Lawrence Berkeley National Laboratory
Recent Work

Title
The Low Temperature Specific Heat of CeCu$_2$Ge$_2$ at 0 and 9.5 Kbar

Permalink
https://escholarship.org/uc/item/5dt9q37z

Authors
Fisher, R.A.
Emerson, J.P.
Caspar, R.
et al.

Publication Date
1993-04-29
To be presented at the Low Temperature Conference XX, Eugene, OR, August 1, 1993, and to be published in Physica B

The Low-Temperature Specific Heat of CeCu$_2$Ge$_2$ at 0 and 9.5 kbar

R.A. Fisher, J.P. Emerson, R. Caspary, N.E. Phillips, and F. Steglich

April 1993
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE LOW-TEMPERATURE SPECIFIC HEAT OF CeCu$_2$Ge$_2$

AT 0 AND 9.5 KBAR

by

R. A. FISHER*, J. P. EMERSON*, R. CASPARY+, N. E. PHILLIPS* and F. STEGLICH+

*Department of Chemistry
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720 USA

+Institut für Festkörperphysik
Technische Hochschule Darmstadt
D-6100 Darmstadt, Germany

To be published in Physica B

The work at Berkeley was supported by the Director,
Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department
of Energy under Contract DE-AC03-76SF00098.
The Low-Temperature Specific Heat of CeCu$_2$Ge$_2$ at 0 and 9.5 kbar

R. A. Fisher*, J. P. Emerson*, R. Caspary†, N. E. Phillips* and F. Steglich†

*Lawrence Berkeley Laboratory and (mail address) Department of Chemistry, University of California, Berkeley, CA 94720 USA
†Institut für Festkörperphysik, Technische Hochschule Darmstadt, D-6100 Darmstadt, Germany

CeCu$_2$Ge$_2$ orders antiferromagnetically, T_N~4K, and $\gamma(T)$~200 mJ/K2 mole near 0.5K and $P=0$. A pressure of 9.5 kbar has no measurable effect on T_N; reduces slightly the specific-heat anomaly at T_N; and reduces slightly $\gamma(T)$ below 0.7K. These effects of pressure are in striking contrast to the much stronger effects on other heavy-fermion compounds, e.g., CeAl$_3$, URu$_2$Si$_2$ and CeCu$_2$Si$_2$.

CeCu$_2$Ge$_2$ is isostructural with CeCu$_2$Si$_2$, the first heavy-fermion superconductor [1]. Although CeCu$_2$Ge$_2$ is not superconducting at zero pressure (P), it is superconducting for $P>70$ kbar [2]. Previous specific-heat (C) measurements [3] for $P=0$, 0.05$\leq T$$\leq$30K, and magnetic fields (H) to 8T, showed antiferromagnetic ordering at T_N=4.2K, and an anomaly in C at 0.45K and $H=0$ that was interpreted as a maximum in $\gamma(T)$. The anomaly was suppressed, but not shifted in temperature, with increasing H and disappeared at $H=8T$. This paper reports new data for C, 0.35$\leq T$$\leq$20K and $P=0$; and also data obtained at 9.5 kbar, the first for $P\neq0$. The $P=0$ data are in excellent agreement with the earlier work [3] suggesting that the features observed are intrinsic properties and not subject to the uncertainties related to sample dependence that are associated with some heavy-fermion compounds.

In Fig. 1, C vs T, the solid line represents an estimate of the lattice specific heat (C_ℓ) obtained for $T>14K$. The corresponding Debye temperature and γ are ~240K and 10 mJ/K2 mole, respectively. There are substantial uncertainties in these estimates, but it is clear that C_ℓ is a negligible contribution for $T<T_N$, and γ is not large for $T>14K$. It follows that the quasiparticles acquire high mass only at lower temperatures.

Figure 2, a plot of C/T vs T, shows the antiferromagnetic transition centered at T_N=4.3K, and the anomaly. Relative to the $P=0$ data, there are small decreases in C/T just below T_N.
and in the vicinity of 0.45K, but with no measurable change in T_N. The entropy (S) in Fig.
3 approaches $R\ln 2$ at higher temperatures consistent with a doublet ground state for Ce$^{3+}$.

To separate the 0.45K anomaly from that associated with antiferromagnetic ordering, the
procedure described in Ref. 3 was used: The low-temperature antiferromagnetic magnon
contribution, $\beta_3 T^3$, was derived from a plot of C/T vs T^2, which is linear for $0.85 \leq T \leq 1.5$K.
Subtraction of that contribution, which is pressure independent, gives the "0.45K anomalies"
shown in Fig. 4. Both the position and magnitude of the maximum for $P=0$ are in good
agreement with those of Ref. 3. In 9.5 kbar, however, the maximum is shifted to 0.5K, and
reduced in magnitude for $T<0.7$K, by \sim30% at 0.35K.

The weak P dependence of C near T_N is in sharp contrast to the relatively large change of
C with P for, e.g., URu$_2$Si$_2$ [4] for which $T_N=18$K. CeAl$_3$ also shows a maximum in C/T
near 0.4K, but it is rapidly suppressed with increasing pressure, disappearing completely for
$P<0.4$ kbar, and at $P=8.2$ kbar C/T at 0.4K is reduced to less than one third of its $P=0$ value
[5]. CeCu$_2$Si$_2$ also shows a large change of C with P [6].

The work at LBL was supported by the Director, Office of Energy Research, Office of
Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under
contract number DE-AC03-76SF00098. NEP is grateful to the Alexander von Humboldt
Foundation for an award that facilitated his collaboration with the Darmstadt group.

REFERENCES

Figure 2

CeCu$_2$Ge$_2$

- $P=0$
- $+9.5$ kbar
FIGURE 3

S (J/K.mole)

CeCu$_2$Ge$_2$

P=0

T(K)

RLn2
CeCu$_2$Ge$_2$

$\Delta C/T$ (J/K2.mole)

- $P = 0$
- + 9.5 kbar

FIGURE 4