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Abstract Tree species interact with soil biota to
impact soil organic carbon (C) pools, but it is unclear
how this interaction is shaped by various ecological
factors. We used multiple regression to describe how
~ 100 variables were related to soil organic C pools in
a common garden experiment with 14 temperate tree
species. Potential predictor variables included: (i) the
abundance, chemical composition, and decomposition
rates of leaf litter and fine roots, (ii) species richness
and abundance of bacteria, fungi, and invertebrate
animals in soil, and (iii) measures of soil acidity and
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texture. The amount of organic C in the organic
horizon and upper 20 cm of mineral soil (i.e. the
combined C pool) was strongly negatively correlated
with earthworm abundance and strongly positively
correlated with the abundance of aluminum, iron, and
protons in mineral soils. After accounting for these
factors, we identified additional correlations with soil
biota and with litter traits. Rates of leaf litter
decomposition, measured as litter mass loss, were
negatively correlated with size of the combined soil
organic C pool. Somewhat paradoxically, the com-
bined soil organic C pool was also negatively related
to the ratio of recalcitrant compounds to nitrogen in
leaf litter. These apparent effects of litter traits
probably arose because two independent components
of litter “quality” were controlling different aspects of
decomposition. Leaf litter mass loss rates were
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positively related with leaf litter calcium concentra-
tions, reflecting greater utilization and depolymeriza-
tion of calcium-rich leaf litter by earthworms and other
soil biota, which presumably led to greater propor-
tional losses of litter C as CO, or dissolved organic C.
The fraction of depolymerized and metabolized litter
that is ultimately lost as CO, is an inverse function of
microbial C use efficiency, which increases with litter
nutrient concentrations but decreases with concentra-
tions of recalcitrant compounds (e.g. lignin); thus,
high ratios of recalcitrant compounds to nitrogen in
leaf litter likely caused a greater fraction of depoly-
merized litter to be lost as CO,. Existing conceptual
models of soil C stabilization need to reconcile the
effects of litter quality on these two potentially
counteracting factors: rates of litter depolymerization
and microbial C use efficiency.

Keywords Soil organic matter - Decomposition -
Lignin - Litter quality - Substrate use efficiency -
Earthworm

Introduction

Tree species have large and variable impacts on
organic carbon (C) pools in soil, yet the causes of this
variability are not well known (Vesterdal et al. 2013).
This uncertainty is important because the composition
of tree species is changing in temperate and boreal
forests (Ellison et al. 2005; Lovett et al. 2006; Iverson
et al. 2008; Garbelotto and Pautasso 2012) and tree
plantations occupy an increasing amount of land
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(Paquette and Messier 2009). To estimate the impact
of tree species composition on forest C budgets, more
information is needed on the relationships between the
size of soil C pools and the factors that influence C
input and retention, including (i) the abundance and
chemical composition of plant-derived inputs (e.g.
leaf litter and dead roots), (ii) decomposition, miner-
alization, and redistribution of plant-derived inputs by
soil bacteria, fungi, and animals, and (iii) stabilization
of plant-derived inputs via physical and chemical
protection in soils. The chemical composition of plant-
derived inputs likely plays a central role because it can
impact the fate of plant inputs through every step:
ingestion by soil fauna, enzymatic depolymerization
and mineralization, conversion into biomass and
byproducts of decomposers, and stabilization of
organic matter.

For years, ecologists focused on how litter chem-
istry influenced litter decomposition rates. This work
was typically justified by predictions of non-specific
effects of litter decomposition on soil C cycling
(Prescott 2010), although many authors hypothesized
or implied that litter decomposition rates were
negatively correlated with soil C pools (Wardle et al.
2004; De Deyn et al. 2008). Faster decomposition
rates were observed for plant species with leaf litter of
higher “quality” as a substrate for decomposers (high
quality litter often is characterized by low lignin and/
or high nutrient concentrations; Cornwell et al. 2008).
Thus, tree species with high quality litter and high
decomposition rates might have negative effects on
soil C pools (Finzi et al. 1998; Vesterdal et al. 2008;
but see Berg et al. 2010). In contrast, the prevailing
view of geochemists is that soil physico-chemical
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properties, such as aggregation, mineral surface area,
and cation composition, are largely responsible for the
stability and variability of soil organic C stocks,
implying minimal impacts of litter quality and
decomposition rates on soil C pools (Liitzow et al.
2006; Schmidt et al. 2011). Presently, the relevance of
litter decomposition rates to soil C storage remains
uncertain (Prescott 2005, 2010) for two reasons. First,
litter decomposition rates are estimated via measure-
ments of litter mass loss, without accounting for how
much of the “lost” mass is partitioned to respiration,
decomposer biomass, and soluble decomposition
byproducts (Rubino et al. 2007, 2010). Second, despite
myriad studies of litter decomposition rates and soil
organic C stocks, a quantitative relationship between
the two has not been documented.

Attempting to bridge the gap between ecologists
and geochemists, Cotrufo et al. (2013) suggested that
higher litter quality and short-term decomposition
rates could result in larger soil C pools due to both:
(i) greater C use efficiency during microbial metabo-
lism of high quality litter (i.e. a greater fraction of the
C substrate is converted to microbial biomass and a
smaller fraction is lost during respiration), and (ii)
potential for preferential retention of microbial-
derived C in stable soil organic matter. However, it
is also plausible that high litter quality could have
counteracting effects on soil organic C stocks by
increasing the proportion of litter that is depolymer-
ized and subsequently mineralized or leached from
soil (consistent with positive effects of litter quality on
leaf litter decomposition rates), while also reducing
the proportion of metabolized litter that is mineralized
(consistent with positive effects of litter quality on
microbial C use efficiency). This modification of
Cotrufo’s hypothesis seems consistent with field
observations: while reviewing the results of temperate
common garden experiments, Vesterdal et al. (2013)
noted that organic C pools in organic and mineral soils
are often inversely correlated among tree species. For
example, Vesterdal et al. (2008) showed that tree
species with lower C:N ratios in leaf litter had smaller
C pools in the organic horizon but larger C pools in
mineral soils. If higher litter decomposition rates are
accompanied by proportionally greater losses of litter-
derived C to the atmosphere and/or to the mineral soil,
Vesterdal et al. (2008) results could reflect a positive
effect of litter quality on leaf litter decomposition rates
and a negative effect of litter decomposition rates on C

stocks in the organic horizon. Combined with a
positive effect of leaf litter quality on microbial C
use efficiency and stabilization of microbial biomass
and byproducts in mineral soil, such variation in litter
C:N among tree species would result in a minimal
effect on total soil organic C stocks but a large effect
on the vertical distribution of organic C (accounting
for the inverse correlation between C pools in the
organic and mineral soil layers).

When considering the interactions between litter
quality and soil biota, and how these interactions
mediate the impact of plants on soil organic C, it is
perhaps necessary to consider the quality of both leaf
litter and fine roots for several reasons. First, it is likely
that some plant species have high quality leaf litter but
low quality root litter (or vice versa) because the
chemical composition of roots varies at least somewhat
independently of that of leaves and leaf litter (e.g.
Hobbie et al. 2010). Second, vertical gradients in soil
community composition (e.g. the relative abundance of
fungi and bacteria) and in the composition of the soil
matrix (e.g. the presence and composition of soil
minerals) could alter the nature of litter quality effects,
regardless of the similarity of leaf and root litter quality.

Although litter decomposition rates can be useful in
studying the interaction between litter quality and soil
biota, the full impact of this interaction on soil organic
C pools cannot be represented by decomposition rates
inferred from litter mass loss due to methodological
issues (e.g. the limited duration of most studies and
exclusion of macrofauna from litter bags). The net,
long-term effect of the interaction between litter
quality and soil biota will depend on variability
among soil bacteria, fungi, and fauna with respect to
the type and amount of plant litter they consume, their
C use efficiency, the stabilization potential of their
biomass and metabolic byproducts, and their capacity
for bioturbation (Brown et al. 2000; Six et al. 2006;
Osler and Sommerkorn 2007). For example, land use
changes that result in bacterial-dominance of soil
microbial communities typically also result in smaller
soil C pools (Strickland and Rousk 2010; de Vries
et al. 2013). More diverse soil biotic communities are
expected to increase the rate and efficiency of litter
decomposition, with potential impacts on soil C pools,
through mechanisms such as facilitation and comple-
mentarity of resource use (Gessner et al. 2010).

To clarify how the “quality” of plant inputs and soil
biota interact to regulate soil organic C stocks, and to
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advance the trait-based framework for predicting the
impact of tree species on soil C, we evaluated the
covariance of soil C pools with a variety of ecological
factors at a 32-year-old common garden experiment
with 14 tree species. Previous studies at this site in
Poland documented much variability among tree
species for the abundance, chemical composition,
and decomposition rates of leaf litter and fine roots
(Reich et al. 2005; Withington et al. 2006; Hobbie
et al. 2006, 2010; Goebel et al. 2010). Across tree
species, decomposition rates and indices of litter
quality for leaf litter and fine roots were uncorrelated,
such that leaf and root traits could have independent
effects on soil organic C pools (Hobbie et al. 2010).
The composition of bacterial, fungal, and faunal
communities in soil was also variable among tree
species (Reich et al. 2005; Dickie et al. 2010;
Skorupski 2010; Trocha et al. 2012, Table 1). Prior
studies at this site reported aspects of the C cycle in
organic and mineral soils separately (C stocks in the
organic horizon have not been published previously).
Reich et al. (2005) and Hobbie et al. (2006) showed
that beneath trees with higher calcium concentrations
in leaf litter, soils had higher earthworm biomass, and
consequently, lower concentrations of C in the organic
horizon and higher rates of organic horizon turnover.
Focusing on mineral soils, Mueller et al. (2012)
showed that tree species with higher nitrogen (N) con-
centrations in roots also had higher total acidity in soil
(i.e. more protons and hydrolyzing Al and Fe cations);
this likely influenced mineral soil C pools via com-
plexation of organic matter with Al and Fe and
negative effects of acidity on C mineralization (Hob-
bie et al. 2007). We expanded upon these prior studies
by focusing on the combined pool of organic C in
organic and mineral soils and by relating the combined
C pool to a broader suite of variables than examined
previously (e.g. prior studies did not evaluate covari-
ance of soil C pools with litter decomposition rates or
soil biotic predictors other than earthworm biomass).
Specifically, we used an information-theoretic style,
regression-based approach to evaluate the following
hypotheses: (i) decomposition rates, i.e. mass loss
rates, of leaf litter and fine roots are negatively
correlated with soil organic C stocks, (ii) the chemical
quality of leaf litter and fine roots is positively
correlated with soil organic C stocks (as described
above, these first two hypotheses are potentially
counteracting) and (iii) soil organic C stocks are

@ Springer

negatively correlated with the relative abundance of
bacteria and with soil biodiversity. To gain additional
insight into these hypotheses, we also evaluated
whether C pools in the organic horizon varied
independently of C pools in mineral soils.

Methods

Replicate monoculture plantations of 14 tree species
were established in 1970 and 1971 near Siemianice,
Poland (51°14.87'N, 18°06.35’; mean annual pre-
cipitation is 591 mm; mean annual temperature is
8.2 °C; soils formed on glacial outwash with less than
10 % clay in the upper 20 cm of mineral soil). Prior to
planting, the site was prepared by clear-cutting an
~ 80-year-old Pinus sylvestris L. stand with subse-
quent stump removal and plowing, typically to a depth
of 30—40 cm. Ten tree species were planted in three
plots and four species in six plots (20 x 20 m), with
plots distributed in two adjacent blocks (Reich et al.
2005). Trees were planted in 1 m intervals (400
individuals per plot). Planted species included eight
deciduous angiosperms, five evergreen gymnospermes,
and one deciduous gymnosperm (Fig. 1). Thirty years
after planting, basal area ranged from ~6 to
36 m” ha=2? (Reich et al. 2005). One plot for Abies
alba was excluded from sampling and analysis due to
high initial tree mortality. When sampling litter, soils,
roots and soil biota, areas within several meters of a
plot boundary were avoided so that each sample was
more representative of the tree species planted in each
plot. Based on spatially dispersed sampling in each
plot (Reich et al. 2005), on average 14 % of leaf
litterfall (SD = 13 %) was derived from unplanted
species (e.g. from tree species planted in adjacent
plots) and only 6 plots had more than 30 % of annual
leaf litterfall attributed to unplanted species.

In 2002, ~32 years after planting, organic and
mineral soil horizons were sampled in all plots as
described by Hobbie et al. (2007). Organic horizons
were sampled in their entirety, including O;, O, and
O, horizons, at three locations per plot. The upper
100 cm of mineral soil was sampled by genetic
horizon via large soil pits (I m wide x 1.8 m
long x 2 m deep; 1 per plot). Soil samples were
collected across the horizontal extent of each genetic
horizon in the pit and then composited for each
horizon. The depth and bulk density of each genetic
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Fig. 1 Organic carbon (OC) pools are shown separately for the
organic horizon (black bars) and upper 20 cm of mineral soil
(red bars) in the top panel (error bars show SE). The middle
panel shows the combined OC pool that includes the organic
horizon and the upper 20 cm of mineral soil. The bottom panel
shows the percent of the combined OC pool that is present in the
organic horizon. According to ANOVA models, plantations of
different tree species varied significantly (P < 0.001) with
respect to OC in the organic horizon, the combined OC pool
including the organic horizon and upper 20 cm of mineral soil,
and the percent of the combined OC that was present in the
organic horizon. Tree species was also a significant factor
(P < 0.003) when combining C pools in the organic horizon
with the upper 60 cm of mineral soil (not shown). (Color figure
online)

horizon was used to estimate the pools of organic C
and other elements to depths of 20 and 60 cm below
the transition from organic to mineral soil (Dauer et al.
2007; Mueller et al. 2012). There was more variability
among tree species for the pool of organic C in the
organic horizon as compared to that in mineral soils
(Fig. 1). Vesterdal et al. (2013) noted this pattern is
typical of other common garden experiments, perhaps
because of the longer mean residence time of organic
C in mineral soils or increased spatial variability with
soil depth. However, there was still substantial vari-
ability among tree species for the combined soil

@ Springer

organic C pool that included both organic and mineral
horizons (Fig. 1).

We evaluated ~ 100 potential predictors of vari-
ability in soil C pools; most potential predictors were
measured between 1999 and 2006 and the methods
and data have been previously published (Table 1,
Online Resource 1). Decomposition rates of leaf litter
and fine roots were estimated from mass loss rates
(k) derived from overlapping litterbag studies (~ 2 and
1.5 year, respectively; Hobbie et al. 2006, 2010). The
abundances of individual base cations in leaf litter,
roots, and soils were not considered as predictors for
several reasons. First, in acidic soils such as at our
study site (pH < 5.2 in the upper 20 cm of mineral
soil), hydrolyzing cations such as Al and Fe are more
likely to play a role in complexation and stabilization
of organic matter than base cations (Mueller et al.
2012), such that direct, causative links between base
cation abundance and soil C stabilization are not
expected. Second, previous studies at this site show
the abundance of base cations, particularly calcium,
covaries tightly with earthworm abundance and soil
pH, which are expected to be directly related to
variation in soil C pools (Reich et al. 2005; Mueller
et al. 2012). Thus, due to multicollinearity issues,
inclusion of base cations as potential predictors of
variability in soil C pools could hinder our ability to
quantify the role of factors more directly related to soil
C pools and to our hypotheses. However, we discuss
the role of base cations when relevant in the Results
and Discussion. All variables were screened for
normality and transformed when necessary by a
square-root or log transformation.

We used best subsets regression in R (Lumley
2009) to identify predictors of the mass of organic C
contained in the organic horizon, the upper 20 cm of
mineral soil, and the combined organic horizon and
mineral soil (from this point forward, we refer to this
as the combined soil C pool). We focused on the upper
20 cm of mineral soil because this depth increment
falls entirely within the plowing depth, such that tree
species effects below the upper 20 cm of mineral soil
are more likely to be confounded with variability in
plowing depth. However, for comparison, we also
analyzed the combined soil C pool based on the upper
60 cm of mineral soil. Consistent with the informa-
tion-theoretic approach and similar to Goodenough
et al. (2012), we compiled information from a subset
of regression models (42 models), rather than
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identifying one or few best models. To limit multi-
collinearity and make the model output practical, we
evaluated models with a maximum of 7 predictors. We
also took a markedly conservative approach to mul-
ticollinearity by removing models from consideration
if any predictor had a variance inflation factor (VIF)
greater than 2.5. A low VIF cutoff is useful because it
prevents correlated predictors from frequently co-
occurring in models, allowing a broader evaluation of
predictors. Regardless, few models were excluded due
to VIFs. To compare predictors, each was ranked
according to its frequency of occurrence in the best 42
models (6 models of each size up to 7 predictors per
model) and the average standardized beta coefficient
across the best 42 models was calculated for each
predictor (Bring 1994). We focused on the best 6
models of each model size because a comparison of
the Bayesian Information Criterion (BIC) across
models showed that differences among models were
minimal beyond the best 6 models of each size. The
average BIC of the best six models with n + 1
predictors was always at least 2 BIC units lower than
the average of the best six models with n predictors.
For each of the best models, leverage plots of each
predictor and residual plots were checked for issues
related to outliers and heteroskedasticity.

Results and discussion

Consistent with our prior studies at this site (Reich
et al. 2005; Hobbie et al. 2006, 2007; Mueller et al.
2012), the combined soil C pool was negatively
related to earthworm abundance and positively related
to metrics of mineral soil acidity, especially exchange-
able Fe and total acidity (including Al, Fe, and
protons; Tables 2, 3). According to their frequency in
the best models and standardized beta coefficients,
earthworm abundance and mineral soil acidity were
the most important predictors of the combined soil C
pool. All of the best 36 multiple regression models (i.e.
models with more than one predictor) contained one,
but never more than one, predictor associated with
earthworm abundance (Table 2). Similarly, at least
one metric of soil acidity was included in each of the
best 36 multiple regression models (Table 2). Togeth-
er, earthworm abundance and mineral soil acidity
explained about half of the variance in the combined
soil C pool (see models with two predictors in

Table 2), highlighting the potential to reveal addition-
al mechanisms through which tree species can impact
soil C pools.

Leaf litter traits

After accounting for earthworm abundance and min-
eral soil acidity, several leaf litter traits were sig-
nificantly correlated with the combined soil organic C
pool, including aspects of litter quality, the annual
litterfall flux, and litter decomposition rates (estimated
as short-term litter mass loss rates given by k). Nearly
25 % of best models identified a negative relationship
between leaf litter decomposition rates and the size of
the combined C pool (Table 2); 14 % of models
included k¥ measured in a common plot (isolating
effects of litter quality), 8 % of models included & of a
common litter (Acer pseudoplatanus) placed in all
plots (isolating effects of soil microclimate, soil
chemistry, and soil organisms), and 5 % of models
included k measured by placing the litter of each tree
species onto soil beneath the same species (allowing
for effects of both litter quality and soil properties).
Leaf litter decomposition rates measured in a common
plot were also negatively related to the C pool in the
organic horizon (32 % of best models; Table 3). This
quantitative link between litter decomposition rates
and soil C pools, which has not been reported
previously, provides support for the common assump-
tion among ecologists that litter decomposition rates
estimated in litterbag studies have consequences for
soil C stocks. A negative relationship between litter
decomposition rates and soil organic C stocks is,
however, partly inconsistent with the more recent
conceptualization of Cotrufo et al. (2013). Tree
species with high leaf litter decomposition rates likely
had negative effects on soil organic C pools due to
greater mineralization of litter-derived C by soil
organisms and/or leaching of dissolved organic C
derived from litter. However, as described below, the
potential negative effects of litter decomposition rates
on soil C stocks might be partly mitigated by retention
of dissolved organic C or microbial-derived C in soil;
perhaps this explains the somewhat lower f coeffi-
cients observed for litter mass loss rates as compared
to other predictors (Tables 2, 3).

The size of the combined soil C pool was also
negatively related to the ratio of recalcitrant compounds
to N in leaf litter (43 % of best models) and the
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Fig. 2 Predicted values and leverage plots of individual
predictors from a representative regression model of the
combined soil organic C pool (including the organic horizon
and the upper 20 cm of mineral soil). This model, marked as 6*
in Table 2, was selected because it was the simplest model that
included leaf litter decomposition rates as a predictor as well as
the ‘best’ predictors related to soil acidity, soil biota, and litter

concentration of recalcitrant compounds in leaf litter
(5 % of best models; we define recalcitrant as non-
hydrolyzable in strong acid), but the combined soil C
pool was positively related to the concentration of
cellulose in leaf litter (35 % of best models; Table 2).
Fungi likely dominate cellulose decomposition (Strick-
land and Rousk 2010; Koranda et al. 2014); thus for tree
species with more cellulose in leaf litter, a greater
fraction of litter-derived C is likely funneled through
fungal-based energy channels, with potential conse-
quences for retention of litter-derived C in soils (see
below). Although “lignin” to N ratios are often strongly
correlated with litter decomposition rates (Prescott
2010), in our study the recalcitrant compound to N ratio
of leaf litter was only weakly negatively correlated with
litter decomposition rates (R* = 0.05, P = 0.13 in
“home” soils; R® = 0.14, P = 0.006 in a common
plot); consequently, instead of reflecting an effect on
decomposition rates, the effect of this ratio on com-
bined soil C pools is likely related to the fate of litter C

quality (according to their frequency of inclusion in the best 42
models of the combined soil organic C pool; Table 2). For L.
terrestris presence, 0 = absent and 1 = present. Leverage plots
show the relationship between each predictor and the dependent
variable, using the residuals of both the predictor and the
dependent variable (based on regression with the other
predictors)

during or after decomposition by soil organisms. It is
probable that a greater fraction of leaf litter C was
mineralized to CO, during microbial decomposition of
litter with high recalcitrant compound to N ratios: the C
use efficiency of microbes is lower for complex C
substrates such as lignin (more CO, and less microbial
biomass are produced per mass of C substrate me-
tabolized), and the C use efficiency of microbes also
decreases as the ratio of C to nutrients increases in
substrates (Keiblinger et al. 2010; Manzoni et al. 2012;
Koranda et al. 2014).

Finally, annual leaf litterfall mass was positively
correlated with the combined soil C pool (14 % of best
models; Table 2) and its standardized f§ coefficient
was similar in magnitude compared to predictors
related to litter quality (Tables 2, 3). Vesterdal et al.
(2013) noted that, across studies, a relationship
between litterfall flux and soil organic C pools was
not always apparent, likely because of limited vari-
ability of litterfall fluxes among tree species. The
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annual leaf litterfall flux varied substantially among
species in our study, from 1152 kg ha™" for Abies alba
to 6225 for Quercus rubra.

Fine root traits

None of the measured fine root traits were frequently
included in the best models of the organic C pool in the
organic horizon, the upper 20 cm of mineral soil, or the
organic horizon combined with the upper 20 cm of
mineral soil (Tables 2, 3; Online Resource 2). This is
somewhat surprising given: (i) considerable variability
among plots and species with respect to root abundance,
chemical composition, and decomposition rate (Table 1,
Withington et al. 2006; Hobbie et al. 2010) and (ii) the
hypothesis that root-derived C is preferentially stabilized
in mineral soils due to the proximity of roots to mineral
surfaces and aggregates that can protect organic matter
from microbial metabolism (Rasse et al. 2005; Schmidt
etal. 2011). However, measured decomposition rates of
fine roots (Hobbie et al. 2010) are perhaps not represen-
tative of actual rates because: (i) the conditions in
litterbags are unlike undisturbed soils, where roots
decompose in closer proximity with soil minerals and
interactions with mycorrhizal fungi and other organisms
are undisturbed (Dornbush et al. 2002), and (ii) fine roots
(<2 mm diameter) include a wide range of root orders
with different rates of mortality and decomposition
(Goebel et al. 2010). Regarding root chemical “quality”,
we previously reported that root N concentrations were
positively correlated with mineral soil acidity due to
positive effects of root N on N transformations and
losses that generate protons (Mueller et al. 2012); thus,
root N was likely not included in our best models due to
its correlation with soil acidity. We do not have an
explanation for the lack of other apparent effects of root
chemical composition. Across the 14 tree species in this
study, fine root chemical traits were typically not
significantly correlated with leaf litter chemical traits
(Hobbie et al. 2010), so covariance of leaf litter and root
traits does not explain the lack of apparent effects of root
chemical traits.

Interestingly, for the combined organic C pool
integrated to a depth of 60 cm in the mineral soil, we
identified a positive relationship between root phos-
phorus concentrations and the size of the combined C
pool (Table 3). This could indicate that the relative
importance of root traits increases with depth in the
soil profile, as would be expected given decreasing

inputs of leaf-litter derived C with depth. The C use
efficiency of microbes, and particularly bacteria, has
been shown to increase with increasing substrate P
(Keiblinger et al. 2010; Manzoni et al. 2012), such that
a greater fraction of root-derived C is perhaps retained
in soils during decomposition of roots with high P. The
sensitivity of microbial C use efficiency to P might
increase with soil depth because the abundance of
bacteria relative to fungi can increase with depth in
forest soils (Leckie 2005); this could further explain
why effects of root P concentrations were not apparent
for C pools in the organic horizon, the upper 20 cm of
mineral soil, or the combination of these horizons.
With the exception of this difference, regression
results were very similar for the combined organic C
pools integrated over different depths of the mineral
soil (to 20 versus 60 cm, Table 3).

Soil biota

The combined soil organic C pool was negatively
related to the abundance of nematodes that feed on
bacteria (38 % of best models; Table 2). This suggests
that less C is stored in soils beneath tree species that
foster bacterial dominated food webs, an interpretation
that is consistent with other studies (Strickland and
Rousk 2010; de Vries et al. 2013) and other observa-
tions from this study. Specifically, the ratio of fungal
to bacterial PLFAs was positively related to the C pool
in the organic horizon (20 % of the best models) and in
the combined soil C pool (3 % of best models;
Table 3). Here, as in other studies, it is uncertain
whether the link between fungal dominance and
higher soil C pools is causative and, if it is, what
mechanism underlies the pattern (Strickland and
Rousk 2010). Two plausible explanations for this
pattern are a possibly higher C use efficiency of fungi
as compared to bacteria (but see Strickland and Rousk
2010 and Six et al. 2006) and a potentially greater
stabilization potential for fungal biomass and byprod-
ucts as compared to bacterial biomass and byproducts.

Few of the best regression models included predic-
tors that describe soil biodiversity (Tables 2, 3; Online
Resource 2). The absence of apparent effects of soil
biodiversity could be due to an incomplete survey of soil
taxa (e.g. enchytraeids and wood lice were not sampled),
limitations of the methodology used for surveys (e.g. for
some taxa we lack data on abundance and functional
composition), or covariance of diversity metrics with
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other predictors. Total species richness of soil animals
was positively correlated with soil temperature
(P < 0.002, R’ = 0.20) and biomass of the earthworm
Dendrobaena octaedra (P < 0.001, R? = 0.22), which
were both negatively related to the combined soil C pool
(Tables 2, 3). Likewise, species richness of ectomycor-
rhizal fungi was positively correlated with the decom-
position rate of Acer leaf litter in all plots (P < 0.01,
R’ = 0.13), which was negatively related to the com-
bined soil C pool (Tables 2, 3). Thus, it is possible that
there were negative relationships between soil biodi-
versity and the combined soil organic C stocks that were
masked by covariance of soil biodiversity with other
predictors.

The vertical distribution of soil organic C

The size of the C pool in the organic horizon was not
correlated with the size of the C pool in either the top 20
or top 60 cm of mineral soil (R2 < 0.1 and P > 0.25),
regardless of whether correlations were assessed using
plots (n = 53) or species means (n = 14). This is likely
a consequence of three characteristics of our ex-
periment as elaborated below: (i) the composition of
the earthworm community, (ii) the primary mechanism
of organic matter stabilization in mineral soils, (iii) and
the lack of correlations among key litter traits across
tree species.

In our experiment, the dominance of anecic earth-
worms and dearth of endogeic species probably
contributed to the lack of an inverse correlation
between organic C pools in the organic and mineral
horizons. The most abundant earthworm at our site
was the anecic species Lumbricus terrestris (max-
imum biomass observed was 10 g m™?); its presence
was negatively related to combined soil organic C
stocks (78 % of best models; Table 2). Anecic earth-
worms consume large quantities of leaf litter and the
leaf litter C that is not mineralized or converted to
earthworm biomass is likely concentrated within
earthworm middens on the soil surface or within
permanent vertical burrows in the mineral soil (Brown
et al. 2000; Wilcox et al. 2002; Curry and Schmidt
2007; Don et al. 2008). If L. terrestris middens or
burrows were under-sampled during soil sampling, the
soil C pool could be underestimated in plots with
higher L. terrestris densities, but the impact would
likely be minimal because the mass of midden and
burrow soil per m? is small relative to the rest of the

@ Springer

soil matrix. The second most abundant earthworm
across plots was the epigeic (surface dwelling) species
Dendrobaena octaedra (maximum observed biomass
was 0.23 g m~2). The presence of D. octaedra was
negatively related to the size of the organic C pool in
mineral soil and the combined organic and mineral
soils (Table 3; note the smaller /5 coefficient compared
to L. terresris presence). Total earthworm biomass
was included in the best models of soil C pools more
frequently than biomass of L. terrestris alone
(Table 3), providing further evidence for a potential
effect of D. octaedra. Neither L. terrestris nor D.
octaedra are associated with widespread mixing of
organic and mineral soil matrices, such that earthworm
utilization of litter-derived C at this site likely causes a
net loss of litter-derived C and minimal transfer of
litter-derived C to mineral soils. Endogeic species,
which can increase mixing of organic and mineral
horizons (Edwards and Bohlen 1996), were much less
abundant when present (maximum biomass of Apor-
rectodea spp. was 0.08 g m™?).

An inverse relationship between C pools in the
organic and mineral horizons is perhaps more likely to
occur when microbial-derived C is selectively stabi-
lized in mineral soils, allowing the positive effect of
litter quality on microbial C use efficiency to further
counteract the positive effect of litter quality on
decomposition (i.e. allowing retention of microbial C
produced during leaf litter decomposition to further
counterbalance mineralization of litter C). Preferential
stabilization of microbial C is more likely to occur in
fine-textured soils due to the increased abundance of
microaggregates and clay-surfaces (Plaza et al. 2013;
Cotrufo et al. 2013). Our site has sandy soils
dominated by particulate organic matter (across plots,
particulate organic matter accounted for 66 % of
organic C in the upper 20 cm; K. E. Mueller unpub-
lished). Thus, our site likely has limited capacity for
selective retention of microbial C.

The effect of tree species on the vertical distribution
of soil organic C also appeared to be dependent on the
nature of relationships among various traits that define
litter quality. Earthworm biomass at our site is closely
correlated with variability of calcium concentrations in
leaf litter among tree species (Reich et al. 2005), such
that consumption of leaf litter, and litter depolymer-
ization and subsequent mineralization, is likely deter-
mined to a great extent by the amount of calcium in leaf
litter (Hobbie et al. 2006). However, the C use
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efficiency of leaf litter decomposers is likely more a
function of substrate complexity and C:N ratios, as
indicated by the negative relationship between the
combined soil C pool and the ratio of recalcitrant
compounds to N in leaf litter (Tables 2, 3). Finally,
stabilization of organic C in mineral soils at our site
appears to be limited by the availability of Al and Fe,
which is likely influenced more by root N concentra-
tions (and subsequent N transformations) than other
litter traits (Mueller et al. 2012). Notably, root N
concentrations were not correlated with leaf litter Ca
concentrations (P > 0.25, R’ < 0.07; among species
and among plots) or the ratio of recalcitrant compounds
to N in leaf litter (P > 0.80, R’ < 0.01). Further, leaf
litter Ca was only modestly negatively correlated with
the ratio of recalcitrant compounds to N in leaf litter
(P=0.1, R?> =021 across species; P = 0.005,
R? = 0.15 across plots). Thus, three different aspects
of litter quality apparently had largely independent
impacts on the three most important phases of litter C
dynamics, namely litter consumption and depolymer-
ization, conversion of litter-derived C to CO, and
biomass of decomposers, and stabilization of plant and
microbial-derived C in mineral soils.

Further consideration of Vesterdal’s results (2008)
reinforces our interpretation of how site conditions
constrain the nature of tree species effects on
combined soil organic C pools and their vertical
distribution (see also Prescott and Vesterdal 2013). In
that study, which included several of the same tree
species, the primary factor influencing litter decom-
position rates and microbial C use efficiency was
apparently the same (leaf litter C:N) and the average
clay content of soils was higher. We hypothesize that
these conditions allowed the negative effect of litter
quality on organic horizon C stocks (mediated by
positive effects of litter quality on losses of litter-
derived C during decomposition) to be counteracted
by the positive effect of litter quality on mineral soil C
stocks (mediated by positive effects of litter quality on
microbial C use efficiency and subsequent retention of
microbial-derived C on clay surfaces).

Conclusions

Our results are partly consistent with the hypothesis
that high plant litter quality has a positive effect on soil

C sequestration via positive effects on microbial C use
efficiency. Yet, the complexity of the observed litter
quality effects on soil organic C pools suggests that
current conceptual models of litter quality impacts on
soil C are overly simplistic. Specifically, we suggest
that conceptual models need to better account for
positive effects of litter quality on two factors with
potentially counteracting impacts on soil C: microbial
C use efficiency and the rate at which microbes and
soil fauna consume and depolymerize litter (as partly
reflected in litter mass loss rates, which were negative-
ly related to soil C stocks in our study). Conceptual
models should also consider effects of litter quality on
the capacity for organic matter stabilization (e.g. by
modifying soil pH, the abundance of polyvalent
cations, or soil aggregation). Across sites, we suggest
the net effect of litter quality on soil organic C pools
depends on the composition of the soil microbial
community, the nature of variance and covariance
among litter quality traits (including root traits), and
the characteristics of the dominant mechanisms of C
stabilization in soil at each site (determined in part by
soil texture). To better predict how tree species
composition impacts soil organic C pools, yielding
more accurate estimates of forest C budgets, future
research must address the context-dependency of
relationships between soil C pools and variability in
litter quality, litter inputs, soil biota, and soil proper-
ties. This will require that data of similar scope as in
our study (Table 1) be collected and analyzed at
multiple common garden experiments (or similarly
constrained field studies), with the data collectively
encompassing common soil types and tree species.
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