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Arachidonic acid in cell signaling 

Daniele Piomelli 

Inst i tu t  Nat ional de la Sant~} et de la Recherche MEdicale, Paris, France 

Important advances have recently been made in our understanding of the 
arachidonic acid cascade. The molecular characterization of different forms 
of phospholipase A 2 indicates that multiple pathways are involved in 
the release of arachidonic acid evoked by physiological or pathological 
stimuli. Moreover, studies on the expression of enzymes that metabolize 
arachidonic acid reveal the potential participation of the eicosanoids in 
central aspects of cell regulation, such as control of mitogenesis. Finally, 
cloning of the first eicosanoid receptors is a major step towards elucidating 

the diverse cellular functions exerted by these bioactive lipids. 

Current Opinion in Cell Biology 1993, 5:274-280 

Introduction 

The many cellular actions exerted by arachidonic acid 
(AA), a polyunsaturated fatty acid, are initiated by its 
release from membrane phospholipids and by its sub- 
sequent conversion into a family of biologically ac- 
tive metabolites, collectively called 'eicosanoids'. Some 
of the enzymatic pathways involved in AA release and 
metabolism are shown in Fig. 1, where I have summa- 
rized the results of studies that cannot be adequately 
described within the limits of this review. Here, I will 
review what I consider to be the most significant re- 
cent advances in three subject areas related to the AA 
cascade: the mechanism underlying release of AA; the 
molecular characterization of AA-metabolizing enzymes; 
and the cellular functions exerted by the eicosanoids. 

Pathways of arachidonic acid release 

Cytosolic, arachidonic acid specific phospholipase A 2 
Phospholipase A 2 (PLA2) catalyzes the hydrolytic cleav- 
age of glycerophospholipid at the sn-2 position (where 
AA is most often esterified) yielding free fatty acid 
and lysophospholipid (Fig. 1). A high molecular weight 
(85.2 kDa) cytosolic phospholipase A 2 (cPLA2) , which 
selectively hydrolyzes AA-containing phospholipids, has 
been purified from several sources, and a full-length 
cDNA that encodes it has been isolated and sequenced 
[1-3,4",5]. In vitro, purified cPLA 2 is active at concen- 
trations of free Ca 2+ (0.1-1 p.mol/l) similar to those 
reached intracellularly during receptor-dependent Ca 2 + 
responses, and prefers AA-containing phospholipids in 
natural membranes about 20-fold more than phospho- 
lipids containing other fatty acids. 

Raising levels of Ca 2+ from 100 to 300nmol/1 causes 
the association of recombinant cPLA 2 with membrane 
vesicles, suggesting that, in response to receptor-stim- 
ulated rises in Ca 2+, cPLA 2 may translocate from the 
cytosol to the cell membrane, where both competent 
G proteins (see below) and phospholipid substrate are 
located [6*.,7]. Ca2+-dependent translocation is prob- 
ably mediated by a region in the amino-terminal por- 
tion of cPLA 2 that shows significant sequence homol- 
ogy with the constant region 2 of protein kinase C 
(PKC). This domain, which is thought to be involved 
in Ca 2 + -dependent binding of PKC to the membrane, 
is shared by other membrane-associated proteins in- 
cluding p65 (synaptotagmin), GTPase-activating protein 
and phosphoinositide-specific phospholipase C (PLC). 
By contrast, no sequence similarity appears to exist 
between cPLA 2 and any known low molecular weight 
(14 kDa) forms of PLA2, which are not selective for phos- 
pholipids that contain AA [5]. 

Regulation of cPLA 2 activity by receptors, G proteins 
and protein phosphorylation 
Several hormones, neurotransmitters, growth factors and 
cytokines evoke the rapid, receptor-dependent hydro- 
lysis of AA-containing phospholipids. These include 
thyrotropin-releasing hormone [8"], serotonin acting at 
5-HT 2 receptors [9], glutamate acting at metabotropic 
mGluR1 receptors [10.], basic fibroblast-derived growth 
factor [11] and a- and 7-interferons [12,13]. By contrast, 
neurotransmitters that do not stimulate AA release di- 
rectly may amplify it when such release has been initiated 
by stimulating appropriate membrane receptors or by in- 
creasing intracellular Ca 2+. These facilitatory mediators 
include the action of dopamine at D 2 receptors [14"], 

Abbreviations 
AA arachidonic acid; CHO---Chinese hamster ovary; cPLA2--cytolitic phospholipase A2; 

DAG--diacylglycerol; EGF~pidermal growth factor; G protein GTP-binding protein; PG--prostaglandin; 
PGHS---cyclo-oxygenase (prostaglandin G/H synthase); PKC--protein kinase C; PLC--phospholipase C. 
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Fig. 1. Release of AA from membrane phospholipids occurs by 
two main pathways. (a) Cleavage of the glycerophospholipid 
(PL) backbone at the sn-2 position, catalyzed by various forms 
of PLA2, yields free AA and lysophospholipid. (b) Alternatively, 
activation of PLC forms DAG, which is subsequently hydrolyzed 
by DAG-lipase into free AA and monoacylglycerol (MAG). Fur- 
ther hydrolysis of MAG by MAG-lipase yields additional fatty 
acid and glycerol (not shown). Either pathway may be stimu- 
lated independently by occupation of G protein-linked mem- 
brane receptors (R 1 and R2). (C) After release, free AA may be 
reincorporated into membrane PL. This reaction requires conver- 
sion of the fatty acid into arachidonoyl-coenzyme A (AA-CoA) 
by arachidonoyl CoA synthetase, and its subsequent esterifica- 
tion by arachidonoyl-lysophospholipid transferase. (d) Alterna- 
tively, AA may be metabolized by one of three pathways: (e) 
PGHS catalyzes the conversion of AA into two reactive inter- 
mediates, PGG and PGH, which are, in turn, precursors of the 
prostaglandins, prostacyclin (PGI 2) and thromboxane (TXA2); (f) 
lipoxygenases form hydroperoxyeicosatetraenoic acids (HPETE) as 
primary products, which can undergo a complex metabolism in- 
cluding reduction to corresponding hydroxyacids (HETE), or con- 
version into leukotrienes, epoxyhydroxides, etc; (g) cytochrome 
P-450 catalyzes the conversion of AA into epoxyeicosatrienoic 
acids (EET), which are hydrolyzed to corresponding diols by 
epoxide hydrolase. 

adenosine at A 1 [15"], norepinephrine at o{ 2 [16°], acetyl- 
choline at muscarinic m 2 and m 4 [16"] and serotonin at 
5-HT 1 [17"]. It is likely that stimulation of cPLA 2 activity 
mediates at least some of these responses. In agreement, 
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when Chinese hamster ovary (CHO) cells overexpressing 
cPLA 2 are stimulated with ATP or thrombin, release of  AA 
is dramatically enhanced compared with wild-type CliO 
cells or cells overexpressing a low molecular weight form 
of PLA 2 [18°.]. 

Beside Ca 2+ levels, two additional elements appear to 
play important roles in the receptor-dependent activa- 
tion of cPLA2: an activated G protein and the activity of  a 
serine protein kinase. In transfected CHO cells, pertussis 
toxin, which ADP-ribosylates and inhibits G proteins be- 
longing to the Gi/G o families, prevents both receptor-op- 
erated AA release [19] and facilitation of such release by 
stimulation of D 2 or 5-HT 1 receptors [14°,17.]. Pertussis 
toxin inhibits receptor-dependent stimulation of AA re- 
lease in a similar manner in many other cell types [20], 
as well as facilitation of AA release produced by A 1 re- 
ceptors in striatal glial cells [15o]. Phorbol esters enhance 
cPLA 2 activity in many tissues, whereas non-selective pro- 
tein kinase inhibitors, such as staurosporine, inhibit it 
[16°,18°o]. In addition, stimulation of cPLA 2 activity by 
ATP or phorbol  ester in CHO cells, or by PDGF or EGF 
in Rat-2 cells, is accompanied by increased phosphory- 
lation of cPLA 2 on a serine residue [18"°]. The protein 
kinase responsible for phosphorylating cPLA 2 has been 
recently identified as mitogen-activated protein (MAP), 
which in turn may be activated by PKC-dependent pro- 
tein phosphorylation [21]. Underscoring the differences 
existing between cPLA 2 and other types of  PLA2, the ac- 
tivity of membrane-bound PLA 2 in a preparation of rat 
brain synaptic endings is not affected by incubation with 
either phorbol esters or purified PKC [22°]. 

Low molecular weight forms of PLA 2 
Based on primary structure, mammalian low molecular 
weight secreted and membrane-bound forms of PLA 2 
(14kDa) may be classified into two types, group I 
(PLA2-I) and group II (PLA2-II). Both groups may exert 
multiple cellular functions, participating in the non-selec- 
tive release of fatty acids from phospholipids (including, 
beside AA, other substrates for oxydative metabolism, 
such as linoleic acid), in phospholipid remodelling (par- 
ticularly important in preserving membrane integrity and 
in cell motility), or in a series of newly described actions 
mediated via high affinity membrane-binding sites, which 
have recently been the focus of several studies. 

A high affinity binding site for PLA2-I has been character- 
ized in various cell types [23], and is thought to medi- 
ate the effects of PLA2-I on proliferation of Swiss 3T3 
fibroblasts and on stimulation of migration of embry- 
onic smooth muscle and contraction of isolated cere- 
bral arteries [24,25,26.]. It is not known whether the 
phospholipid-hydrolyzing activity of PLA2-I is crucial for 
these actions. Like PLA2-I , PLA2-II may also be secreted 
from cells, and bind to specific membrane receptors. 
Several agents have been shown to stimulate expres- 
sion and secretion of PLA2-II, in parallel with AA re- 
lease and metabolism. These include pro-inflammatory 
factors, such as tumor necrosis factor, interleukin I and 
lipopolysaccharide. By contrast, anti-inflammatory gluco- 
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corticoids inhibit expression of PLA2-II, suggesting that 
regulation of expression and secretion of this lipase may 
play a role in the pathogenesis of inflammation [27°,28"]. 

Phospholipase C/diacylglycerol lipase 
Activation of PLA 2 provides a direct pathway of AA re- 
lease. Alternatively, release may be initiated by the acti- 
vation of phosphoinositide-specific PLC, which cleaves 
the phospholipid at the phosphate ester bond produc- 
ing 1,2-diacylglycerol (DAG). This intermediate is in turn 
broken down by a DAG-lipase to yield free fatty acid and 
monoacylglycerol (Fig. 1). The PLC/DAG-lipase pathway, 
originally described in blood platelets, has now been un- 
equivocally shown to mediate bradykinin-induced release 
of AA in dorsal root ganglion neurons in primary culture 
[29"]. 

Molecular characterization of enzymes that 
metabolize arachidonic acid 

After release, free AA has several possible fates. It can 
diffuse out of the cell. Alternatively, it can be either 
converted into arachidonoyl-coenzyme A and reincorpo- 
rated into phospholipids, or metabolized. Most enzymes 
involved in the metabolism of AA (cyclooxygenase, PGD 
synthase, PGF synthase, 5-lipoxygenase, leukotriene A 4 
hydrolase, 15-1ipoxygenase and 12-1ipoxygenase) have 
been purified from various sources, and cDNAs encod- 
ing them have been isolated and characterized. The in- 
terested reader is referred to a recent review [30"],  to 
which only a few developments need to be added here. 

Cyclooxygenase 
Cyclooxygenase (prostaglandin G/H synthase, PGHS) 
catalyzes the stepwise conversion of AA into the reactive 
intermediates PGG and PGH, which are in turn the pre- 
cursors of prostaglandins, prostacyclin and thrombox- 
anes. Two cDNAs encoding PGHS have been isolated. 
One, obtained by screening cDNA libraries of sheep 
seminal vesicles, hybridizes with a 2.8-3.0kb mRNA 
on northern blots [30"].  This mRNA may undergo al- 
ternative splicing, resulting in a transcript that is 111 
base pairs shorter [31]. An additional 4.1 kb cDNA en- 
coding for a PGHS-related protein has been recently 
cloned, and shown to confer PGHS activity to trans- 
fected cells. Unlike the 2.8kb PGHS mRNA, levels of 
the 4.1 kb mRNA rapidly increase in human monocytes 
stimulated with pro-inflammatory agents, such as inter- 
leukin 113, and decrease in monocytes stimulated with 
anti-inflammatory agents, such as dexamethasone. The 
results suggest that induction of this transcriptionally 
regulated PGHS species, termed glucocorticoid-regulated 
inflammatory (gri) PGHS, may participate in the inflam- 
matory response [32,33"']. The functions of griPGHS 
are unlikely to be limited to inflammation, however. 
Evidence indicates that griPGHS is identical to TIS10, 
the product of a primary response gene whose ex- 

pression is superinduced by the mitogenic phorbol es- 
ter, 12-O-tetradecanoylphorbol-13-acetate, in a cell type 
restricted fashion [34°.,35]. It is known that mitogenic 
signals induce a transient enhancement of prostaglandin 
release, and the discovery that a primary response gene 
encodes an active PGHS provides further support for a 
role of AA metabolism in the regulation of cell division 
(see below). 

Cellular actions of the eicosanoids 

The eicosanoids may act both as intracellular second 
messengers and as local mediators (autacoids): like sec- 
ond messengers, they may modify the activity of intracel- 
lular enzymes and ion channels; like local mediators, the 
eicosanoids may be released outside the cell of origin, 
and act on neighbouring cells by binding to high-affinity 
membrane receptors. 

Regulation of ion channels and secretion 
Both free AA and its metabolites can influence the activity 
of many membrane ion channels, either directly or by 
regulating intracellular protein kinases. Two brief reviews 
on this subject may be consulted for studies published 
before 1991 [36",37"]. 

Recent reports support the involvement of lipoxygenase 
metabolites of AA in the activation of K + channels in 
a variety of cells ranging from molluscan neurons to 
mammalian platelets [38.-40"], and in the modulation of 
hormone and neurotransmitter secretion [41.,42.,43]. In 
secretory cells, including neurons, the activation of K + 
channels, by decreasing cell excitability, is expected to 
result in reduced Ca 2+-dependent secretion. In agree- 
ment, in a preparation of synaptic nerve endings, 12- 
lipoxygenase metabolites of AA inhibit Ca 2+-depen- 
dent glutamate release, possibly through activation of 
K + channels [41.]. In addition to this effect, lipo- 
xygenase products may regulate secretion by inhibit- 
ing Ca2+/calmodulin-dependent protein phosphoryla- 
tion [37"]. Ca 2 +/calmodulin-dependent protein kinase 
II plays an important role in the regulation of neu- 
rosecretion. Experiments with isolated pancreatic islets 
suggest that free AA, generated by physiological concen- 
trations of glucose, may be part of a negative feedback 
loop that prevents excess insulin secretion by inhibit- 
ing Ca 2 +/calmodulin-dependent protein kinase II activity 
[42.]. 

The actions of AA on neurosecretion are not limited 
to the inhibitory effects described above. Evidence in- 
dicates that AA and other polyunsaturated fatty acids 
may participate in certain forms of long-term potentia- 
tion, a model of synaptic plasticity and information stor- 
age that is thought to require, at least partly, enhanced 
release of glutamate from presynaptic terminals [44]. It 
was recently shown that stimulation of presynaptic gluta- 
mate receptors may enhance Ca 2 + -dependent release of 
glutamate if free AA is also provided at low micromolar 



concentrations [45°.]. It is not known for certain where 
AA comes from; one suggestion is that it may be gener- 
ated by stimulating postsynaptic glutamate receptors, and 
diffuse as a 'retrograde messenger' to the presynaptic ter- 
minal [44]. Other effects of AA also support a participa- 
tion of this fatty acid in long-term potentiation, for exam- 
ple, its ability to potentiate ion currents at the glutamate 
N-methyl-D-aspartate receptor channel, which is central 
to the expression of long-term potentiation [46]. 

Modulation of Na+/K + ATPase activity 
The activity of Na +/K + ATPase supplies the driving force 
for transcellular transport of electrolytes and organic so- 
lutes, playing a central role in the reabsorptive capacity 
of the kidney and in the maintenance of ion gradients in 
neural cells. Recent studies suggest the eicosanoids may 
participate in regulating Na+/K + ATPase. Metabolites of 
AA via the epoxygenase (cytochrome P450) pathway are 
potent inhibitors of Na+/K + ATPase activity in kidney 
tissue [47"]. Other metabolic pathways may also be in- 
volved, however [48-50]. For example, the inhibition 
of Na+/K + ATPase activity produced by interleukin-1 
in kidney collecting duct may be mediated by the 
prostaglandin, PGE 2. In agreement, interleukin-1 stimu- 
lates formation of PGE2, while application of exogenous 
PGE 2 inhibits Na+/K + ATPase activity. Moreover, PGHS 
blockers prevent Na +/K + ATPase inhibition induced by 
interleukin-1 [48]. The actions of the eicosanoids on 
Na+/K + ATPase may not be limited to the kidney, as 
AA also affects the enzyme activity in brain tissue [51]. 

Regulation of cell proliferation 
Stimulation of mitogenesis by growth factors is accompa- 
nied by marked changes in lipid turnover, including re- 
lease and metabolism of AA. As discussed above, the pri- 
mary response gene, TISIO, which can be superinduced 
by mitogenic stimuli, encodes an active PGHS, suggest- 
ing an involvement of prostaglandins in mitogenic con- 
trol [34"]. Several studies lend further support to this 
idea. For example, in BALB/c3T3 fibroblasts, epider- 
mal growth factor (EGF) stimulates formation of PGE 2 
and PGF2a. These prostaglandins, in turn, enhance EGF- 
dependent DNA synthesis and c-myc expression [52]. 
Moreover, PGHS inhibitors prevent EGF-induced mito- 
genesis in BALB/c3T3 cells, an effect which may be over- 
come by the addition of exogenous prostaglandins [52]. 
Non-PGHS metabolites of AA may also play a role in mod- 
ulating proliferation induced by various factors, including 
EGF in Syrian hamster embryo cells and rat mesangial 
cells [53-55], and angiotensin II in bovine adrenocortical 
cells [56]. The enzymatic pathways involved in these re- 
sponses are not well characterized yet, but pharmacologi- 
cal experiments suggest that either lipoxygenases (both 
12- and 15-lipoxygenase) or cytochrome P450 may par- 
ticipate. Interestingly, AA may not be the only substrate 
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utilized. Because substrate requirement is less strict for 
lipoxygenases than for PGHS, other polyunsaturated fatty 
acids liberated by PLA 2 activation, such as linoleic acid, 
may be converted into products that modulate mitogen- 
esis [53]. 

Eicosanoid receptors 
Many transcellular actions of the eicosanoids are me- 
diated by specific membrane receptors. A high-affin- 
ity receptor for thromboxane A 2 (TXA2) was recently 
purified to apparent homogeneity, and its cDNA was 
cloned and characterized [57"].  The cDNA encodes a 
protein of 343 amino acids with seven putative trans- 
membrane domains, which is linked to activation of 
phosphotidylinositol turnover and Ca 2+ mobilization 
when expressed in Xenopus oocytes. Subsequently, poly- 
merase chain reaction based on the sequence of this 
TXA 2 receptor has revealed a cDNA clone encoding a 
prostaglandin E receptor EP 3 subtype, and shown it to 
consist of 365 amino acids with seven putative transmem- 
brane domains. When expressed in CHO cells, the EP 3 
receptor is linked to Gi-mediated inhibition of adenylyl 
cyclase activity [58]. 

Conclusions 

The last 2 years have helped in clarifying several long- 
standing problems related to AA-mediated signaling. The 
central position of cPLA 2 in receptor-operated AA release 
is now beginning to be appreciated, as are the different 
roles played by free Ca 2 +, G proteins and protein phos- 
phorylation in regulating activity of this enzyme. At the 
same time, the importance of additional pathways of AA 
release (low molecular weight forms of PLA2, PLC/DAG- 
lipase) has been reinforced. This emerging diversity in 
the control of AA release underscores, on the one hand, 
the multiplicity of functions of this signaling cascade, 
and indicates, on the other, potential sites of action 
for novel therapeutic agents, directed at specific aspects 
of AA-related pathologies. Likewise, molecular biological 
studies are revealing the existence, not only of impor- 
tant diversities at the level of AA-metabolizing enzymes, 
which were once thought to be single entities, but also of 
exciting differences in expression and function of these 
various enzyme isoforms. 
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