Lawrence Berkeley National Laboratory
Recent Work

Title
A STRESSED PHOTOCONDUCTIVE DETECTOR FOR FAR-INFRARED SPACE APPLICATIONS

Permalink
https://escholarship.org/uc/item/5gg649d4

Author
Wang, J.Q.

Publication Date
1987-04-01
A STRESSED PHOTOCONDUCTIVE DETECTOR FOR FAR-INFRARED SPACE APPLICATIONS

J.-Q. Wang, P.L. Richards, J.W. Beeman, and E.E. Haller

April 1987
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A STRESSED PHOTOCONDUCTIVE DETECTOR FOR FAR-INFRARED SPACE APPLICATIONS

J.-Q. Wang and P. L. Richards

Department of Physics
University of California
and Materials and Molecular Research Division
Lawrence Berkeley Laboratory
Berkeley, California 94720

J. W. Beeman and E. E. Haller

Department of Materials Sciences
University of California
and Engineering Division
Lawrence Berkeley Laboratory
Berkeley, California 94720

Abstract

An optimized leaf-spring apparatus for applying uniaxial stress to a Ge:Ga far infrared photoconductor has been designed and tested. This design has significant advantages for space applications which require high quantum efficiency and stable operation over long periods of time. The important features include adequate spring deflection with relatively small overall size, torque free stress, easy measurement of applied stress and a detector configuration with high responsivity. One-dimensional arrays of stressed photoconductors can be constructed using this design. A peak responsivity of 38 A/W is achieved in a detector with a cutoff wavelength of 200 μm which was operated at a temperature of 2.0K and a bias voltage equal to one half of the breakdown voltage.
I. Introduction

The need for sensitive detection of far-infrared photons from astronomical sources can be well satisfied by extrinsic photoconductive detectors for wavelengths up to 200μm. Photoconductors made from Ge:Be are used\(^1\) when optimized far infrared measurements are made in the wavelength range from 30-45μm. Unstressed Ge:Ga covers\(^2\) the region from 45-110μm. Extension of the long wavelength limit can be achieved by applying an uniaxial stress along a (100) axis of Ge:Ga.\(^2\) The effect of this stress is to split the degeneracy of the valence band and to reduce the ionization energy of the Ga impurity states. The resulting shift of the onset of photoconductivity to longer wavelengths begins to saturate\(^3\) at about 66 kg/mm\(^2\) giving a long wavelength cutoff of 220μm. Stressed Ge:Ga photoconductors have been successfully used in far infrared astronomical observations from an airborne telescope\(^4,5\) and also in a photometric measurement of the diffuse sky brightness from a sounding rocket.\(^6\)

It has been proposed to use arrays of stressed Ge:Ga photoconductors in space astronomy experiments such as those planned for the Space Infrared Telescope Facility\(^7\) (SIRTF) of the National Aeronautics and Space Administration and the Infrared Space Observatory\(^8\) (ISO) of the European Space Agency. The focal planes of the telescopes in such projects will be assembled more than a year before launch. Years of operating time are required. There are concerns regarding the stability of existing designs of
stressed photoconductors. Relaxation of the stress over time and repeated thermal cycles has been observed which has not been important for short-term projects, but could pose serious problems for space applications. This mechanical relaxation of the stress arises mostly from slow plastic deformation of the pads used to insure a uniform stress distribution over the detector. The first system developed for applying stress to an infrared detector used a screw and a ball bearing to drive a piston in a very stiff yoke. A small amount of thermal contraction or plastic deformation therefore caused significant changes in the stress.

The problem of stress relaxation could be solved by avoiding stress distribution pads and using only elastic materials, but with either a degradation of stress uniformity or a significant tightening of mechanical tolerances. Good stability has been recently reported for a detector with a moderate value of stress designed for space applications. Although little information about stress distribution is given, the onset of photoconductivity is fairly broad, suggesting some inhomogeneity of the stress. The stability problem can also be solved by recent approaches which use a coil spring or a piezoelectric transducer to provide the stress. The size and complexity of these approaches however limit their usefulness for space applications.

We have measured the compression of suitable stress distribution pads and established a criterion for the spring deflection required for long term detector stability. We have found that the required force and deflection can be obtained in an apparatus of relatively small size by using a stack of leaf
springs. In our design the stress is very uniform because adequate stress distribution pads are used and no torque is transmitted to the detector. Since the Young's modulus for the spring material depends only weakly on temperature and since the spring deflection chosen is large compared to the thermal contraction on cooling, the stress can be adjusted at room temperature in our apparatus. We show that the fractional change of detector resistance at the ice temperature is a useful measure of the applied stress and provide a calibration curve.

We have constructed several versions of the leaf-spring stress apparatus and have installed Ge:Ga detectors with the endfire geometry which we recently12 showed to have good optical efficiency and high responsivity. Measurements of the absolute responsivity, spectral response and stability are presented. Finally, the modifications to the design required for linear arrays are described.

II. Design Consideration

In order to achieve stability in the applied stress the elastic deformation of the force transmitting medium has to be much larger than the plastic deformations which cause stress relaxation. As will be discussed below, we used an early version of our apparatus to show that stress distribution pads which give excellent stress uniformity can be made which relax less than 10\textmu m over time and with repeated thermal cycles. Using such pads,
100 μm of elastic spring deflection is required to limit the shift of the cutoff wavelength for photoconductivity to 2% at high stress.

Since the peak stress in the spring must be less than the yield strength of the material, there exists an upper limit on its elastic deformation. When our criteria for force and deflection are met, designs involving columns under tension and compression, as used for the original stressed detector,² or the coil spring recently proposed¹⁰ have large overall size. We have chosen a more compact multiple leaf-spring design to provide the required force and deflection.

A scale drawing of our design is shown in Fig.1. The force is applied by turning a carbon steel #5-40 screw (a) which bends the stack of high-yield-strength spring steel leaf springs (b). The leaf-spring stack is supported in the center by a stainless steel saddle (c). The saddle slides into a groove in the stainless steel support (d) and is held by a steel pin (e). The force from the stack of springs is transmitted to the photoconductor sample (f) by the piston (g). Both the upper and lower pistons (g) are made of hardened drill rod which fit into reamed holes in the stainless steel support. The lower piston is supported by a carbon steel #4-40 screw (h). The leaf-spring assembly contains several springs with the same rectangular cross section, each of which supplies a fraction of the total force. The number of springs can be varied in proportion to the cross sectional area of the detector to be stressed. For example, four springs are used to stress a single 0.5- x 1.0-mm² detector as discussed below.
Our design is based on the conventional theory of the elastic bending of beams. Consider a stack of \(n \) springs made from material with Young's modulus \(E \) and yield strength \(Y \). Each is assumed to have active length \(l \), thickness \(t \), width \(w \), and is bent by deflection \(\delta \) under the applied force \(F \) as illustrated in Fig. 1. The equations which relate the force \(F \) to the deflection \(\delta \) depend on the maximum allowed value of stress \(T_{\text{max}} \), which occurs midway between the ends of the springs. These equations can be conveniently written in the form

\[
1 = 3x \frac{t^{1/3} l^{2/3}}{\delta^{2/3} E^{2/3} / T_{\text{max}}} \quad 1)
\]

and

\[
t = 3x \frac{t^{2/3} l^{1/3}}{\delta^{1/3} E^{1/3} / T_{\text{max}}} \quad 2)
\]

where

\[
x = F/nw. \quad 3)
\]

The design depends on the choice of spring materials through the ratios \(E^{1/3}/Y \) and \(E^{2/3}/Y \), which are not very sensitive to the materials chosen. We have successfully used a commercial spring steel with a safety factor \(T_{\text{max}} = Y/3 \). A shortcoming of this material is the possibility of structural failure due to the transformation from an austenitic to a martensitic phase at low temperatures. During this phase transition shape deformations of the product phase occur. Large locally induced stresses result which may well exceed the yield strength of the material and
extensive defects can be introduced.14 The applied stress assists this phase transition.14 In the martensitic phase the material becomes brittle and is not suitable for use under stress at low temperatures. Series 400 stainless steels are in the martensitic phase at room temperature. Among series 300 stainless steels the 310 and 316 grades seem relatively safe to use. The problem of the phase transition can be avoided by the use of non-ferrous spring materials such as beryllium copper or titanium alloys. The properties of four possible spring materials are given in table I.

Some features of the stress apparatus depend sensitively on the geometry of the detector to be used. We have made a detailed optimization of the geometry of diffraction-limited far infrared photoconductive detectors which have infrared extinction lengths that are long compared with the pixel diameter.12 A number of criteria were considered including absorption efficiency, electrode separation, volume and uniformity of illumination. The rod shaped geometry of the detector sample shown in Fig.2, which has square cross section, electrodes on the lateral faces, and a beveled backface to trap the radiation by total internal reflection, was found to give the best overall performance.

The transverse (pixel) dimensions of such detectors are limited by the throughput required for the focused diffraction-limited beam. For an \(f/2 \) focus, a stressed Ge:Ga detector with angular diameter \(\lambda/D \) used for wavelengths out to 200\(\mu \)m should have a pixel diameter of \(-0.5\)mm. The optimum detector length is 0.3 to 0.5 times the infrared extinction length. This length in turn is determined by the concentration \(N_A \).
of Ga in the material and by the applied stress. This absorption length can be decreased by increasing N_A, but the detector dark current is expected to increase exponentially with N_A. Although the optimal impurity concentration of the stressed Ge:Ga photoconductor is still not precisely known, a guess can be made from the value $N_A = 2 \times 10^{14} \text{ cm}^{-3}$ for unstressed Ge:Ga detectors and theoretical considerations of impurity conduction.15 For use at high stress, the optimal doping is estimated12 to be

\[N_A = 1 \times 10^{14} \text{ cm}^{-3}. \]

Our measurements of the peak optical extinction length12 in this material for infrared photons propagating perpendicular to the direction of the stress is 2.5 mm at 55 cm-1. Thus the optimum detector length should be about 1.0 mm. Detectors of this shape are conveniently stressed by applying the force perpendicular to the two faces where the contacts are located as is shown in Fig. 2. The cross section to be stressed is thus 0.5 mm2 for each pixel.

In order to apply a stress of 60 kg/mm2 to an area of 0.5 mm2, a force of 30 kg is required. Using Eq. 1-3 and the materials properties in Table I it is possible to select dimensions for the stress apparatus that give the required spring deflection of 100 μm. The number of springs n is a free parameter. As n increases the required spring length l decreases and the total thickness nt of the stack of springs increases. Examples calculated for stressing single detectors and linear arrays of 10 detectors using spring steel with a safety factor $Y/T_{\text{max}} = 3$ are
given in Table II. We have constructed a stress apparatus corresponding to example 2. The overall size of the stress apparatus for 10 detectors is not much larger than for a single detector.

III. Performance Tests

Test detectors were prepared from the Ge:Ga crystal \(^1\) \(^2\) "LBL 82-head" with a Ga concentration \(N_A = 1.2 \times 10^{14} \text{ cm}^{-3}\) and compensation ratio \(-10^{-2}\). A wafer was lapped to give parallel faces 0.5mm apart. It was etched to remove all lapping damage, ion implanted and gold-metallized on both sides and then annealed using the procedures described in ref.2. Rods 0.5mm wide were cut with one endface perpendicular to the rod axis and the other end beveled at 20 degrees. The average length was 1mm. The cut faces of these detectors were lightly etched. One of these so called "endfire" detectors was mounted between the pistons of the stress apparatus using 25\(\mu\)m thick mylar sheets on each piston face for electrical insulation and 130\(\mu\)m indium-coated beryllium copper sheets in contact with the detector electrodes for electrical contact as is shown in Fig.2. Both the beryllium copper and the mylar flow slightly and help to distribute the stress evenly.

There is significant infrared absorption on the sides of endfire detectors.\(^1\) \(^2\) This absorption must be eliminated in order to unambiguously define the optical throughout of the stressed
endfire detector. We inserted \(0.4 \times 0.5 \times 1.5 \text{ mm}^3\) blocks of styrcast 2850FT epoxy on each side of the detector after the full stress had been applied, as is shown in Fig.2. These absorbers were glued with the same kind styrcast to one of the beryllium copper pads to ensure a good thermal link to LHe temperature. Styrcast 2850FT is strongly absorbing in the far infrared; the absorption coefficient \(\alpha = 30 \text{ cm}^{-1}\) at 200\(\mu\text{m}\).

Since the spring deflection in our apparatus is large compared with thermal contractions, the only change expected in the stress on cooling from room temperature to liquid helium temperature arises from the \(-10\%\) increase in Young's modulus for spring steel on cooling. This effect was calibrated by measurements of the deflection of a long sample of spring material at liquid nitrogen temperature, which is cold enough that the elastic properties should have approached their low temperature limit. The relation between deflection and force from Eqs. 1)-3) is

\[
\delta = \frac{xL^3}{Et^3} = \frac{F l^3}{n \lambda E t^3}
\]

We used a stress apparatus with large, easily measurable deflections \(\delta \geq 1\text{mm}\) and a calibrated spring to measure the dependence of detector conductance at 0\(^\circ\text{C}\) on stress \(S\). The detector temperature was controlled by enclosing it in a thin polyethylene bag and immersing it in an ice bath. The conductance ratio \(\sigma(S)/\sigma(0)\) plotted in Fig.3 as a function of stress is a useful indicator of the applied stress at 0\(^\circ\text{C}\) for an apparatus in which the deflections are too small to be measured conveniently.
It is independent of detector geometry. It should also be valid for Ge:Ga materials with other values of \(N_A \), or for any germanium sample doped with shallow acceptors. In general, the conductivity is given by the product of the electronic charge, the mobility and the carrier density. Since all shallow acceptors are thermally excited at \(0^\circ \text{C} \) with or without stress, the carrier density is given by \(N_A - N_D = N_A \) for low compensation material. The fractional change in conductivity with stress thus depends only on the mobility, which is phonon limited. It is then a property of Ge, not of the types or concentrations of shallow acceptors.

We used conductance measurements to place an upper limit on the changes in stress which take place when the stress distribution pads relax with time and repeated thermal cycling. The corresponding relaxation of the stress distribution pads was found to be less than 10\(\mu \)m. In an apparatus with a spring deflection of 100 \(\mu \)m, this gives a stress relaxation of less than 10\%. Using the known dependence of impurity ionization energy on stress\(^3\) this relaxation corresponds to an acceptable 2\% shift in the long wavelength cutoff for photoconductivity.

The resistance measurement shown in Fig.3 provides a convenient method for selecting the screw position that will yield the desired stress value at low temperatures. The stress axis must first be corrected for the temperature dependence of Young's modulus for the spring material used. For our spring steel this correction corresponds to a 10\% increase in stress on cooling.

Measurements were made of the absolute spectral responsivity of our stressed Ge:Ga endfire detector to confirm that the
anticipated performance had been achieved. This was done by using an apparatus described elsewhere12 which evenly divides the output of a Fourier transform spectrometer between the stressed detector and a composite bolometer of known optical efficiency.12 The electrical responsivity of the bolometer was determined by the conventional method12 and used to calibrate the incident power. The throughput was limited to 4×10^4 sr-cm-2 (diffraction limited at 200\textmu m) by blackened apertures, and the photon rate to 3×10^{11} s-1 by cold black polyethylene and a neutral density filter. Several calibrating bolometers were used to check the reproducibility of the calibration method described above,12 it was found to be better than 10\%. Measurements of absolute spectral responsivity given in Fig.4 show a relatively sharp onset of photoconductive response indicating uniform stress. The variation of the onset with stress is in agreement with the measurements of Kazanskii et al.3 The shape of the measured spectral responsivity above the peak is very similar to the measured absorption coefficient of the detector material12 under the same stress. This suggests that the optimal detector length could be somewhat longer, especially for applications which require high responsivity over a broad spectral range.

In Table III we summarize the performance parameters of our detector under large 60kg/mm2 stress and compare it with results obtained earlier2 by Haller et al. Since low noise operation in a photoconductive detector is usually obtained by operating at a
fraction of the breakdown voltage, we have given data for \(V_b \) equal
to 0.33, 0.50, 0.60 and 0.77 times the breakdown voltage. The
higher values of bias were included to make a meaningful
comparison with Haller et al.2 and with Lutz et al.9 who reported
breakdown fields of 0.54 V/cm and 0.83 V/cm respectively. In our
samples, breakdown occurs at a voltage which corresponds to an
average fields of -3 V/cm in zero stress and -0.4 V/cm in large
stress. This dramatic decrease of breakdown voltage with stress
is not understood in detail. The responsivity, and thus the \(G_n \)
product are strong functions of the interelectrode distance which
was very different for the three sets of data given in Table III.

IV. Conclusions

We have designed and tested a leaf-spring stress apparatus for
Ge:Ga photoconductors. Good stress stability and uniformity
combined with relatively small apparatus size are realized with
this design. The stress that will be applied to the detector
sample at LHe temperature can be determined easily at room
temperature. One-dimensional stressed photoconductor arrays can
be constructed using this design. The use of the endfire detector
geometry yields a large responsivity with a relatively small
detector volume.
Acknowledgments

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, and in part by NASA Contract No. W-14,606 under Interagency Agreement, Office of Health and Environmental Research, of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.

All authors also work in the Lawrence Berkeley Laboratory.
References

Table I. Properties of Spring Materials

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Young's Modulum E (kg/mm²)</th>
<th>Yield Stress Y (kg/mm²)</th>
<th>Y²/3</th>
<th>E¹/3/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Steel</td>
<td>1.8x10⁴</td>
<td>2.1x10²</td>
<td>3.3</td>
<td>0.13</td>
</tr>
<tr>
<td>310 and 316 Stainless Steel</td>
<td>2.1x10⁴</td>
<td>2.1x10²</td>
<td>3.6</td>
<td>0.13</td>
</tr>
<tr>
<td>Beryllium Copper</td>
<td>5x10³</td>
<td>7x10¹</td>
<td>4.1</td>
<td>0.24</td>
</tr>
<tr>
<td>Titanium Alloys</td>
<td>1.2x10⁴</td>
<td>1.6x10²</td>
<td>3.3</td>
<td>0.14</td>
</tr>
</tbody>
</table>

a The spring material tested in this investigation, E was measured at LN₂ temperature and Y was obtained from the manufacturer's specifications.

b Typical values for moderately high strength materials.
Table II. Typical Spring Parameters for 0.5-×1.0-mm Detectors Using Spring Steel

<table>
<thead>
<tr>
<th>Example</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Detectors</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Width w(mm)</td>
<td>4.6</td>
<td>4.6</td>
<td>12.7</td>
</tr>
<tr>
<td>Number of Springs n</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Length l(mm)</td>
<td>11.5</td>
<td>15.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Total Thickness nt(mm)</td>
<td>2.7</td>
<td>4.5</td>
<td>7.2</td>
</tr>
<tr>
<td>Deflection δ(mm)</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Table III. Summary of Performance of Stressed Ge:Ga Detectors Operated at 2 K.

<table>
<thead>
<tr>
<th>Bias Field (fraction of breakdown)</th>
<th>Peak Responsivity (A/W)</th>
<th>G_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>0.33</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>0.64</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>0.77</td>
<td>102</td>
</tr>
<tr>
<td>Haller et al.</td>
<td>0.77</td>
<td>19</td>
</tr>
<tr>
<td>Lutz et al.</td>
<td>0.64</td>
<td>7</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. Cross section of the leaf-spring apparatus used to apply uniaxial stress to a photoconductive detector:
a) carbon steel screw, b) leaf springs, c) saddle,
d) stainless steel support, e) steel pin, f) Ge:Ga photoconductor assembly, g) drill rod pistons, and h) carbon steel screw.

Fig. 2. Stressed endfire photoconductor assembly: a) stressing pistons, b) 25µm thick mylar sheets, c) 130µm thick indium-coated beryllium-copper, d) Ge:Ga endfire photoconductor, e) stycast absorbers.

Fig. 3. Ratio of conductances measured at 0°C with and without stress for Ge with shallow acceptors as a function of uniaxial stress along a (100) axis.

Fig. 4. Absolute spectral responsivity of a Ge:Ga endfire photoconductor with large stress: \(N_A = 1.2 \times 10^{14} \text{ cm}^{-3} \); sample length = 1.0mm; \(T = 2.0^\circ\text{K} \); and \(V_b = 6.0\text{mV} \).
Infrared

FIGURE 2
FIGURE 3

Conductance Ratio $\sigma(S)/\sigma(0)$

Stress S (kg/mm2)

XBL 8611-6481
FIGURE 4
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.