
2)−1). Therefore, it is true that tr((I + PHP)−1) =

tr((I+PPH)−1)+N−M . The proof for the case of M ≥ N
is similar and hence is omitted for brevity.

By using Lemma 5 and the equality (PHP + I)−1PH =
PH(PPH + I)−1, we rewrite the left-hand side of (47) by
(48) on the top of next page, where C = tr (I+ γrΣsr)

−1
+

Nd −Nr =
∑Ns

i=1
1

1+γrσ2
sr,i

+Nd −Ns.
Let us assume that the first Nl diagonal elements of matrix

Σsr are non-zero. Then, in accordance with (30), f̃opt
r,i =

0, i = Nl + 1, · · · , Nr. So we can rewrite (48) as

C + tr
((

I+ Σ̃−1
sr + Σ̃−1/2

sr

(
I+ Σ̃sr

)1/2
Υ
(
I+ Σ̃sr

)1/2
× Σ̃−1/2

sr

)−1
)

= C +

Nl∑
i=1

λ−1
i (Ξ),

where Σ̃sr = diag{σ̃2
sr,1, · · · , σ̃2

sr,Nl
} denotes the

first Nl rows and columns of matrix γrΣsr, Υ
denotes the first Nl rows and columns of matrix
Λopt

f̃r
(Λ̂rd + ∆̃rd)

H(Λ̂rd + ∆̃rd)Λ
opt

f̃r
and Ξ =

I + Σ̃−1
sr + Σ̃

−1/2
sr

(
I+ Σ̃sr

)1/2
Υ
(
I+ Σ̃sr

)1/2
Σ̃

−1/2
sr .

As in (24), we can show di(Ξ) ≥ 1 + σ̃−2
sr,i + (1 +

σ̃−2
sr,i)(f̃

opt
r,i )

2 (σ̂rd,i − ϵrd)
2
+ , d

′

i(Ξ). Then, by using
Lemma 1, we obtain that λ(Ξ) ≻w d

′
(Ξ). Moreover,

as g(x) =
∑Nl

i=1
1
xi
, xi > 0 is a Schur-convex function

(according to Lemma 3 in Appendix I), we can readily verify
(47) using Lemma 2. So at this point, we have proved that
(F̃opt

r ,∆w
rd) is a saddle point of MSE(F̃r,∆rd) and hence

optimal for both minimax problem (26) and maximin problem
(27).
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