Institute of Transportation Studies
University of California at Berkeley

PROGRAM ON ADVANCED TECHNOLOGY
FOR THE HIGHWAY

Longitudinal Control of a Platoon of Vehicles;
II: First and Second Order Time Derivatives
of Distance Deviations

Shahab Sheikholeslam
Charles A. Desoer

PATH Research Report UCB-ITS-PRR-89-6

Prepared in cooperation with the State of California, Business and Transportation Agency, Department of Transportation.

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California. This report does not constitute a standard, specification, or regulation.

December 1989
This paper has been mechanically scanned. Some errors may have been inadvertently introduced.
1 Introduction

This report is an addendum to PATH Research Report UCB-ITS-PRR-89-3. In that report the linear control law used \(\Delta \) and \(\Delta \) for the longitudinal control law of a platoon of vehicles. The purpose of this addendum is to establish the benefit resulting from having both \(\Delta \) and \(\Delta \) available. For convenience we shall refer to equations of [She.11] by their own equation numbers in this report.

In the spirit of [She.1] we shall examine linear control laws for the longitudinal control of a platoon of vehicles which use:

1. No \(\Delta_i \) and \(\Delta_i \) (\(i = 1, 2, \ldots \)) terms in the linear control law [She.1;(-L.1)-[4.211].
2. No \(\Delta_i \) and \(\Delta_i \) (\(i = 2, 3, \ldots \)) terms in the linear control law [She.1;(4.1)-(4.2)].
3. Full feedback of \(\Delta_i \) and \(\Delta_i \) (\(i = 1, 2, \ldots \)) in the linear control law [She.1;(4.1)-(4.2)].

2 Linear control law with no \(\Delta_i \) and \(\Delta_i \) for \(i = 1, 2, \ldots \)

Setting \(c_{ui} = 0 \) and \(c_{ai} = 0 \) for \(i = 1, 2, \ldots \) in [She.1;(4.1)] and [She.1;(42)] we obtain

\[
c_1 := c_{p1} \Delta_1(t) + k_{v1} v(t) + k_{a1} a(t)
\] (2.1)
and for $i = 2, 3, \ldots$

$$c_i := c_p \Delta_i(t) + k_{uv}[v_i(t) - v(t)] + k_{a1}[a_i(t) - a(t)]$$ (2.2)

Setting $c_{vi} = 0$, $c_{ai} = 0$ ($i = 1, 2, \ldots$), and noting [She.1; (5.2), (5.4), (5.6)] results in the following transfer functions for the platoon of identical vehicles:

$$\hat{h}_{A1} (s) = \frac{rs^2 + (1 + \tau d_1 - k_{a1 n})s + (d_1 - k_{u1 n})}{rs^3 + (1 + \tau d_1 + k_{an})s^2 + d_1 s + c_{pln}}$$ (2.3)

$$\hat{h}_{A2} (s) = \frac{-k_{an} s^2 - k_{an} s + c_{pln}}{rs^3 + (1 + \tau d_1 + k_{an})s^2 + (d_1 + k_{vn})s + c_{pln}}$$ (2.4)

$$\hat{g}(s) = \frac{c_{pln}}{rs^3 + (1 + \tau d_1 + k_{an})s^2 + (d_1 + k_{vn})s + c_{pln}}$$ (2.5)

From (2.3) we note the following:

- We do not have complete freedom in choosing the poles of $\hat{h}_{A1} w$, because we have only one design parameter at our disposal, namely c_{pln}.

- We need to choose c_{pln} so that the roots of the denominator polynomial in (2.3) all lie in the open left-half plane. Choosing $\tau = 0.2$, $d_1 = 0$, and $c_{pln} = 0.0002$ gives 3 negative real poles for the denominator polynomial of $\hat{h}_{A1} w$.

- Any other choice of c_{pln}, which gives 3 negative real poles for the denominator of $\hat{h}_{A1} w$ with the above values of τ and d_1, will be close to 0.0002. This is clearly an undesirable time constant.

3 Linear control law with no Δ_i and $\bar{\Delta}_i$ for $i = 2, 3, \ldots$

Suppose now that the first vehicle has Δ_1 and $\bar{\Delta}_1$ available, hence uses the control law [She.1; (4.1)]:

$$c_1 := c_{p1} \Delta_1(t) + c_{uv1} \bar{\Delta}_1(t) + c_{a1} \bar{\Delta}_1(t) + k_{uv1} v_1(t) + k_{a1} a_1(t)$$ (3.1)

Setting $c_{vi} = 0$ and $c_{ai} = 0$ for $i = 2, 3, \ldots$ in [She.1; (4.2)] we obtain for $i = 2, 3, \ldots$.

\[c_i := c_{pi} \Delta_i(t) + k_{vi}[\omega_i(t) - v_i(t)] + k_{ai}[a_i(t) - a_i(t)] \]

Setting \(c_{vi} = 0, c_{ai} = 0 \) (i = 2,3,...), and noting [She.l:(5.2),(5.4),(5.6)] results in the following transfer functions for the platoon of identical vehicles:

\[
\hat{h}_{\Delta_1 \omega_1}(s) = \frac{\tau s^2 + (1 + \tau d_1 - k_{aln})s + (d_1 - k_{vin})}{\tau s^3 + (1 + \tau d_1 + c_{aln})s^2 + (d_1 + c_{vin})s + c_{pln}}
\]

\[
\hat{h}_{\Delta_2 \Delta_1}(s) = \frac{(c_{aln} - k_{an})s^2 + (c_{vin} - k_{un})s + c_{pln}}{\tau s^3 + (1 + \tau d_1 + k_{an})s^2 + (d_1 + c_{vin})s + c_{pln}}
\]

\[
\hat{g}(s) = \frac{cpn}{\tau s^3 + (1 + \tau d_1 + k_{an})s^2 + (d_1 + c_{vin})s + c_{pln}}
\]

From (3.3) we note the following:

- Since \(\Delta_1 \) and \(\Delta_1 \) are available at the first vehicle, we have complete freedom in choosing the poles and the zeros of \(\hat{h}_{\Delta_1 \omega_1} \).

- Given the freedom in selecting the poles of \(\hat{h}_{\Delta_1 \omega_1} \), we can select the poles such that \(c_{pln} \) will be much greater than \(d_1 - k_{vin} \) in (3.3)(i.e., the steady state error \(\hat{h}_{\Delta_1 \omega_1}(0) \) is very small). Hence, with the above linear control law, the platoon tracks the lead vehicle to within spacings of two to three feet.(see fig. 3)

From (3.5) we note the following:

- We have complete freedom in choosing the poles of \(\hat{g}(s) \).

- Since the numerator polynomial of \(\hat{g}(s) \) is a constant, \(|\hat{g}(j\omega)| \) behaves proportional to \(\frac{1}{\omega} \) for large frequencies \(\omega \).

4 \textbf{Linear control law with } \Delta_i \text{ and } \Delta_i \text{ for } i = 1,2,\ldots

Noting [She.l:(5.2),(5.4),(5.6)]and choosing identical characteristic polynomials for \(\hat{h}_{\Delta_1 \omega_1} \) and \(\hat{g} \) results in the following transfer functions for the platoon of identical vehicles:

\[
\hat{h}_{\Delta_1 \omega_1}(s) = \frac{\tau s^2 + (1 + \tau d_1 - k_{aln})s + (d_1 - k_{vin})}{\tau s^3 + (1 + \tau d_1 + c_{aln})s^2 + (d_1 + c_{vin})s + c_{pln}}
\]
\[g(s) = \hat{h}_{\Delta_2 \Delta_1}(s) = \frac{c_{an}s^2 + c_{vn}s + c_{pn}}{\tau s^3 + (1 + \tau d_1 + c_{nu} + k_{an})s^2 + (d_1 + c_{vn} + k_{vn})s + c_{pn}} \]

From (4.1) we note the following:

- We have complete freedom in choosing the poles and the zeros of \(\hat{h}_{\Delta_1 u_1} \).
- Given the freedom in selecting the poles of \(\hat{h}_{\Delta_1 u_1} \), we can select the poles such that \(c_{pln} \) will be much greater than \(d_1 - k_{vl} \) in (3.3). Hence, with the above linear control law, the platoon tracks the lead vehicle to within spacings of two to three feet. (see fig. 4)

From (4.2) we note the following:

- We have complete freedom in choosing the poles of \(\hat{g}(s) \).
- Since the numerator polynomial of \(\hat{g}(s) \) is a polynomial of degree 2, \(|\hat{g}(j\omega)| \) behaves proportional to \(\frac{1}{\omega} \) for large frequencies \(\omega \). Hence, if the characteristic polynomials of \(\hat{g}(s) \) in (3.5) and (4.2) are identical, the frequency response of \(\hat{g}(j\omega) \) corresponding to (4.2) will be broader than the respective frequency response corresponding to (3.5).
- Since broader frequency response corresponds to narrower impulse response in the time domain, the impulse response of \(\hat{g}(s) \) (i.e., \(g(t) \)) corresponding to (4.2) is narrower than the respective impulse response related to (3.5). As a result, deviations in vehicles’ spacings due to a change in the lead vehicle’s velocity, \(u_1 \), will decrease more quickly to their steady-state values if \(\hat{\Delta}_i \) and \(\Delta_i \) are used in the i-th vehicle’s control law.

5 Simulation Results

To examine the behavior of a platoon of identical vehicles under the above control laws, simulations for a platoon of 16 vehicles were run using the System Build software package within MATRIXx. In all the simulations conducted, all the vehicles were assumed to be initially traveling at the steady-state velocity of \(v_0 = 17.9 \text{ m.sec}^{-1} \) (i.e., 40 m.p.h.). Beginning at time \(t = 0 \text{ sec} \), the lead vehicle’s velocity was increased from its steady-state value of 17.9 m.sec\(^{-1}\) until it reached its final value of 29.0 m.sec\(^{-1}\) (i.e., 65 m.p.h.).
Figure 1: lead vehicle's velocity profile \((v_L) \)
Figure 1 shows the lead vehicle’s velocity profile as a function of time\(t\): the curve \(v(t)\) corresponds to a maximum jerk of 2.0 \(\text{m.s}^{-3}\) and peak acceleration of 3.0 \(\text{m.s}^{-2}\) (i.e., 0.39).

The following values were chosen for the relevant parameters in the simulation:

- **\(\tau = 0.2 \text{ sec} \)**
- **\(d_1 = 0.03 \)**

- Linear control law with no \(\Delta_i\) and \(\bar{\Delta}_i\) for \(i = 1, 2, \ldots\)

 \[
 c_{a1n} = 0, c_{v1n} = 0, c_{p1n} = 0.0002, k_{a1n} = 0.4, k_{v1n} = 0.02
 \]

- Linear control law with no \(\Delta_i\) and \(\bar{\Delta}_i\) for \(i = 2, 3, \ldots\)

 \[
 c_{a1n} = 1.994, c_{v1n} = 14.77, c_{p1n} = 24, k_{a1n} = 0.4, k_{v1n} = 0.02
 \]

- Linear control law with \(\Delta_i\) and \(\bar{\Delta}_i\) for \(i = 1, 2, \ldots\)

 \[
 c_{a1n} = 1.994, c_{v1n} = 14.77, c_{p1n} = 24, k_{a1n} = 0.4, k_{v1n} = 0.02
 \]

Using the above values for the parameters, we obtain:

- Linear control law with no \(\Delta_i\) and \(\bar{\Delta}_i\) for \(i = 1, 2, \ldots\)

 \[
 \dot{h}_{\Delta_1} = \frac{0.2(s + 3.02)(s + 0.017)}{0.2(s + 3)(s + 0.01)(s + 0.02)}
 \]

- Linear control law with no \(\Delta_i\) and \(\bar{\Delta}_i\) for \(i = 2, 3, \ldots\)

 \[
 \dot{h}_{\Delta_1} = \frac{0.2(s + 3.02)(s + 0.017)}{0.2(s + 4)(s + 5)(s + 6)}
 \]

- Linear control law with no \(\Delta_i\) and \(\bar{\Delta}_i\) for \(i = 1, 2, \ldots\)

 \[
 \dot{g} = \frac{0.2(s + 3.02)(s + 0.017)}{0.2(s + 4)(s + 5)(s + 6)}
 \]

- Linear control law with no \(\Delta_i\) and \(\bar{\Delta}_i\) for \(i = 2, 3, \ldots\)

 \[
 \dot{g} = \frac{0.2(s + 3.02)(s + 0.017)}{0.2(s + 4)(s + 5)(s + 6)}
 \]
Figure 2: $\Delta_1, \Delta_2, \Delta_3, \Delta_{15}$ vs. t with no Δ_i and $\tilde{\Delta}_i$ terms in the control law for the i-th vehicle ($i = 1, 2, \ldots$).

- Linear control law with A_i and \mathcal{A}_i for $i = 1, 2, \ldots$

$$\hat{h}_{\Delta_{1u}}(s) = \frac{0.2(s + 3.02)(s + 0.017)}{0.2(s + 4)(s + 5)(s + 6)} \quad (5.5)$$

$$\hat{g}(s) = \frac{(s + 4.9)^2}{0.2(s + 4)(s + 5)(s + 6)} \quad (5.6)$$

Figure 2 shows the resulting $\Delta_1, \Delta_2, \Delta_3, \Delta_{15}$ with the above choices of parameters for the linear control law with no A_i and 6_i ($i = 1, 2, \ldots$).

From (5.1) we note that $\hat{h}_{\Delta_{1u}}(0) = 50$. Thus, the first vehicle cannot track the lead vehicle to within close spacings due to a change in the lead vehicle’s velocity. The asymptotic spacing corresponding to $\hat{h}_{\Delta_{1u}}(0) = 50$
Figure 3: $\Delta_1, \Delta_2, \Delta_3, \Delta_{15}$ vs. t- no \dot{A}_i and \ddot{A}_i terms in the control law for the i-th vehicle ($i = 2, 3, \ldots$).

\cdots can be reduced to zero asymptotically, (as $t \to \infty$), but it can be done only with a large time constant.

Figure 3 shows the resulting $\Delta_1, \Delta_2, \Delta_3, \text{ and } \Delta_{15}$ with the above choices of parameters for the linear control law with no A_i and $\ddot{A}_i (i = 2, 3, \ldots)$.

From (5.3) we note that $\hat{\Delta}_{1,\omega}(0) = 0.0004$. Thus, the first vehicle tracks the lead vehicle to within close spacings due to a change in the lead vehicle’s velocity.

From (5.4) we note that $\hat{\dot{g}}(\omega)$ behaves proportional to $\frac{1}{\omega}$ for sufficiently large values of ω. Hence, the impulse response of \hat{g} (i.e., $g(t)$) in (5.4) is broader than the corresponding impulse response of \hat{g} in (5.6) and causes increased delays (compare fig. 3 with fig. 4).
Figure 4: $\Delta_1, \Delta_2, \Delta_3, \Delta_{15}$ vs. t- full feedback of $\dot{\Delta}_i$ and $\ddot{\Delta}_i$ terms in the control law for the i-th vehicle ($i \approx 1, 2, \ldots$)
Figure 4 shows the resulting $\Delta_1, \Delta_2, \Delta_3$, and Δ_{15} with the above choices of parameters for the linear control law with $\hat{\Delta}_i$ and $\hat{\Delta}_i (i=1, 2, \ldots)$.

From (5.5) we note that $\hat{h}_{\Delta_1; w_1}(0) = 0.0004$. Thus, the first vehicle tracks the lead vehicle to within close spacings due to a change in the lead vehicle’s velocity.

From (5.6) we note that $\hat{g}(j\omega)$ behaves proportional to $\frac{1}{\omega}$ for sufficiently large values of ω. Hence, the impulse response of \hat{g} (i.e., $g(t)$) in (5.6) is narrower than the corresponding impulse response of \hat{g} in (5.4). As a result, deviations of the vehicles from their preassigned positions due to a change in the lead vehicle’s velocity will approach their steady-state values more quickly when Δ_i and $\hat{\Delta}_i$ are used in every vehicle’s control law.

6 Conclusion

We have shown that using Δ and $\hat{\Delta}$ in the linear control laws for the longitudinal control of a platoon of vehicles benefits us as follows:

- Using Δ_1 and $\hat{\Delta}_1$ in the linear control law enables the platoon to track the lead vehicle to within spacings of two to three feet. (see fig. 4)
- Deviations in vehicles’ spacings due to a change in the lead vehicle’s velocity, w_l, will decrease more quickly to their steady-state values if Δ_i and $\hat{\Delta}_i$ are used in the i-th vehicle’s control law. ($i = 2, 3, \ldots$) (see fig. 4)

7 References