Title
HIGH RESOLUTION PROTON MAGNETIC RESONANCE SPECTRA OF SILYLPHOSPHINE, SILYLARSINE, GERMYLOPHOSPHINE AND GERMYLARSINE

Permalink
https://escholarship.org/uc/item/5dv9c32b

Authors
Drake, J.E.
Jolly, W.L.

Publication Date
1962-08-01
HIGH RESOLUTION PROTON MAGNETIC RESONANCE SPECTRA OF SILYLPHOSPHINE, SILYLARSINE, GERMYLPHOSPHINE AND GERMYLARSINE

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
HIGH RESOLUTION PROTON MAGNETIC RESONANCE SPECTRA OF
SILYLPHOSPHINE, SILYLARSINE, GERMYLPHOSPHINE, AND GERMYLARSINE

J. E. Drake and W. L. Jolly

August 1962
HIGH RESOLUTION PROTON MAGNETIC RESONANCE SPECTRA OF
SILYLPHOSPHINE, SILYLARSINE, GERMYLPHOSPHINE AND GERMYLARSINE

J. E. Drake and W. L. Jolly
Department of Chemistry, and Inorganic Materials Research Division
of the Lawrence Radiation Laboratory, University of California,
Berkeley, California

ABSTRACT

The proton magnetic resonance spectra of SiH₃PH₂, SiH₃AsH₂,
GeH₃PH₂ and GeH₃AsH₂ are described and interpreted.
INTRODUCTION

We have previously described the formation of "mixed hydrides" in a silent electric discharge. The proton magnetic resonance spectra of four of these hydrides: silylphosphine (SiH$_3$PH$_2$), silylar sine (SiH$_3$AsH$_2$), germlyphosphine (GeH$_3$PH$_2$) and germylarsine (GeH$_3$AsH$_2$), are described in this paper.

EXPERIMENTAL

The samples were sealed, under vacuum, in 5 mm ext. diam. Pyrex tubes. The spectra were run on a Varian Model A 60 spectrometer, with a spinning sample, at sweep widths ranging from 50-500 cps. The spectra are presented in Figs. 1-4. Tetramethylsilane (T.M.S.) was used throughout as an internal standard. With the silyl compounds, disilane was used as an additional internal reference, and with the germyl compounds, dimerane was used. The relative amounts of T.M.S. and of disilane or dimerane were changed, but the relative positions of the resonance frequencies never changed by more than 1%.

DESCRIPTION OF SPECTRA

Spectrum of SiH$_3$PH$_2$ (Fig. 1)

The spectrum is as might be predicted. The -SiH$_3$ resonance is split into a 1:2:1 triplet by the two hydrogen atoms on the phosphorous atom, and the -PH$_2$ resonance is split into a 1:3:3:1 quartet by the three hydrogen atoms on the silicon atom. Because phosphorous (P31, 100% abundant) has a magnetic nucleus of spin $\frac{1}{2}$, there is additional splitting. The splitting of the hydrogen atoms on the phosphorous atom is large, resulting in the quartet being split into a widely separated pair of quartets of equal intensity (centered at 1.31 ppm to low field of T.M.S.) by the J_{PH} coupling. The splitting of
the hydrogen atoms on the silicon atom is much less resulting in a comparatively smaller splitting of the triplet into a pair of triplets (centered at 3.73 ppm to low field of T.M.S.) by the J_{PH} coupling. The most abundant silicon isotope (Si^{28}, 92.2% abundant) has no magnetic nucleus spin, but the isotope Si^{29} (4.7% abundant) has a magnetic nucleus of spin $\frac{1}{2}$. At high spectrum amplitude the 'satellites' caused by this spin can be seen and there is splitting of the 'double-triplet' -SiH$_3$ resonance by the J_{SiH} coupling. We were unable to detect the splitting caused by the J_{SiH'} coupling. The intensity of the satellite triplets is about 4.5% that of the main triplets, and the intensities of the -SiH$_3$ triplets and the -PH$_2$ quartets are in the ratio of 3:2.

Spectrum of SiH$_3$AsH$_2$ (Fig. 2)

Because arsenic (As75, 100% abundant) has a magnetic nucleus of spin $\frac{3}{2}$, one might expect the spectrum to be similar to that of SiH$_3$PH$_2$, except that the -SiH$_3$ triplet and the -AsH$_2$ quartet would undergo fourfold, rather than twofold, splitting. However, no splitting occurs due either to J_{AsH} or J_{AsH'} coupling, probably because arsenic has a high nuclear electric quadrupole moment (Q = 0.3 x e x 10^{-24} cm2) and the asymmetries of the electron charge distribution about the nucleus result in line broadening rather than splitting. As a result, the -SiH$_3$ resonance is a simple 1:2:1 triplet and the -AsH$_2$ resonance is a much broadened 1:3:3:1 quartet. At high spectrum amplitude the splitting from the J_{SiH} coupling can be seen; the intensity of the 'satellites' again being 4-5% of the main resonance peaks.

Spectra of GeH$_3$PH$_2$ and GeH$_3$AsH$_2$ (Figs. 3 and 4)

These are very similar to those of the corresponding silyl compounds, because the more abundant isotopes of germanium have no nuclear magnetic
moments. There are no 'satellite' peaks because the only isotope to have a nuclear magnetic spin (Ge73, spin = $\frac{9}{2}$) is only 7.8% abundant and also have a high nuclear electric quadrupole moment ($q = -0.2 \times e \times 10^{-24}$ cm2).

DISCUSSION

The values of the various coupling constants are summarized in Table I. No coupling is found between hydrogen atoms on the same atom, indicating that there is no restriction to rotation. That is, the three hydrogen atoms on the silicon or germanium atoms are equivalent to one another, as are the two hydrogen atoms on the phosphorus and arsenic atoms.

For SiH$_3$PH$_2$, the value of the J_{SiH} coupling constant is 204 ± 1 cps, which is close to the value reported for the pure silanes (Si$_2$H$_6 = 199$ cps)2 and the value of the J_{PH} coupling constant is 180 ± 1 cps, which is close to the value reported for phosphine and diphosphine. (P$_2$H$_4 = 186$ cps)3.

The similarities of the coupling constants seem to indicate that there is not much change in hybridization, bond length or bond angle in either the P-H or the Si-H bonds. Because the differences are so slight we may only tentatively predict a slight decrease in the 's' character in the P-H bond and a corresponding increase in the 's' character of the Si-H bonds on the basis of the slightly lower value for J_{PH} and higher value for J_{SiH} in the mixed hydride. The coupling J_{PH} (i.e. of phosphorous with a hydrogen atom on an adjacent atom) is slightly greater in the case of silylphosphine (16.2 cps) than in germylphosphine (15.3 cps) and both are greater than the value for diphosphine. The value of J_{HH} is slightly greater in the silyl compounds than in the germyl compounds. However, at this time, it is not possible to put forward any concrete explanation for these differences particularly as the differences are so small.
The relative chemical shifts of the resonance peaks (shown in Table II) may be explained, to a first approximation, by differences in electronegativity. As a phosphorus atom replaces either a silicon or germanium atom in disilane or digermene its greater electronegativity should result in a decrease in the shielding of the hydrogen atoms in -SiH\textsubscript{3} and -GeH\textsubscript{3}, and shift the resonance to lower fields. The shifts are to lower field being 0.55 ppm on going from Si\textsubscript{2}H\textsubscript{6} to SiH\textsubscript{3}PH\textsubscript{2}, and 0.46 ppm on going from Ge\textsubscript{2}H\textsubscript{6} to GeH\textsubscript{3}PH\textsubscript{2}. The fact that the shift is less in the germilyl compound may indicate that germanium has a higher electronegativity than silicon, as has been suggested by Rochow and Allred.4 The arsine compounds parallel the phosphine compounds in that there is a shift to lower field of 0.45 ppm on going from Si\textsubscript{2}H\textsubscript{6} to SiH\textsubscript{3}AsH\textsubscript{2}, and of 0.36 ppm on going from Ge\textsubscript{2}H\textsubscript{6} to GeH\textsubscript{3}AsH\textsubscript{2}. The fact that the shifts are greater for replacement with a phosphorous atom than with an arsenic atom, agrees with the generally accepted view that phosphorous has the higher value of electronegativity.

If germanium has a higher electronegativity than silicon, then the differences of electronegativity are greater between silicon and phosphorous or arsenic, than with germanium and phosphorous or arsenic, and so we should expect that the H+ resonances would occur to higher field in the cases of SiH\textsubscript{3}PH\textsubscript{2} and SiH\textsubscript{3}AsH\textsubscript{2} than in GeH\textsubscript{3}PH\textsubscript{2} and GeH\textsubscript{3}AsH\textsubscript{2}, respectively. This is the case. Finally, as the state of hybridization in all the compounds discussed seems to be the same, the data indicate that the order of electronegativities is P > As > Ge > Si.
ACKNOWLEDGMENTS

This work was performed under the auspices of the United States Atomic Energy Commission.
TABLE I

Coupling Constants (in cps)

<table>
<thead>
<tr>
<th>Compound</th>
<th>J_{SiH}</th>
<th>$J_{\text{HH'}}$</th>
<th>$J_{\text{PH'}}$</th>
<th>J_{PH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiH_3PH_2</td>
<td>204±1</td>
<td>5.1±1</td>
<td>180±1</td>
<td>16.2±2</td>
</tr>
<tr>
<td>SiH_3AsH_2</td>
<td>203±1</td>
<td>5.1±1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GeH_3PH_2</td>
<td>-</td>
<td>4.8±1</td>
<td>180±1</td>
<td>15.3±2</td>
</tr>
<tr>
<td>GeH_3AsH_2</td>
<td>-</td>
<td>4.8±1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE II

Resonance Position (to low field of internal T.M.S.)
(in ppm)

<table>
<thead>
<tr>
<th>-SiH₃</th>
<th>-GeH₃</th>
<th>-PH₂</th>
<th>-AsH₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiH_3PH_2</td>
<td>3.73</td>
<td>-</td>
<td>1.31</td>
</tr>
<tr>
<td>SiH_3AsH_2</td>
<td>3.67</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SiH_3SiH_3</td>
<td>3.22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GeH_3PH_2</td>
<td>-</td>
<td>3.67</td>
<td>1.41</td>
</tr>
<tr>
<td>GeH_3AsH_2</td>
<td>-</td>
<td>3.57</td>
<td>-</td>
</tr>
<tr>
<td>GeH_3GeH_3</td>
<td>-</td>
<td>3.21</td>
<td>-</td>
</tr>
</tbody>
</table>
REFERENCES

1. The proton magnetic resonance spectrum of silylphosphine (SiH$_3$PH$_2$) at 60 Mc/sec. with a sweep width of 500 cps. The reference compound is T.M.S. as an internal standard.
2. The proton magnetic resonance spectrum of silylarsine (SiH₃AsH₂) at 60 Mc/sec. with a sweep width of 250 cps. The reference compound is T.M.S. as an internal standard.
3. The proton magnetic resonance spectrum of germylphosphine (GeH$_3$PH$_2$) at 60 Mc/sec. with a sweep width of 250 cps. The reference compound is T.M.S. as an internal standard.
4. The proton magnetic resonance spectrum of germylarsine (GeH_3AsH_2) at 60 Mc/sec. with a sweep width of 250 cps. The reference compound is T.M.S. as an internal standard.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.