Title
Essays in International Finance and Macroeconomics

Permalink
https://escholarship.org/uc/item/5hc0b3z1

Author
Maggiori, Matteo

Publication Date
2012

Peer reviewed|Thesis/dissertation
Essays in International Finance and Macroeconomics

by

Matteo Maggiori

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in

Business Administration

in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Martin Lettau, Co-chair
Professor Pierre-Olivier Gourinchas, Co-chair
Professor Nicolae Gârleanu
Professor Maurice Obstfeld
Professor Andrew Rose

Spring 2012
Essays in International Finance and Macroeconomics

Copyright 2012
by
Matteo Maggiori
Abstract

Essays in International Finance and Macroeconomics

by

Matteo Maggiori
Doctor of Philosophy in Business Administration
University of California, Berkeley

Professor Martin Lettau, Co-chair
Professor Pierre-Olivier Gourinchas, Co-chair

This dissertation explores the relationship between international financial markets, financial frictions, and the real economy. In particular, the dissertation focuses on the role of the United States of America (US) as the key country in the global financial architecture. The research presented here advances the study of international finance and macroeconomics by analyzing how the combination of two factors, the greater financial development of the US and financing frictions, leads to the special global roles of the US funding markets and the US dollar.

In the first Chapter of the dissertation, I develop a model of financial intermediation in a closed economy, which is also the key building block of the open economy analysis in the second Chapter. In an economy with savers and financial intermediaries where financing frictions are present, the state of the financial sector becomes the key state variable. The financing frictions, modeled as the limited enforceability of deposit contracts, prevent capital from flowing freely from savers to the financial intermediaries that ultimately allocate capital to productive real assets. When financial intermediaries are well capitalized, their capital acts as a safety buffer for potential investment losses and, consequently, financing frictions are alleviated. In this state of the world, financial markets closely resemble those of the standard frictionless asset pricing framework. When, on the other hand, intermediaries are poorly capitalized, concerns for potential losses of capital disrupt the financing markets. In this state of the world, capital does not flow smoothly from savers into productive assets via financial intermediaries. In general, risky assets’ prices fall and their volatility increases, thus replicating typical features of financial crises. Interestingly, these effects are highly non-linear.

In the second Chapter, I provide a framework for understanding the global financial architecture as an equilibrium outcome of the risk sharing between countries with different levels of financial development. The country that has the most developed financial sector takes on a larger proportion of global fundamental and financial risk because its financial intermediaries are better able to deal with funding problems
following negative shocks. This asymmetric risk sharing has real consequences. In good times, and in the long run, the more financially developed country consumes more, relative to other countries, and runs a trade deficit financed by the higher financial income that it earns as compensation for taking greater risk. During global crises, it suffers heavier capital losses than other countries, exacerbating its fall in consumption. This country’s currency emerges as the world’s reserve currency because it appreciates during crises and so provides a good hedge. The model is able to rationalize these facts, which characterize the role of the US as the key country in the global financial architecture.

In the third Chapter, I provide empirical evidence on the role of the US dollar as a global safe asset. This empirical evidence provides one of the stylized facts analyzed in my theoretical work. I show that the US dollar earns a safety premium versus a basket of foreign currencies and that this premium is particularly high in times of global financial stress. These findings support the view that the dollar acts as the reserve currency for the international monetary system and that it is a natural safe haven in times of crisis, when a global flight to quality toward the reserve currency takes place. During such episodes, investors are willing to earn negative expected returns as compensation for holding safe dollars. I estimate the time varying dollar safety premium by using instrumental variable techniques to condition information down.
Contents

List of Figures iii

List of Tables iv

1 Financial Intermediation and Asset Prices 1
 1.1 Autarky: the Banking Economy 2
 1.1.1 Optimal Consumption and Investment 5
 1.1.2 Equilibrium 7
 1.2 Summary Remarks 13

2 Financial Intermediation, International Risk Sharing, and Reserve Currencies 14
 2.1 Open Banking Economy: Single World Tree 18
 2.1.1 Optimal Consumption and Investment 20
 2.1.2 Equilibrium 21
 2.2 Open Banking Economy: Two Trees 26
 2.2.1 Optimal Consumption and Investment 29
 2.2.2 Equilibrium 30
 2.3 Summary Remarks 35

3 The US Dollar Safety Premium 36
 3.1 Theory 39
 3.2 Data 42
 3.3 Empirical Identification 43
 3.3.1 Choice of Instruments 45
 3.4 Empirical Results: the US Dollar Safety Premium 46
 3.4.1 The Average Safety Premium 46
 3.4.2 Predictability of Currency and Equity Returns: Zero Stage Regressions 47
 3.4.3 Time Varying Conditional Covariances: First Stage Regressions 48
3.4.4 Time Varying US Dollar Safety Premium: Second Stage Regressions .. 49
3.5 Summary Remarks .. 50

Bibliography ... 52
Appendix ... 60
A Proofs .. 60
B Numerical Solution Methods .. 72
C GMM Estimation Details .. 76
List of Figures

1.1 Autarky Equilibrium: Converges to Lucas Equilibrium 83
1.2 Autarky Equilibrium: Interior Stochastic Steady State 84
1.3 Autarky Equilibrium: Stochastic Steady State 85
1.4 Autarky Equilibrium: Stationary Distribution 86
2.1 US External Balance Sheet: 2007 87
2.2 Asset Class Composition of US External Assets and Liabilities 88
2.3 Currency Composition of US External Assets and Liabilities 88
2.4 US Dollar Safety Premium .. 89
2.5 Open Economy Equilibrium, Single Tree: Allocations 90
2.6 Open Economy Equilibrium, Single Tree: Asset Prices 91
2.7 Open Economy Equilibrium, Two Trees, No Domestic Bias: Allocations 92
2.8 Open Economy Equilibrium, Two Trees, No Domestic Bias: Asset Prices 93
3.1 Equity Total Return Indices: World and Developed 94
3.2 Exchange Rate Spot Indices: World and Developed 95
3.3 Interest Rate Differential Indices: World and Developed 96
3.4 Mean US Dollar Safety Premium Rolling Window: Start Date to 2010 97
3.5 Mean US Dollar Safety Premium Reverse Rolling Window: 1970 to End Date .. 98
3.6 Ex Post Covariance \(\tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) \): World Index 99
3.7 Ex Post Covariance \(\tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) \): Developed Index 100
3.8 Conditional Covariance \(\overline{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) \): World Index 101
3.9 Conditional Covariance \(\overline{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) \): Developed Index 102
3.10 95% Confidence Band for Conditional Covariance: World Index 103
3.11 95% Confidence Band for Conditional Covariance: Developed Index . 104
3.12 US Dollar Safety Premium(SP_t): World Index April 1975 - March 2010105
List of Tables

3.1 US Dollar Mean Safety Premium .. 77
3.2 Zero Stage Regressions: Equity Returns and Exchange Rate Changes 78
3.3 First Stage Regressions ... 79
3.4 Instruments Theoretical Sign Predictions 80
3.5 Second Stage Regressions .. 81
3.6 Episodes of Crisis .. 82
Acknowledgments

A Gioia, grazie di tutto.

I am deeply indebted to my dissertation committee members Nicolae Gărleanu, Pierre-Olivier Gourinchas, Martin Lettau, Maurice Obstfeld, and Andrew Rose. They are all exceptional mentors and advisors.

I thank all my fellow PhD program colleagues at Haas and in the Economics Department.

I am particularly grateful to Javed Ahmed, George Akerlof, Nicolas Coeurdacier, Francesco D’Acunto, Andres Donangelo, Barry Eichengreen, Rick Fernholz, Robert Goldstein, Yuriy Gorodnichenko, Paulo Issler, Mauricio Larrain, Richard Lyons, Ulrike Malmendier, Atif Mian, Pratish Patel, Alexandre Poirier, Demian Pouzo, Nishanth Rajan, Hélène Rey, Israel Romem, and Michael Weber for all their help and useful discussions.

I would also like to thank Kim Guilfoyle and June Wong for their invaluable administrative help over the past five years.

I gratefully acknowledge the Fondazione Luigi Einaudi, Associazione Borsisti Macro Fanno, White Foundation, UC Berkeley Institute of Business and Economic Research, and the UC Berkeley Clausen Center for financial support.
Chapter 1

Financial Intermediation and Asset Prices

Financial intermediaries, such as banks and hedge funds, play a crucial role in determining asset prices. Intermediaries transfer funds from savers to productive real assets; if financial intermediation is frictionless, intermediaries have no pricing or real effects on the economy. If, instead, financial intermediation is affected by frictions, intermediaries have significant pricing and real effects. In particular, in times of crisis or financial panic, the state of the financial sector is an important factor in explaining the fall and high volatility of asset prices.

In this Chapter, I provide a closed endowment economy with a financial sector where intermediaries’ capitalization is the key state variable for explaining asset prices. Intermediaries raise capital from savers in the form of deposits, and allocate it to risk assets. If there are no financing frictions, the economy behaves identically to the benchmark asset pricing model of Lucas (1978). When financing frictions are introduced, in the form of the limited enforceability of deposit contracts, they can prevent capital from flowing freely from savers to financial intermediaries. When financial intermediaries are well capitalized, their capital acts as a safety buffer for potential investment losses and, consequently, financing frictions are alleviated. In this state of the world, financial markets closely resemble those of the standard frictionless asset pricing framework. When, on the other hand, intermediaries are poorly capitalized, concerns for potential losses of capital disrupt the financing markets. In this state of the world, capital does not flow smoothly from savers into productive assets via financial intermediaries.

The model is able to replicate both benign periods, with high asset prices and low volatility, and periods of crisis, with falls in risky asset prices and increases in volatility. Interestingly, the effects are highly non-linear. When the economy is hit by a negative shock, intermediaries suffer a capital loss due to a vicious feedback loop that amplifies the initial shock. As a first step, declines in the prices of risky assets, which intermediaries hold, result in a corresponding decline in intermediaries’ capital.
This triggers intermediaries’ attempts to sell the risky assets in order to protect their capital from possible additional losses, which in turn further depresses asset prices and causes even greater capital losses. This amplification mechanism is responsible not only for the increase in volatility during crises, but also for the endogenous instability of the financial sector, as negative shocks are amplified more than positive shocks.

The closed economy model in this Chapter contributes to the study of the implications of the financial sector for macroeconomics and finance, in the tradition of Bernanke and Gertler (1989) and Kiyotaki and Moore (1997). The study of financial intermediation frictions in macroeconomics and finance has attracted renewed attention following the recent financial crisis, with contributions such as: Fostel and Geanakoplos (2008); Simsek (2009); Kurlat (2009); He and Krishnamurthy (2010); Brunnermeier and Sannikov (2010); Gărleanu and Pedersen (2011).

In particular, my model adapts the modeling of financial intermediation of Gertler and Kiyotaki (2010)\(^1\) to a continuous-time endowment-economy framework. These modifications allow me to provide global solutions,\(^2\) analyze risk premia, and characterize both the stochastic steady state and the stationary distribution of wealth. The global solutions, which are analytical up to the solution of a system of two ordinary differential equations (ODEs), show that the equilibrium has substantial non-linearities that cannot be readily analyzed by log-linearizing around the deterministic steady state. This solution method will also allow me to exactly characterize the international portfolios in the open economy models analyzed in Chapter 2.

1.1 Autarky: the Banking Economy

The output of the economy is determined by a tree with stochastic dividend process

\[
\frac{dY(t)}{Y(t)} = \mu \, dt + \sigma \, dz(t),
\]

where \(z(t)\) is a standard Brownian motion,\(^3\) and \(\mu\) and \(\sigma\) are constant.

The set-up of financial intermediation is a continuous time adaptation of Gertler and Kiyotaki (2010). The economy is populated by a continuum of measure one of households. Each household consists of a continuum of measure one of family members, or agents, of which a fraction \(\beta \in (0, 1)\) are savers and a fraction \(1 - \beta\)

\(^1\)This paper builds on the work of Gertler and Karadi (2011) and Kiyotaki and Moore (2008).

\(^2\)“Global” refers to solving the equations that characterize the equilibrium of the model for the entire range of the state variables, rather than solving them by a log-linear approximation of the model around the non-stochastic steady state.

\(^3\)The Brownian motion is defined on a complete probability space and generates a filtration \(\mathcal{F}\). Throughout the Chapter 1 and 2, “adapted process” means \(\mathcal{F}(t)\) adapted. For brevity, I state all results without explicitly referencing the regularity conditions necessary for the applications of stochastic calculus. Where necessary, some regularity conditions are explicitly verified in the proofs in Appendix A.
are financiers. All agents, both savers and financiers, have logarithmic utility and identical rate of time preferences. Each financier within a household manages a financial intermediary; these are all, in turn, owned by the household. Savers deposit funds with these financial intermediaries.

By assumption, there is perfect consumption insurance within each household because all agents pay out their earnings to be shared equally across the entire household. This assumption, combined with an application of the law of large numbers across households, allows for the construction of the representative agent.

In order to create a meaningful role for financial intermediation, I assume that only financiers, through their financial intermediaries, can hold shares in the output tree. Savers can only deposit funds with financial intermediaries and they receive a pre-determined return $r_d(t)$.

The saver’s problem, therefore, is to choose how much to consume and how much to deposit with the financial intermediaries:

$$\max_{\{C(u)\}_{u=t}} E_t \left[\int_t^\infty e^{-\rho(u-t)} \log(C(u)) du \right]$$ \hspace{1cm} (1.2)

s.t. $dD(t) = [r_d(t)D(t) - C(t)]dt + \Pi(t)dt$,

where D is the aggregate savers’ deposits and Π is the aggregate net transfers from the financiers, described later. Because the economy has a representative agent, I directly write the saver’s optimization problem in terms of aggregate quantities. Throughout Chapter 1 and 2, upper-case letters denote aggregate quantities, while lower-case letters denote individual agents’ quantities. In addition, I use the equilibrium outcome of no default on deposits to directly write the dynamics of the deposit account as being risk free.

Financiers can use their own capital and the deposits that they have raised to invest in the risky asset. The balance sheet of a financial intermediary is $Q(t) = n(t) + d(t)$, where $s(t)$ is the number of shares of the output tree owned by the financial intermediary, $Q(t)$ is the price of the output tree, and $n(t)$ is the financial intermediary’s net worth. The stock price dynamics follow the continuous diffusion process

$$\frac{dQ(t)}{Q(t)} + \frac{Y(t)}{Q(t)} dt = \mu_Q(t) dt + \sigma_Q(t) dZ(t).$$

The drift and volatility terms need to be solved for in equilibrium.

Financiers face a credit constraint, which requires that the value of the financial intermediary that they manage remains positive. To motivate this constraint, I in-

4A number of papers motivate this assumption by developing micro-foundations where monitoring problems make it inefficient for savers to directly hold assets. These papers delegate the asset management problem to financial intermediaries in equilibrium. I follow Gertler and Kiyotaki (2010) in directly assuming that an unmodelled monitoring problem prevents savers from directly holding assets.
roduce an incentive compatibility problem. Financiers can walk away from their financial intermediary; if this occurs, the financial intermediary is wound down and its depositors recover the value of the financial intermediary’s assets: $s(t)Q(t)$\footnote{More precisely, savers receive $\min\{s(t)Q(t), d(t)\}$, with excess funds, if any, being returned to the financier’s household. In equilibrium, however, the financier has no incentive to walk away from the financial intermediary if its deposits can be fully recovered, so the simplified formulation is adopted in the main text.}

Savers only deposit funds with financial intermediaries owned by other households. In particular, they spread their deposits sufficiently across the financial intermediaries owned by the various households to allow the law of large numbers to hold\footnote{To motivate this assumption one can think of a set-up with idiosyncratic risk in each intermediary, such that savers want to diversify their deposits across intermediaries, and then let this risk shrink to zero.}. This allows a simple aggregation of the model, while still maintaining a meaningful incentive for financiers to walk away from negative net worth financial intermediaries. In short, the incentive compatibility problem provides the micro foundations for a credit constraint.

Since financiers and savers have identical utility functions, there are no incentives for financiers to pay dividends from their financial intermediaries. Instead, financiers would choose to accumulate capital and their financial intermediaries would “grow out” of the credit constraint. To prevent this outcome, I assume that financiers and savers switch roles based on exponential probability functions with intensity λ and $\lambda^{\frac{1-\beta}{\beta}}$, respectively\footnote{The different intensities maintain the populations of savers and financiers constant.}. When a financier switches role, she pays all her accumulated net worth to her household.

The financier’s optimization problem is, therefore, to maximize the value of the financial intermediary that she manages, subject to the credit constraint:

$$\max_{\{d(u), s(u)\}_{u=t}^{\infty}} \Lambda(t)V(t) = E_t \left[\int_t^\infty \Lambda(u) \lambda n(u)du \right]$$

$$s.t. \quad dn(t) = s(t)(dQ(t) + Y(t)dt) - r(t)d(t)dt$$

$$V(t) \geq 0,$$

where $\Lambda(t) \equiv e^{-(\rho+\lambda)t} \frac{1}{C(t)}$ is the agents’ marginal utility modified for the intensity with which financiers change roles, and $V(t)$ is the value of the financial intermediary. Intuitively, the value of the intermediary is the expected discounted value of its dividends\footnote{The appropriate discount factor is the marginal value of consumption of the agent receiving the dividends. The financier pays a dividend only once, when she is selected to switch role. The term $e^{-\lambda u}$ is the probability density function for this exponentially distributed event.}. The first constraint is the evolution of the financial intermediary’s net worth, while the second is the credit constraint.

When a saver becomes a financier, she needs capital with which to operate. I assume that this start-up capital is received from the household. In particular, I
assume that each new financier is endowed with a fraction \(\frac{\delta}{\lambda(1-\beta)} \) of the existing financiers’ assets. Therefore, the aggregate net worth of the financial sector evolves according to:

\[
dN(t) = (r_d(t) - \lambda)N(t)dt + S(t)Q(t)((\mu_Q(t) + \delta - r_d(t))dt + \sigma_Q(t)dz(t)).
\]

Similarly, the sum of net transfers from financiers to households is

\[
\Pi(t) = \lambda N(t) - \delta S(t)Q(t).
\]

The market clearing conditions are

\[
C(t) = Y(t); \quad S(t) = 1.
\]

The number of shares in the output tree is normalized to one.

The micro-foundations of the model are intended to capture an array of financial intermediaries, spanning from traditional retail banks to investment banks and the shadow banking system. Despite the heterogeneity of these players, I emphasize their common characteristic: a balance-sheet transmission channel. They are funded by a combination of equity capital and short-term borrowing, while their assets are long term and risky. Financial intermediaries’ risky assets are represented in the model by shares in the output tree. The model focuses on the debt funding of financial intermediaries, with the savers’ deposits intended to capture not only retail deposits but also other common debt-funding sources. In particular, interbank debt contracts are formally introduced in Sections 2.1 and 2.2 when discussing the model of an open economy. He and Krishnamurthy (2010) study an endowment economy with a financial sector under equity funding.

1.1.1 Optimal Consumption and Investment

Throughout Chapter 1 and 2, I scale variables by the value of current output, with a tilde denoting the scaled version of the corresponding variable.\(^9\) I restrict my attention to the class of Markovian equilibria. The concept of equilibrium is the standard Walrasian one.\(^10\) I suppress the time notation of stochastic processes throughout the rest of the dissertation, except where necessary to clarify formulas.

\(^9\)In the current autarky setting, the consumption good is the numeraire and scaling by the value of output is achieved by dividing variables by \(Y\).

\(^10\)Consumption and investment decisions are adapted processes such that the financier’s and saver’s optimization problems are satisfied and markets clear.
The Saver’s Problem

Savers choose how much to consume and how much to deposit with financial intermediaries, as a fraction of the economy’s current output. I conjecture that the saver’s value function, denoted U, only depends on deposits and the financial sector’s net transfers, both scaled by output: $(\bar{D}, \bar{\Pi})$. The marginal saver is atomistic and therefore does not take into account the effect of her saving decision on the financial sector’s net transfers.

Lemma 1.1. The optimality conditions for the saver’s optimization in equation (1.2) imply that the saver prices risk-free deposits according to

\[-r_d \, dt = E_t \left[\frac{d\Lambda}{\Lambda} \right], \quad \text{where} \quad \Lambda \equiv e^{-\rho t} \frac{1}{C}.\]

(1.4)

This and all other proofs are reported in Appendix A. The saver’s Euler equation is unaffected by frictions and has the standard intuition of the optimal trade-off between consumption and savings, given the interest rate.

The Financier’s Problem

Since each financier is atomistic and, therefore, does not affect expected returns in equilibrium, the value of a financial intermediary is scale invariant: an intermediary with ten times more net worth has a value that is ten times higher. Consequently, I conjecture that the financier’s value function is linear in the individual financial intermediary’s net worth: $V(\bar{N}, n) = \Omega(\bar{N}) \cdot n$.

I also conjecture that the marginal value of net worth, Ω, only depends on the aggregate financial sector net worth, scaled by output. Aggregate net worth affects the incentives for financiers to walk away from their financial intermediaries; consequently, it intuitively also determines the tightness of the credit constraint and, in turn, expected returns to financial capital.

Lemma 1.2. The optimality conditions for the financier’s optimization in equation (1.3) imply that the financier prices risk-free deposits and shares in the tree according to:

\[0 = \lambda \Lambda Q (1 - \Omega) dt + \Lambda \Omega Y dt + E_t \left[d(\Lambda Q) \right] \]

\[0 = \lambda \Lambda D_a (1 - \Omega) dt + E_t \left[d(\Lambda D_a) \right],\]

(1.5)

(1.6)

where D_a is the deposit asset with dynamics $\frac{dD_a}{D_a} = r_d \, dt$.

The financier is concerned about two risks: consumption risk and financial risk.\footnote{In Appendix A, I show that the financier’s Euler equations imply that assets are priced according to a multi-factor asset pricing model, where the two factors are consumption and aggregate scaled}
when her financial intermediary has low net worth. The former, which is consistent with standard consumption-based asset pricing models, is captured by the term Λ. The latter, which would result in a tightening of the credit constraint, is captured by the multiplicative term Ω. If financial risk and consumption risk are positively correlated, as they are in equilibrium, financiers discount the risky asset more than an investor with equal consumption but logarithmic utility, hereafter referred to as the log investor.

Ω can be interpreted as the “q price” of installed financial capital. Capital outside the financial sector is worth its purchase value of 1, since the consumption good is the numeraire. However, installed capital inside the financial sector is worth more than 1 because financial intermediaries earn, from the perspective of a log investor, abnormal risk-adjusted returns. Intuitively, the term $\lambda(1 - \Omega)$ in the above Euler equations accounts for the probability λdt with which a financier switches role in the next dt units of time and the fact that, upon switching, capital is only worth 1 rather than Ω.

1.1.2 Equilibrium

The Lucas Economy

Assume that there are no frictions, so that financiers always have to repay all deposits. In this case, the equilibrium is equivalent \(^{12}\) to that of a standard Lucas endowment economy (Lucas (1978)), where the endowment is given by equation (1.1) and there exists a representative agent with logarithmic preferences who can trade both shares in the output tree and a risk-free bond. I refer to this economy in short as the Lucas Economy.\(^{13}\)

Intuitively, the distribution of wealth between deposits and financial capital does not affect the equilibrium; this is because financiers can always raise sufficient deposits to achieve the desired investment in the risky asset.\(^{14}\) It follows that the marginal value of net worth, Ω, is constant at 1. Consequently, the pricing equations in equations (1.5-1.6) simplify to the classic Lucas equations.

net worth. This model extends the Consumption Capital Asset Pricing Model (CCAPM) to account for financial risk.

\(^{12}\)See Appendix A.

\(^{13}\)It is well known that the equilibrium of this economy features a constant risk-free rate and a constant and low risk premium. Assets are priced according to the CCAPM, with consumption as the only risk factor.

\(^{14}\)Following investment losses, and even in the case where net worth becomes negative, depositors are always repaid in full because financiers can roll over deposits. Furthermore, if a financier with negative net worth is selected to switch roles, she pays negative net worth out to her household; that is, the household repays in full the selected financier’s depositors.
The Banking Economy

The equilibrium of the economy with frictions is affected by the wealth distribution, that is, the amount of capital inside the financial sector. When financial intermediaries have low capital, financiers are concerned about losing further capital; consequently, financial intermediation becomes disrupted and wealth cannot readily be invested in the risky asset. By contrast, when financial intermediaries are better capitalized there is a buffer against investment losses, leading to an investment allocation closer to the one in the Lucas Economy.

Proposition 1.1. The financier’s and saver’s optimization problems can be written in terms of a single state variable: the aggregate financial sector net worth scaled by output \tilde{N}. Furthermore, the state variable is a strong Markov process with dynamics

$$
\frac{d\tilde{N}}{\tilde{N}} = \left[\rho - \lambda + \phi(\mu_Q - r_d + \delta - \sigma \sigma_Q)\right]dt + (\phi \sigma_Q - \sigma)dz
$$

$$
\equiv \mu_{\tilde{N}} dt + \sigma_{\tilde{N}} dz,
$$

(1.7)

where $\phi \equiv \frac{Q}{N}$ is the financial sector leverage. The equilibrium is characterized by a system of two coupled second-order ODEs for the price-dividend ratio, $\tilde{Q}(\tilde{N})$, and the marginal value of net worth, $\Omega(\tilde{N})$:

$$
0 = \mu_Q - r_d - \sigma \sigma_Q + \sigma \Omega \sigma_Q \tag{1.8}
$$

$$
0 = \lambda \frac{1 - \Omega}{\Omega} + \mu_{\Omega} - \sigma \sigma_{\Omega}, \tag{1.9}
$$

where $\frac{d\Omega}{\Omega} = \mu_{\Omega} dt + \sigma_{\Omega} dz$.

I conjecture, and it is the case in equilibrium, that the state variable is pro-cyclical: $\sigma_{\tilde{N}} \geq 0$. This occurs because financiers are levered and raise risk-free funding while investing in the risky asset; consequently, a positive dividend shock increases net worth on more than a one-for-one basis.

The system of ODEs\(^{15}\) has an intuitive interpretation, though a formal analysis of the boundary conditions and the numerical solution method are also included in Appendix B. The ODE (1.8) implies that the Sharpe ratio is higher than in the Lucas Economy; this occurs because financiers are worried about losses of capital that could restrict their investment opportunity set. To see this, re-write equation (1.8) as

$$
\frac{\mu_Q - r_d}{\sigma_Q} = \sigma - \sigma_{\Omega}.
$$

\(^{15}\)Here and in subsequent propositions the ODEs (1.8-1.9) are expressed implicitly since the drifts and volatilities are themselves only functions of \tilde{N} and the level and first two derivatives of the functions Ω and \tilde{Q}. The explicit form of the ODEs is provided in Appendix A.
The Sharpe ratio has two components. The first, the volatility of consumption, which in equilibrium is equal to σ, is the same as in the Lucas Economy. The second, σ_Ω, accounts for financiers’ required compensation, measured per unit of risk, to take on risk that is correlated with their net worth. In equilibrium, $\sigma_\Omega < 0$ because the marginal value of net worth increases when financiers lose capital. The ODE (1.9) is a restriction on the dynamics of Ω; it ensures that financiers and savers agree on the pricing of risk-free deposits.\footnote{The saver’s Euler equation (1.4) and the fact that, in equilibrium, consumption equals output together imply that the risk-free deposit rate equals the risk-free rate in the Lucas Economy. For financiers to agree on the pricing of the risk-free rate, the ODE (1.9) requires that the intertemporal (elasticity of substitution) and intratemporal (precautionary) effects of financial risk (Ω) on the risk-free rate exactly offset each other. See Appendix A for details.}

Endogenously, financiers cut their risky investments sufficiently quickly following losses that a default never occurs and the credit constraint never binds. Therefore, other than fundamental risk σ, all risk in the model is liquidity risk. This arises because the financial sector engages in maturity-risk-liquidity transformation\footnote{The concepts of maturity, risk, and liquidity transformation have been defined in various ways in the literature. I follow here the definitions in Brunnermeier, Eisenbach, and Sannikov (2010), according to whom: the maturity transformation occurs because debt funding is instantaneous while the asset is infinitely lived; the risk transformation occurs because debt funding is risk-free while the asset is risky; and the liquidity transformation occurs because debt, being instantaneous, is continuously regenerated in the liquid consumption good, while equity sales have different price impacts depending on the level of the state variable.} by borrowing in instantaneous fixed-rate deposits and investing in long-term risky assets.

The equilibrium dynamics are illustrated in Figure 1.1. A quantitative analysis is beyond the scope of this model; the equilibria described in this and the following sections are numerical examples rather than calibrations.

Figure 1.1 shows that the effects of bank capitalization on the equilibrium are non-linear. In particular, there are two regions with markedly different equilibrium dynamics. In the first region, which covers most of the state space, the decreasing capitalization of financial intermediaries leads to a fall in the stock market and an increase in volatility. In the second region, the extremely low net worth of financial intermediaries leads to an increase in the stock market and a decrease in volatility. I describe the dynamics of each of the regions in turn.

In the first region, a negative output shock not only results in financiers losing capital; their concern about further potential losses also induces them to decrease investments in the risky asset, as a precautionary measure. The resulting fall in demand for the risky asset can be observed in its declining price-dividend ratio. As all financiers have similar balance sheets, the initial small \textit{iid} fundamental shock is amplified by systemic risk. With all financiers trying to sell the risky asset, a vicious cycle of fire sales\footnote{As in Shleifer and Vishny (1992), the financiers attempting to sell the asset depress its price because the “natural buyers”, the other financiers, have also suffered capital losses and are also attempting to sell. The risky asset is non redeployable since savers, by assumption, value it at zero.} commences: each individual financier trying to sell depresses the
stock price, inducing further capital losses and triggering a requirement to sell even more shares. The model therefore endogenously generates a flight-to-safety effect.

The amplification also generates an increase in the volatility of asset prices. The diffusion terms of the stock and of scaled net worth can be written as

\[\sigma_Q = \frac{\phi - \tilde{Q}'}{\phi(1 - \tilde{Q}')} \sigma; \quad \sigma_N = \phi \sigma_Q - \sigma, \quad (1.10) \]

where the superscript \(' \) denotes the first derivative of a function. Endogenously, \(\phi \geq 1 \) and \(\tilde{Q}' < 1 \). Asset prices are more volatile than dividends whenever \(\tilde{Q}'(\phi - 1) > 0 \), with the extent of the amplification depending on financial intermediaries’ leverage and on the reaction of the price-dividend ratio to changes in net worth.\(^{19} \) There is no amplification only if financial intermediaries are not levered (\(\phi = 1 \)) or if the price-dividend ratio does not react to changes in intermediary capital (\(\tilde{Q}' = 0 \)). In the first region, amplification is positive since intermediaries are levered (\(\phi > 1 \)) and the price-dividend ratio falls whenever intermediaries lose capital (\(\tilde{Q}' > 0 \)).

The equilibrium dynamics in this first region illustrate common characteristics of financial crises. These dynamics change as further negative shocks push financial intermediaries into the second region, where their capital is close to zero. Recall that, in aggregate, the credit constraint takes the form \(\Omega \tilde{N} \geq 0 \). The tightness of the constraint is determined by the balance of two opposing effects: losses of capital, reflected in a lower \(\tilde{N} \), induce increases in the value of capital, represented by a higher \(\Omega \).

In the first region, losses of capital outweigh the effect of increases in the value of capital and tighten the constraint almost linearly. As financial intermediaries’ capital decreases further and we enter the second region, the increase in the value of capital alleviates the losses of capital and the constraint tightens more slowly. Intuitively, the higher Sharpe ratio mitigates the incentives of financiers to walk away from poorly capitalized financial intermediaries. This causes the price-dividend ratio to increase whenever there are intermediary capital losses (\(\tilde{Q}' < 0 \)). In this case, equation (1.10) shows that capital gains have a stabilizing effect on losses of net worth and dampen the volatility of asset prices. The risky asset begins to mimic the risk-free one and,

\(\text{(cannot hold it). Fire-sale transactions never occur in equilibrium; financiers’ attempts to sell the asset reduce its price sufficiently to induce them to hold it. As in Kiyotaki and Moore (1997), a dynamic feedback effect amplifies this static effect. In my set-up, however, the dynamic effect arises from endogenous movements in the discount factor rather than in cash flows. Capital losses heighten intermediaries’ concerns about further losses and increase their discount factor for the risky asset. Since capital cannot be immediately replenished, the increase in the discount factor is persistent. The higher discount factor for future cash flows dynamically feeds back into lower present asset prices, thus further lowering intermediaries’ present net worth.} \)

\(\text{\footnotesize{\textbf{\^{19}}This emphasizes, as in Brunnermeier and Pedersen (2008), the interaction of market liquidity, i.e. the price impact of transactions in the risky asset (\(\tilde{Q}' \)), and funding liquidity, i.e. the ability of financial intermediaries to raise capital for investment (\(\phi \)).}} \)
in the limit as net worth approaches zero, the risky asset is locally risk less.\footnote{This second region of the state space provides an endowment economy equivalent to financial depressions, such as the one experienced in Japan starting in the early 1990s. Following the most acute phase of a crisis, where the stock market crashes and volatility increases, further losses of capital lead to a depression region. Here, stock prices are so high compared to dividends that risky investment returns are low. Consequently, financiers are not able to quickly escape this region by accumulating net worth through positive returns on investments. Figure 1.3 confirms the intuition by showing a fall in the drift and volatility of aggregate financial net worth. In the limit, as $\bar{N} \downarrow 0$, the drift approaches $\delta \bar{Q}$ and can be set arbitrarily close to zero, and the volatility goes to zero. Brunnermeier and Sannikov (2010) provide a similar “area of attraction” in the low region of the state space. In my model, the main difference is that the depression is caused solely by endogenous changes in the discount factor, while cash flows are exogenous.}

Under the restriction $\delta = \lambda - \rho$, the economy eventually converges to the Lucas Economy equilibrium. Intuitively, financiers accumulate net worth sufficiently quickly to reach a state where the entire supply of risky investments can be bought with the financial intermediaries' capital.\footnote{The balance of three effects regulates the asymptotic accumulation of aggregate net worth: financiers accumulate capital at the rate of time preference ρ, start-up capital allocated to new financiers increases aggregate net worth by δ, and net worth paid out by exiting financiers reduces aggregate net worth by λ.} In this state, the absence of leverage induces the financial intermediaries' capital to move one-for-one with stock prices, and financiers are no longer concerned about losing their net worth. The equilibrium dynamics of this case are illustrated in Figure 1.1. In contrast, under the restriction $\delta < \lambda - \rho$ financiers do not converge to the frictionless equilibrium. In this case, deposits are always strictly positive and the levered financiers are forever concerned about potential losses of net worth. The resulting equilibrium dynamics are illustrated in Figure 1.2.

In both cases, the \textit{stochastic} steady state\footnote{The stochastic steady state is defined as the point to which the state variable converges if shocks are possible but are not ever realized. This is in contrast to the most commonly analyzed \textit{deterministic} steady state, which is defined as the point of convergence if the model features no shocks ($\sigma = 0$).} is the point in Figure 1.3 where the drift of scaled net worth equals zero. In the first case, the stochastic steady state is the upper boundary of the state space: $\bar{N}^SS = \frac{1}{\rho}$. The limiting distribution of scaled net worth is degenerate, with the entire probability mass concentrated at the stochastic steady state. In the second case, the stochastic steady state is in the interior of the state space; the stationary distribution of scaled net worth is reported in Figure 1.4. The distribution has a fat left tail, since negative shocks are amplified more than positive shocks. Therefore, while fundamental shocks are \textit{iid} Gaussian, the banking economy suffers from endogenous financial disasters.

Asset prices in the Banking Economy are determined by a two factor asset pricing model, where the risk factors are consumption and the financial system’s net worth. The financier’s optimal decision between raising more financing and investing in the
risky asset implies that:

\[\mu_Q - r_d = -\text{Cov}_t \left[\frac{d\Lambda}{\Lambda}, \frac{dQ}{Q} \right] - \text{Cov}_t \left[\frac{d\Omega}{\Omega}, \frac{dQ}{Q} \right] = \text{Var}_t \left[\frac{dC}{C}, \frac{dQ}{Q} \right] - \frac{\Omega'}{\Omega} \tilde{\Omega} \text{Cov}_t \left[\frac{d\tilde{N}}{N}, \frac{dQ}{Q} \right] \]

Rearranging the above equation one obtains the asset pricing model:

\[\mu_Q(t) - r_d = \lambda_C \beta_C(t) + \lambda_{\tilde{N}}(t) \beta_{\tilde{N}}(t), \tag{1.11} \]

and where the prices of risk and betas are defined as:

\[\beta_C(t) \equiv \frac{\text{Cov}_t \left[\frac{dC}{C}, \frac{dQ}{Q} \right]}{\text{Var}_t \left[\frac{dC}{C} \right]} ; \quad \beta_{\tilde{N}}(t) \equiv \frac{\text{Cov}_t \left[\frac{d\tilde{N}}{N}, \frac{dQ}{Q} \right]}{\text{Var}_t \left[\frac{d\tilde{N}}{N} \right]} \]

\[\lambda_C \equiv \text{Var}_t \left[\frac{dC}{C} \right] ; \quad \lambda_{\tilde{N}}(t) \equiv -\text{Var}_t \left[\frac{d\tilde{N}}{N} \right] \frac{\Omega'}{\tilde{\Omega} \Omega} \tilde{N}. \]

The first term on the RHS of equation (1.11) is the CCAPM, where assets are risky if their returns covary positively with consumption. Compared to the CCAPM in the Lucas Economy, the volatility of asset prices varies endogenously and, consequently, the beta in the Banking Economy is time-varying. The second term implies that assets are riskier if they covary positively with the financial system’s net worth. Both the market price and the beta of the financial risk factor are time-varying.

The risk-free deposit rate is constant and equal to the one in the Lucas Economy:

\[r_d = \rho + \mu - \sigma^2 - \lambda(1 - \Omega) - \Omega' \mu_{\tilde{N}} - \frac{1}{2} \Omega'' \sigma_{\tilde{N}}^2 + \Omega' \sigma_{\tilde{N}}. \]

The ODE (1.9) imposes that the increase in the risk-free rate that occurs because of the inter-temporal drift in the value of capital (\(\mu_{\tilde{N}} \)) and the role switching of financiers and savers (\(\lambda(1 - \Omega) \)) is exactly offset by the precautionary motive to save that is induced by intra-temporal financial risk (\(\sigma_{\tilde{N}}^2 \)) and the covariance between consumption and financial risk (\(\sigma_{\tilde{N}} \)). The result rests on two features of my set-up: firstly that savers are atomistic, and secondly that equilibrium consumption is exogenous. In the autarky model, there is no tension between a higher equity premium and a low and stable risk-free rate, thus accommodating the risk-free rate puzzle.

Even if dividends are a random walk, the model endogenously generates persistent effects of iid shocks and forecastable equity excess returns. This occurs because excess returns are a function of aggregate net worth, which in turn is persistent and procyclical. For example, a negative shock results in a capital loss for financiers and
increases the risk premium;23 the only way to rebuild net worth is to earn the expected risk premium over time. Therefore, on impact, expected returns increase and then gradually decrease as financiers rebuild the stock of net worth.

\section*{1.2 Summary Remarks}

The autarky model shows that agents are concerned about both fundamental and financial risk. Furthermore, this concern creates lower demand for risky assets, particularly during bad times, and an endogenous amplification of shocks. These elements play a crucial role in the open economy that is analyzed in the next section.

23I refer here to the region of the equilibrium away from zero net worth. The sign of predictability, i.e. that a low price-dividend ratio predicts high excess stock returns, is also maintained in the region close to zero net worth. However, the relationship between net worth and the price-dividend ratio is inverted.
Chapter 2

Financial Intermediation, International Risk Sharing, and Reserve Currencies

The global financial architecture is characterized by the existence of a key country. This role has been fulfilled by the United States of America (US) since the Second World War; prior to the First World War it was fulfilled by the United Kingdom (UK). An important characteristic of the key country is the depth of its financial markets and, in particular, of its funding markets. The empirical literature has highlighted stylized facts that characterize the US international position: its external portfolio is characterized by riskier assets than liabilities; it runs a persistent trade deficit; it transfers wealth to the rest of the world (RoW) during global crises; and its currency is the world’s reserve currency and earns a safety premium.

Despite extensive debates on the factors underpinning the global financial architecture, as well as its sustainability, there are few formal models that analyze its economic foundations. I provide a theoretical framework based on financial frictions that rationalizes the role of the key country in the global financial architecture and jointly explains the stylized facts that characterize the US external position.

The key country has the most developed financial sector and takes on a larger proportion of global fundamental and financial risk because its financial intermediaries are better able to deal with funding problems following negative shocks. In good times and in the long run it consumes more, relative to other countries, and runs a trade deficit financed by the higher financial income that it earns as compensation for taking greater risk. During global crises, however, capital losses on its external portfolio lead to a wealth transfer to the RoW. This increases the wealth loss suffered by the key country as a result of the crisis and exacerbates the fall in its consumption.

The key country’s currency emerges as the reserve currency because it appreciates during crises, thus representing a global safe asset. This occurs, despite the key country’s wealth losses, because of shifts in the relative demand for goods. The
increase in the RoW’s relative demand for RoW goods, which originates from the wealth transfer from the key country to the RoW, is more than offset by the fall in the key country’s relative demand for RoW goods, which originates from increased RoW export costs.

The model not only provides a theoretical framework that jointly makes sense of the empirical stylized facts; its main contribution is to do so by providing the underlying economic foundations through the explicit modeling of financial intermediation and its frictions. The model recognizes the importance of financial intermediation from the key country as both the means of sharing risks globally and a potential source of risk and instability for the global financial architecture.

The model shows that the global financial architecture is affected by endogenous financial instability, with negative fundamental shocks being amplified by the financial system. The amplification occurs because financial intermediaries are levered and invest in similar risky assets; the resulting systemic risk exacerbates the effects of adverse shocks through a fire-sale mechanism.

I summarize the empirical evidence that motivates this chapter in four stylized facts:

Fact 1: The US external balance sheet is characterized by risky assets, mainly denominated in foreign currencies, and safer liabilities, mainly denominated in US dollars. Figure 2.1 shows the US external balance sheet, as of year-end 2007. US residents’ holdings of foreign assets were focused on riskier assets, such as equity and foreign direct investment (FDI), which together accounted for 56% of total US assets. By contrast, foreign residents’ holdings of US assets were concentrated in safer assets such as debt, which accounted for 69% of total US liabilities.¹ Figure 2.2 confirms this by plotting the above percentages for 1970-2010. Figure 2.3 highlights that the majority of US external assets, 64% on average, are denominated in foreign currencies. US external liabilities are instead predominantly denominated in US dollars, 90% on average.²

Fact 2: The US runs a persistent trade deficit. The US has run a trade deficit every year since 1976; in 2010, its trade deficit was 3.4% of GDP.³

Fact 3: During global crises, the US transfers substantial amounts of wealth to the RoW. The US net foreign asset position deteriorated by $1.4 trillion in 2008. This corresponds to a transfer of 10% of US GDP to the RoW over that year.⁴

Fact 4: The US dollar is the world reserve currency and earns a safety premium.

¹Source: Balance of Payment Statistics. The percentages are computed as (Equity+FDI)/(Total Assets-Derivatives) and (Debt+Other Investments)/(Total Liabilities-Derivatives).
²Source: Lane and Shambaugh (2010). The average is for the period 1990-2004.
³Source: IMF.
⁴Source: Balance of Payment Statistics and author’s calculations. The deterioration is due in part to changes in the US external portfolio positions and in part to capital losses. I calculate that the capital losses alone constitute a transfer of 7.5% of US GDP. See also Gourinchas, Rey, and Truempler (2011).
Institutions around the world, both private and governmental, hold reserves of US dollars.5 Figure 3.12 shows the estimated6 compensation required by investors for holding a basket of foreign currencies while funding themselves in US dollars: the US dollar safety premium. The annualized premium is, on average, 1%; however, it increases significantly in times of crisis. At the height of the recent financial crisis in October 2008, the US dollar safety premium was as high as 53%.

To make sense of these facts I build on the closed economy mode in Chapter 1 and introduce two successive open economy models. In Section 2.1, I introduce a simple open economy model with two countries and a single world endowment. This model highlights the core result of the Chapter: the asymmetric risk sharing between the key country and the RoW, from which Facts 1-3 emerge. This model cannot account for Fact 4 because, by design, no exchange rate is present. In Section 2.2, I allow each country to have an endowment of a differentiated good. In addition to considering how financial frictions affect demand for financial assets, I also consider how they affect demand for goods by introducing trade costs. This final model not only allows me to analyze the exchange rate, but also generalizes the results from the previous section.

In the open economy model in Section 2.1, the greater depth of the US’s financial development is represented by the key country’s financial intermediaries being better able to raise funding for investment purposes, even when they are poorly capitalized. This, in turn, induces the key country’s financial intermediaries to be less concerned about taking leveraged risk: in equilibrium, they take more risk. On the other hand, RoW financial intermediaries accumulate precautionary long positions in safer assets in order to insulate their capital from negative shocks. The asymmetric US balance sheet (Fact 1) emerges from this asymmetric risk sharing. The US trade deficit (Fact 2) emerges from the higher consumption that it enjoys in good times and in the long run, as compensation for the greater risks that it takes. Similarly, wealth transfers occur in bad times (Fact 3) because of the heavier losses suffered by the key country following negative shocks.

The role of the US dollar as a global safe asset is challenging to explain within traditional models. These would predict that a transfer of wealth from the US to the RoW during crises would result in a US dollar depreciation, because the wealth transfer would increase the relative demand for RoW goods, as long as the RoW residents were spending a higher proportion of the wealth that they received on RoW goods than on US goods. If this were the case, the US dollar would represent a risky asset for RoW residents, since it would pay low in bad states of the world.

The tension between the wealth transfer from the US to the RoW and the role of the US dollar as a global safe asset creates a “reserve currency paradox”. In Section

5Eichengreen (2011, page 64) shows that 63% of world official reserves were held in US dollars at year-end 2009, a figure close to the average for the period 1965-2009.

2.2, I rationalize these seemingly contradictory forces by showing that the paradox can be resolved if, in addition to the channel described above, the US relative demand for US goods also increases during crises. I directly model a set-up where RoW export costs increase whenever RoW financial intermediaries lose capital and decrease the availability of credit to RoW exporters. A less literal interpretation of the model also accommodates frameworks where US and RoW exports are differentiated and, in particular, where the demand for US goods is more resilient to global downturns.

The key assumption of greater financial development\(^7\) of the US compared to the RoW is in the spirit of Caballero, Farhi, and Gourinchas (2008) and Mendoza, Quadrini, and Ríos Rull (2009). Kindleberger (1965) and Despres, Kindleberger, and Salant (1966) were among the first to argue that the asymmetric external balance sheet of the US, and previously of the UK, could be due to differences in financial development. Caballero et al. (2008) analyze a deterministic model where the US’s greater ability to supply tradable assets rationalizes the emergence of global imbalances, the US trade deficit, and low long-term interest rates. Mendoza et al. (2009) analyze a production economy with idiosyncratic risk and limited contract enforceability, where the US’s greater ability to enforce contracts leads to a lower US interest rate and an asymmetric US balance sheet. The most closely related work is that of Gourinchas, Govillot, and Rey (2010),\(^8\) who study the role of the US as an insurance provider to the RoW in a representative agent framework with complete markets, where agents differ in the coefficient of relative risk aversion.

I add to this literature not only by providing a risk-based view of the role of the key country, which differs from the traditional macroeconomic view; more importantly, I do so by providing the underlying economic foundations through the explicit modeling of financial sector frictions and aggregate risk. The former is important to understanding the characteristics that distinguish the key country and its role, while the latter allows me to analyze the benefits and the costs of asymmetric risk sharing, especially during financial crises.

I also analyze exchange rate dynamics, which are important to understanding why the RoW considers US-dollar-denominated short-term debt to be safe. Previous papers do not model the role of the US dollar as a reserve currency or its safety premium. In addition, the risk-based view of the key currency that I provide is in contrast to Krugman (1980) and Matsuyama, Kiyotaki, and Matsui (1993), who instead stress the vehicle role of the key currency for international trade.

\(^7\)I am not suggesting that financial development is the only characteristic. Recent literature, for example, has emphasized the importance of country size for currency returns (Hassan (2010); Martin (2011)). My goal is to isolate the role of one important characteristic, financial development, and to analyze its equilibrium implications.

\(^8\)The paper also provides evidence that the US earns positive excess returns on its external portfolio. See Curcuru, Dvorak, and Warnock (2008) for a contrarian view.
2.1 Open Banking Economy: Single World Tree

To understand the role of the US in the global financial architecture, I introduce a simple model with two countries, Home and Foreign, which are symmetric other than the extent to which their respective financial systems are developed. This stylized model isolates the role of the asymmetry in the countries’ financial sectors and describes the main result of this Chapter: the asymmetric risk sharing between the US and the RoW. The empirical Facts 1-3 emerge from the implementation of this risk sharing.

The US, which acts as the key country in the global financial architecture, is characterized by the greater extent of its financial development and, in particular, the greater depth of its funding markets. This asymmetry is in the spirit of Kindleberger (1965), Caballero et al. (2008), and Mendoza et al. (2009), who were among the first to emphasize differences in financial development as a key driver of global imbalances.\footnote{The assumption is also supported by the literature on comparative financial and institutional development. Rajan and Zingales (1998), for example, motivate their empirical work, which assumes a frictionless financial market for the US, by noting that “capital markets in the United States are among the most advanced in the world”.}

Eichengreen (2011, pages 17-33) emphasizes how the development of funding markets for trade in New York in the 1920s was an important driver of the key country role switching from the UK to the US.

One can think of a general form of the credit constraint, where financiers have different abilities to divert assets or to walk away from their obligations. The less financiers are able to divert assets or to walk away from their obligations, the greater financial development is. This is meant to capture both the legal framework that is essential for the emergence of financial markets, and the broader institutional and regulatory design that affects the cost and efficiency of transactions in financial markets.

For simplicity I assume that Home financiers are unconstrained, while Foreign financiers face the limited-liability constraint described in the previous section.\footnote{The choice of frictionless Home financial intermediation is one of convenience. It allows the model to be analyzed with a single state variable. More generally, one can think of Home intermediaries facing frictions, albeit lower than those faced by Foreign intermediaries. One-period and two-period versions of the model, which allow for frictions in both countries, yield similar qualitative results.}

The global output of the sole good is generated by the process in equation (1.1); each country is endowed with half of the output. Almost the entire set-up of each of the two economies is identical to the autarky case, so I only describe the differences. I describe the model for the Foreign country, and only specify the corresponding Home country equations where necessary. Foreign variables are denoted by the superscript *. Savers can only deposit funds with their domestic financial intermediaries; consequently, they solve a problem identical to equation (1.2). This restriction emphasizes
the fact that private savings primarily enter the global financial system through domestic financial institutions.\footnote{While off-shore accounts certainly exist, they are a small phenomenon compared to on-shore savings.}

In addition to raising deposits domestically and investing in the risky asset, financiers can also lend and borrow in an international market for interbank\footnote{Literally, this market should be referred to as “inter-intermediary” rather than “interbank”. In practice, various types of financial intermediaries participate in the interbank funding market, so it is commonly understood that it is not merely a market for banks.} loans. These instantaneous interbank loans are promises to pay one unit of the consumption good. Both interbank loans and deposits are risk free in equilibrium, so I directly use this outcome to write their dynamics. The balance sheet of an individual financier is \(Qs^* = n^* + d^* + b^* \), where \(b^* \) is the amount that the financier has borrowed in the interbank market.

In a technical simplification\footnote{This assumption allows for the simplification of the equilibrium risk sharing between Home and Foreign without altering the economic implications of the model. In particular, it allows the equilibrium to be expressed as a function of a single state variable. See Appendix A for details.} from the autarky case, the exiting financiers have the option to reinvest their net worth with the incoming financiers. Since financiers maximize the value to their households of the intermediaries that they manage, they choose to reinvest the net worth whenever \(\Omega^* > 1 \) and to pay it out whenever \(\Omega^* = 1 \), where \(\Omega^* \), by analogy with the previous section, is the Foreign financier’s marginal value of net worth. The representative financier problem is, therefore, equivalent to one for an intermediary not paying any net worth out to the household until a stopping time \(t' = \inf\{t : \Omega^*(\tilde{N}^*(t)) = 1\} \). After that point is reached, exiting financiers pay their net worth to their households.\footnote{For this to be an equilibrium, the state where \(\Omega^* = 1 \) needs to be absorbing. As with the autarky case, this is guaranteed by the restriction \(\delta = \lambda - \rho \), which is imposed in both this section and the next. See Appendices A and B for details.} The representative financier’s optimization problem is:

\[
\max_{\{d^*(u), b^*(u), s^*(u)\}_{u=t}^\infty} \Lambda^*(t)V^*(t) = E_t \left[\int_{t'}^{\infty} \Lambda^*(u)e^{-\lambda(u-t')}\lambda n^*(u)du \right]
\]

\[s.t. \quad dn^* = s^*(dQ + Y dt) - r^*_d d^* dt - r^*_b b^* dt\]

\[V^* \geq 0.\]

The Home financier’s problem is symmetric, but without the last constraint. I assume that the start-up capital provided by households to new financiers is a function of the stochastic steady state\footnote{The assumption is meant to capture the fact that the household uses both the current value of assets and the long-run financial size of its country to judge how much start-up capital its new financiers need in order to operate. The specific functional form has been chosen to simplify the boundary analysis, and does not substantially affect the equilibrium.} holdings of the risky asset in each country: \(\bar{S} \) and \(\bar{S}^* \), respectively. Consequently, new Home financiers receive \(\delta \bar{S}Q \) and new Foreign
financiers receive $\delta \bar{S}^* Q$. The aggregate net worth dynamics follow:

$$dN^* = r_d N^* dt + Q \left\{ S^* \left(\mu Q - r_d^* \right) dt + \sigma Q dz \right\} + \delta \bar{S}^* dt \right\} + B^* (r_d^* - r_b) dt.$$

An extra outflow of $\lambda N^* dt$ is detracted from the dynamics for all times after t'. The net transfers from financiers to their households are:

$$\Pi^* = -\delta \bar{S}^* Q.$$

An extra inflow of $\lambda N^* dt$ is added to the dynamics for all times after t'.

The Foreign trade balance is the difference between the Foreign share of world output and Foreign consumption. Foreign Net Foreign Assets (NFA) are the difference between the wealth owned in Home by Foreign residents and the wealth owned in Foreign by Home residents. Finally, the change in Foreign NFA is the Foreign Current Account (CA). Home definitions are symmetric. Thus, I have:

$$NX^* \equiv \frac{Y}{2} - C^*; \quad NFA^* \equiv \left(S^* - \frac{1}{2} \right) Q - B^*.$$

The market clearing conditions are:

$$C + C^* = Y; \quad S + S^* = 1,$$

$$B = -B^*; \quad N^* = S^* Q - D^* - B^*.$$

2.1.1 Optimal Consumption and Investment

The Home country has no frictions; consequently, the Home marginal value of net worth is equal to one and the Home financiers’ value function takes the form $V = n$. Foreign financiers instead value financial capital above one; as with the autarky case, their value function is $V^* = \Omega^* (\bar{N}^*) n^*$. Since the Home and Foreign dynamic programming problems of both savers and financiers are extensions of those in the autarky case, they are reported in Appendix A. Here, I only include the corresponding Euler equations.

16Proportionally to their capital, all financial intermediaries within each country are identical. Equilibria with non-zero domestic interbank activity are possible, but are not materially different from the equilibrium where all interbank activity occurs across countries. Consequently, I focus on this last equilibrium and therefore include the interbank loans in the NFA position.
Lemma 2.1. The optimality conditions for Home savers and financiers imply that they price assets according to:

\[0 = \Lambda Y dt + E_t [d(\Lambda Q)] \] (2.3)
\[0 = E_t [d(\Lambda D_a)] \] (2.4)
\[0 = E_t [d(\Lambda B_a)]. \] (2.5)

The optimality conditions for Foreign savers and financiers imply that they price assets according to:

\[0 = \Lambda^* \Omega^* Y dt + E_t [d(\Lambda^* \Omega^* Q)] \] (2.6)
\[0 = E_t [d(\Lambda^* D_a)] = E_t [d(\Lambda^* \Omega^* D_a)] \] (2.7)
\[0 = E_t [d(\Lambda^* B_a)] = E_t [d(\Lambda^* \Omega^* B_a)], \] (2.8)

where \(D_a \) is the deposit asset and \(B_a \) is the interbank asset.

Equations (2.3-2.5) show that the frictionless Home country only cares about consumption risk: the Home representative agent prices assets as though it had logarithmic preferences. By contrast, equations (2.6-2.8) show that the potentially constrained Foreign country also cares about financial risk, in addition to consumption risk. The Foreign representative agent discounts the stock more than an agent with logarithmic preferences if, as is the case in equilibrium, it has low returns when financial intermediaries have low capital. An immediate consequence of both deposits and interbank loans being risk free is that, to prevent arbitrage, their rates of return are equal: \(r_b = r_d = r_d^* \).

2.1.2 Equilibrium

Open Lucas Economy

Consider a Lucas open endowment economy (Lucas (1982)) with two symmetric countries, a single good generated by equation (1.1), and a representative agent with logarithmic preferences in each country, both of whom can trade claims to the tree and a risk-free bond. I refer to this economy in short as the Open Lucas Economy. If there are no frictions in the Foreign financial system, then the equilibrium of my model is equivalent to that of the Open Lucas Economy.\(^{17}\)

Intuitively, the two countries are symmetric and the Foreign country is not affected by frictions, so that agents only care about consumption risk. Consequently, the international risk sharing and pricing equations reduce to the classic Lucas analysis. The equilibrium features of this economy are well known: symmetric equity portfolios, with each country owning half of the shares; no trading in the risk-free interbank

\(^{17}\)Details of the equilibrium are provided in Appendix A.
market; equal Home and Foreign consumption state-by-state; and zero NFA, CA and NX. These results are a far cry from the stylized facts of the global financial system in Facts 1-3.

Open Banking Economy

The equilibrium of the open economy with frictions is affected by the wealth distribution, that is, the amount of capital inside the financial sector. However, only Foreign financial intermediaries are affected by frictions; consequently, the key variable is the fraction of the world’s wealth that is held as capital by Foreign financial intermediaries.

Proposition 2.1. The financier’s and saver’s optimization problems in the Home and Foreign countries can be written in terms of a single state variable: the aggregate Foreign financial sector net worth scaled by output \ddot{N}. Furthermore, the state variable is a strong Markov process with dynamics given by

$$
\frac{d\ddot{N}}{\ddot{N}} = \left[(r_d - \lambda - \mu + \sigma^2) + \phi^*(\mu_Q - r_d - \sigma \sigma_Q) + \delta \frac{\ddot{S} Q}{\ddot{N}} \right] dt + (\phi^* \sigma_Q - \sigma) dz
$$

where $\phi^* \equiv \frac{S^* Q}{N}$. The equilibrium is characterized by a system of two coupled second-order ODEs for the price-dividend ratio, $\tilde{Q}(\ddot{N})$, and the marginal value of Foreign net worth, $\Omega^*(\ddot{N})$:

$$
0 = \mu_Q - r_d - \sigma_C \sigma_Q
$$

$$
0 = \mu_{\Omega^*} - \sigma_C \sigma_{\Omega^*}
$$

(2.9)

(2.10)

where $\frac{dC}{C} = \mu_C dt + \sigma_C dz$ and $\frac{dC^*}{C^*} = \mu^*_C dt + \sigma^*_C dz$.

The system of ODEs has an intuitive interpretation; a formal analysis of the boundary conditions and the numerical solution method is included in Appendix B. The ODE (2.9) is a standard pricing equation: it shows that expected stock excess returns depend positively on the covariance between Home consumption and stock returns. The ODE (2.10) ensures that Foreign financiers and savers agree upon the price of risk-free deposits.\(^{18}\)

The equilibrium allocation leads to an intuitive risk-sharing condition:

$$
\frac{C^*}{C} = \frac{\Omega^*}{\xi},
$$

(2.11)

\(^{18}\)In contrast to the autarky case, the restriction only imposes that the *direct* intra-temporal and inter-temporal effects of Ω^* on the risk-free rate offset each other. In both ODEs, there are also *indirect* effects of Ω^*, because consumption endogenously depends on Ω^*. See Appendix A for details.
where ξ is a scaling constant that depends on the initial conditions and is akin to the relative weight of the Home country in a complete-market central-planner problem. The risk sharing is asymmetric: an increase in the marginal value of Foreign financial capital is associated with a relative increase in Foreign consumption over Home consumption. As Ω^* is counter-cyclical in equilibrium, this provides the foundations of the risk sharing that underpins the global financial architecture.

In bad times, the consumption of the more financially developed country falls more than that of the rest of the world. This occurs because Home financial intermediaries are always able to achieve their desired investments in the risky asset by funding themselves in the deposit or interbank markets; this makes them less concerned than Foreign financial intermediaries about losses of capital. Consequently, the optimal risk sharing is for Home financial intermediaries to increase their investments in the risky asset by leveraging themselves in the international interbank market. Foreign financial intermediaries do exactly the opposite: they accumulate precautionary long positions in risk-free interbank deposits and decrease their investments in the risky asset. The portfolio implementation of the risk sharing condition therefore generates the asymmetric Net Foreign Asset portfolio of the Home and Foreign countries or, in actuality, of the US and the RoW (Fact 1).

The risk sharing condition has dynamic implications that emphasize the crucial role of the Home country during financial crises. Figures 2.5-2.6 show the equilibrium of the Open Banking Economy. Negative shocks cause capital losses in Foreign financial intermediaries and a fall in the stock market. As in the autarky case, a vicious cycle of fire sales sets in due to the systemic risk generated by the fact that all financial intermediaries hold the same risky asset. As Foreign financial intermediaries try to sell the risky asset, they further depress its price and, in turn, tighten their own credit constraints. Their increased concern for their net worth also heightens the Foreign financial intermediaries' desire to invest with Home financial intermediaries in the risk-free interbank market. In turn, Home financiers are willing to use the interbank funds that the Foreign financiers are providing to buy the stock that Foreign financiers are trying to sell. However, Home financiers require extra compensation for taking on this additional leveraged risk; this is achieved through a combination of an increase in the expected stock excess returns and a decrease in the interbank rate.

19The assumption that the Home financial system is frictionless, while simplifying the analysis, inevitably produces a Home consumption path that is volatile. In a quantitative analysis, however, it is theoretically possible to extend the model to a case where Home also faces frictions, albeit lower than those faced by Foreign. In that case, the Home SDF would also feature an additional multiplicative term, like Ω, and this extra degree of freedom would allow the main results of the model to be generated with a lower volatility of the Home consumption path.

20The equilibrium portfolio can be interpreted in the language of comparative advantage, as applied to trade in assets (Helpman and Razin (1978); Svensson (1988)). In autarky, Home’s comparative advantage in financial markets results in higher Foreign than Home prices for “down state” Arrow securities. Once the two economies open for trade, Foreign will buy “down state” and sell “up state” Arrow securities from Home in order to achieve a safer portfolio overall.
The global financial architecture is endogenously unstable. Since intermediaries are levered and invest in the same risky asset, negative shocks are amplified. The model endogenously generates a global flight to safety during crises, whereby Foreign financial intermediaries demand Home intermediaries’ safe liabilities and Home’s external portfolio loads more heavily on global risk. Part of the flight to safety occurs through a quantity adjustment of countries’ portfolios, while the rest results from the price adjustment of assets. In the limit, as Foreign financial intermediaries lose all their net worth, they only own Home financial intermediaries’ safe liabilities.

The dynamic portfolio rebalancing of Home and Foreign is consistent with the empirical evidence in Curcuru, Dvorak, and Warnock (2010), who find that the RoW switches from equities to US safe assets precisely at times when the future performance of these safe assets is poor compared to equities.

In response to negative shocks, the static asymmetric Home and Foreign external portfolios and the dynamic effects combine to generate a wealth transfer from Home to Foreign (Fact 3). The wealth transfer supports the risk-sharing allocation by financing the relatively higher Foreign consumption in these states of the world. This is evident in Figure 2.5, where the value of the Home NFA portfolio falls in response to negative shocks and Home and Foreign consumption shares and trade balances move in opposite directions.

On average, the Home country earns an expected compensation for the extra risk that it takes on in the global financial system. This stream of income finances higher Home consumption, and the Home country runs a trade deficit (Fact 2).

The external adjustment of the US happens through both the traditional trade-balance channel and unrealized valuation effects on its NFA. Consistent with the empirical evidence of Gourinchas and Rey (2007b), there are expected valuation effects on the NFA portfolio. These valuation effects are generated in my model by time-varying risk premia.

In the long run, Foreign financial intermediaries eventually accumulate sufficient capital to achieve their desired stock positions without raising deposits or borrowing.

21 The non-linear effects that occur in the autarky case when intermediaries’ net worth is close to zero are no longer present. Their absence rests on the assumption that Home financiers are unconstrained and can therefore always help clear the market for the risky asset, provided that it offers an appropriate risk-return trade-off.

22 Curcuru et al. (2010) interpret the evidence in terms of bad timing of the purchase of US safe assets from RoW investors. In a consistent but alternative explanation, I interpret the empirical evidence in terms of risk compensation. RoW investors buy US safe assets during bad times because of their increased concern about fundamental and financial risk and their willingness to earn lower, or even negative, excess returns as compensation for the safety of the asset.

23 In the figure, the trade balance is the difference between the country’s consumption share and the red dotted line at 0.5. If a country’s consumption share is more than 0.5, i.e. the country’s share of the endowment, then it runs a trade deficit.

24 In contrast to the Rueff (1971) interpretation of the US deficit as being “without tears”, I emphasize that the US deficit is in fact financed by the “tears” of wealth transfers in bad states of the world.
or lending in the interbank market. The restriction \(\delta = \lambda - \rho \) ensures that this upper state is absorbing. The stochastic steady state is one where Foreign financial intermediaries are no longer concerned about losses of net worth. The Home country runs an asymptotic trade deficit in the stochastic steady state. It does so not because it continues to earn higher risk compensation, but because the asymmetric risk sharing that occurred before reaching the steady state has allowed it to accumulate a positive NFA position.

In the data, the US NFA position is actually negative, but the US still runs a trade deficit. The model helps to rationalize this seemingly puzzling outcome: despite being a net debtor the US earns, on average, positive financial income since its assets, while lower, are riskier than its liabilities. This income finances the trade deficit. The model, however, cannot generate a long-run debtor position for the US because the stochastic steady state is one where risk taking is symmetric.

The stochastic steady state can be interpreted as a “very long run” outcome in which the RoW financial development and accumulation of capital make credit concerns irrelevant.

The model offers the view that some of the observed patterns in the data, including the global imbalances, are the outcome of equilibrium risk sharing. However, it stresses the substantial risks involved: the US benefits, on average, from positive financial income on its external portfolio only because it takes greater risks. The model also makes clear that the greater financial development of the US is not inconsistent with the 2008 crisis and its negative effects on the US banking system. In the model, it is precisely because US intermediaries are more efficient that they take more risk ex ante and, once a crisis hits, suffer the most severe losses.

While the motivational evidence for this Chapter is focused on the US, the same theoretical framework also sheds light on the role of the UK as the key country before the First World War. London’s funding markets were then the deepest in the world; this was a key factor in determining Britain’s financial dominance (Bagehot (1873)). My model is related to Kindleberger’s (1965) hypothesis that the asymmetric external balance sheet of Britain, with respect to its colonies, was due to differences in “demand for liquidity” and did not necessarily represent a form of exploitation.

My model also explains the global flight to safety toward the London funding markets, described by Bagehot (1873) for the financial crises of the nineteenth century. In contrast to the recent US history, however, Britain ran a sizable trade surplus at the time. In order to reconcile this with my framework recall that, though it is the focus

25An extension of the model could introduce mean reversion in the state variable, as was done in the closed economy, so that the US has a permanent advantage in financial intermediation. Logic suggests that this would allow the US, in extreme cases, to run both an asymptotic trade deficit and a negative NFA position.

26The similar claim of exploitation, or “exorbitant privilege”, that was later directed at the US by the French Finance Minister Valéry Giscard d’Estaing, is often mentioned in connection with the stylized facts that concern my main analysis. I have shown how this can be demystified as the outcome of equilibrium risk sharing.
of my model, I am not suggesting that financial development is the only determinant of the trade balance. Instead, my framework indicates that the key country runs either more of a trade deficit or less of a trade surplus than it would have otherwise done, if differences in the extent of financial development were not present. This allows other facts, such as Britain’s industrial base, to also play a role in determining the overall trade balance.

The above shows how a simple asymmetry in the global financial system can explain the first three stylized facts (Facts 1-3) about the role of the US in the global financial architecture and provide meaningful foundations for its economic analysis. To analyze the missing stylized fact, the role of the US dollar as a reserve currency, I next extend the open economy to feature an exchange rate by introducing differentiated goods.

2.2 Open Banking Economy: Two Trees

I maintain the assumption from the previous section that the Home financial system is more developed than the Foreign one. In addition to applying this asymmetry to trade in assets, I also let financial frictions affect international trade in goods by introducing trade costs that are related to the state of the financial sector in each country. The model emphasizes that shifts in demand for Home and Foreign goods are important to understanding the dynamics of the exchange rate, particularly in times of global financial stress. As will become clear, both financial sector frictions and trade costs play an important role in determining these demand shifts.

There are two differentiated goods, one produced by Home and the other by Foreign. The output of the two goods is given by processes

\[
\frac{dY(t)}{Y(t)} = \mu \, dt + \sigma \, dz(t); \quad \frac{dY^*(t)}{Y^*(t)} = \mu \, dt + \sigma^* \, dz(t),
\]

(2.12)

where \(\sigma = [\sigma_z \, 0]\), \(\sigma^* = [0 \, \sigma^*_z]\), and \(z\) is a vector of two independent standard Brownian motions.

In both countries, agents have logarithmic preferences\(^{27}\) over a basket of the two

\(^{27}\)In the models in Sections 1.1 and 2.1, logarithmic preferences were mainly a matter of convenience. In the present section, logarithmic preferences permit one further simplification as agents have no desire to hedge their purchasing power risk (movements in the real exchange rate), thus allowing the model to be solved without introducing the ratio of the two trees as a state variable (see Coeurdacier and Gourinchas (2008); Pavlova and Rigobon (2007)). The downside of this simplification is that the equilibrium portfolios do not reflect this extra hedging demand, which would occur under general CRRA preferences. The central results of the chapter, however, focus on how the portfolios are affected by the demand to hedge financial risk, which is not materially affected by the simplification to logarithmic preferences.
goods, with the Home and Foreign baskets given by, respectively:

\[C = C_H^{\alpha} C_F^{1-\alpha}; \quad C^* = C_H^{\alpha*} C_F^{1-\alpha*}, \]

(2.13)

where \(\alpha \in \left[\frac{1}{2}, 1\right) \) potentially allows for bias in each country’s preferences toward its domestic good. I set a basket of the two goods, consisting of \(\theta \in (0, 1) \) units of the Home good and \(1 - \theta \) units of the Foreign good, as the numeraire. All prices are expressed in this common unit.

To model trade costs I assume, for simplicity, iceberg transport costs: if one unit of a good is shipped internationally, only \(\frac{1}{\tau} \) units reach the destination, where \(\tau \geq 1 \). The most literal interpretation of the model, and the one that I follow, is that the relative variation in Home versus Foreign transport costs is due to the availability of credit. This can be directly modeled within my framework. A less literal interpretation is that Home and Foreign specialize in producing goods, the demand for which is affected differently during global crises.\(^{28}\) Trade costs then need to be interpreted as reduced form demand shifts according to economic conditions.\(^{29}\) As will become clear, both interpretations lead to a Home shift in demand toward its own good during bad times; therefore, both have similar equilibrium outcomes.

In keeping with the simplification that the Home country is unconstrained, I assume that there are no transport costs for Home exports. Foreign export transport costs are a function of the state of Foreign intermediaries. When intermediaries are well capitalized, Foreign exporters can easily access credit and trade costs are, therefore, low. By contrast, in periods of financial stress, Foreign exporters’ access to credit dries up and trade costs increase correspondingly. This is modeled in reduced form by: \(\tau = \Omega^* \epsilon \), where \(\Omega^* \), in line with the previous section, is the Foreign marginal value of net worth and \(\epsilon \geq 0 \).

A long-standing literature has highlighted the importance of trade costs for international finance (Samuelson (1954); Dumas (1992); Obstfeld and Rogoff (2001); Coeurdacier (2009)), while a fast-growing literature is analyzing the collapse in trade during the 2008 crisis. Chor and Manova (2011) find evidence that credit plays an important role in explaining the dynamics of exports during the 2008 crisis: countries that saw a more severe shutdown of their credit markets exported less to the US. Amiti and Weinstein (2011) and Paravisini, Rappoport, Schnabl, and Wolfenzon (2011) also find that credit conditions contribute to explaining the fall in exports for both Peru and Japan during the 2008 crisis. Another strand of the literature has emphasized the importance of both shifts in demand of tradables and global supply

\(^{28}\)The production specialization could actually be due to the development of the financial system, as in Antrás and Caballero (2009). This cannot be modeled directly here due to the assumption of exogenous endowments in the two countries.

\(^{29}\)An alternative set-up is one where the coefficient of Home bias is not constant. A shift in Home demand in bad times toward its own good can be represented by an \(\alpha \) that depends positively on \(\Omega^* \). The main implications of the model for the exchange rate and global portfolios carry over to this set-up. For a model of demand shocks that affect domestic bias see Pavlova and Rigobon (2010a).
chains in explaining the 2008 collapse in trade (Eaton, Kortum, Neiman, and Romalis (2011); Levchenko, Lewis, and Tésar (2010)).

Since the focus of this chapter is not on explaining the collapse in trade during a crisis, I want to clarify which elements of the empirical literature are relevant. I am interested in the relative variation in demand, according to the state of the economy, between the two countries for Home and Foreign goods. An overall symmetric increase in trade costs or a fall in world demand, while quantitatively interesting, are not the focus of this model.

Standard static optimization of the consumption baskets gives the Home and Foreign demand for the two goods:\[^{30}\]

\[
C_H = \alpha \left(\frac{p}{P} \right)^{-1} C; \\
C_F = (1 - \alpha) \left(\frac{p^*}{P} \right)^{-1} C
\]

\[
C_H^* = (1 - \alpha) \left(\frac{p}{P^*} \right)^{-1} C^*; \\
C_F^* = \alpha \left(\frac{p^*}{P^*} \right)^{-1} C^*,
\]

where p and p^* are the prices of the Home and Foreign good, respectively, and P and P^* are the prices of one unit of the Home and Foreign consumption baskets, respectively.

The terms of trade (ToT) are defined as the ratio of Foreign to Home goods prices, such that an increase in ToT represents a deterioration in the Home ToT. The real exchange rate (E) is expressed as the Home price of Foreign currency and is given by the ratio of Foreign to Home price indices.\[^{31}\] Thus, I have:

\[
ToT \equiv \frac{p^*}{p}; \\
E \equiv \frac{P^*}{P} = (ToT)^{2\alpha - 1} \tau^{\alpha - 1}.
\]

I denote the exchange rate dynamics by $\frac{dE}{E} = \mu_E dt + \sigma_E d\tilde{z}$. Absent domestic bias ($\alpha = 0.5$), the exchange rate is only driven by movements in transport costs. In this case, an increase in transport costs generates a Home currency appreciation. In the presence of domestic bias ($\alpha > 0.5$) and barring changes in transport costs, the real exchange rate and the ToT are positively related.

Savers can only make deposits with domestic financial institutions. Deposits are instantaneous promises to pay one unit of the domestic consumption basket. Deposits are risk free for domestic agents because there is no default in equilibrium and deposits pay the consumption basket. The saver’s problem is, therefore, identical to those in the previous sections and is reported in Appendix A.

Financiers in each country can raise domestic deposits, invest in any of the two stocks, and borrow or lend in an international interbank market. Interbank loans can be denominated in either Home or Foreign currency and are instantaneous promises.

\[^{30}\text{See Appendix A.}\]

\[^{31}\text{An increase in the exchange rate equates to a Home currency depreciation.}\]
to pay one unit of either the Home or Foreign consumption basket, respectively. The Foreign financier’s balance sheet is
\[s^*_{H}Q + s^*_{F}Q^* = n^* + d^* + b^*_{H} + b^*_{F}, \]
where \(s^*_{H} \) and \(s^*_{F} \) are the Foreign equity holdings of Home and Foreign stocks, \(Q \) and \(Q^* \) are the prices of the Home and Foreign stocks, both expressed in local currencies, and \(b^*_{H} \) and \(b^*_{F} \) are the amounts borrowed in the interbank market in Home and Foreign currency, both expressed in Foreign currency. As in the previous section, financiers who are selected to switch roles are allowed to reinvest their net worth with incoming financiers.

The Foreign financier’s optimization problem is:
\[
\max_{\{d^*(u), b^*_H(u), b^*_F(u), s^*_H(u), s^*_F(u)\}} \Lambda^*(t)V^*(t) = E_t \left[\int_{t'}^{\infty} \Lambda^*(u)e^{-\lambda(u-t)}\lambda n^*(u)du \right]
\]
subject to
\[
dn^* = s^*_H \left(d \left(\frac{Q}{\mathcal{E}} \right) + \frac{pY}{P^*} dt \right) + s^*_F \left(dQ^* + \frac{p^*Y^*}{P^*} dt \right)
+ -r^*_d d^* dt - (r_b dt - d\mathcal{E}) b^*_H - r^*_b b^*_F dt
\]
\[V^* \geq 0, \]
where \(\Lambda^* \equiv e^{-\rho t} \frac{1}{\mathcal{C}^*} \) and \(t' \equiv \inf \{ t : \Omega^*(\tilde{N}^*(t)) = 1 \} \). The Home financier’s problem is entirely similar, but without the last constraint.

As a generalization of the previous section, I assume that the start-up capital provided by households to new financiers is a function of the stochastic steady state holdings of the two stocks: \(\{\bar{S}_H, \bar{S}_F\} \). Consequently, new Home financiers receive \(\delta[\bar{S}_HQ + \bar{S}_F\mathcal{E}Q^*] \) and new Foreign financiers receive \(\delta[\bar{S}_H^*Q + \bar{S}_F^*Q^*] \).

The definitions of the Foreign trade balance and the NFA are generalizations of those in equation (2.2):
\[
NX^* \equiv \frac{p^*}{P^*}Y^* - C^*; \quad NFA^* \equiv S^*_H \frac{Q}{\mathcal{E}} - S_F Q^* - B^*_H - B^*_F.
\]
The market clearing conditions are:
\[
C_H + C^*_H = Y; \quad \tau C_F + C^*_F = Y^*
\]
\[
S_H + S^*_H = 1; \quad S_F + S^*_F = 1
\]
\[
B_H = -\mathcal{E} B^*_H; \quad B_F = -\mathcal{E} B^*_F
\]
\[
N^* = S^*_H \frac{Q}{\mathcal{E}} + S^*_F \quad Q^* - D^* - B^*_H - B^*_F.
\]

2.2.1 Optimal Consumption and Investment

In line with Section 2.1.2.1.1, the Home financier’s value function takes the form \(V = n \) and that of the Foreign financier takes the form \(V^* = \Omega^*(\tilde{N}^*)n^* \). The Home and Foreign dynamic programming problems of both savers and financiers and the corresponding Euler equations, which are extensions of those in Lemma 2.1,
are reported in Appendix A. Here I want to emphasize the Home financier’s Euler equation for the optimal trade-off between interbank loans denominated in Home and Foreign currency:

\[r_b^* - r_b + \mu_\varepsilon = -Cov_t \left(\frac{d\Lambda}{\Lambda}, \frac{d\varepsilon}{\varepsilon} \right) = \sigma_C \sigma_T, \tag{2.18} \]

where the superscript \(T \) denotes the vector transpose. The Home currency safety premium, the compensation required to invest in Foreign currency by shorting Home currency, is determined by the covariance between Home consumption and the real exchange rate. If the Home currency appreciates (\(\downarrow \varepsilon \)) whenever Home consumption is low, then the Home currency has a positive safety premium. Intuitively, Home interbank loans are safer than their Foreign counterparts because they pay more in bad states of the world.

Since deposits and interbank loans are risk-free in their local currency, no arbitrage implies that \(r_b = r_d \) and \(r_b^* = r_d^* \).

2.2.2 Equilibrium

Cole and Obstfeld Economy

In their classic analysis of the irrelevance of asset markets for international risk sharing, Cole and Obstfeld (1991) show that in an open economy with differentiated goods, agents with logarithmic preferences, and no trade costs, the central-planner’s allocation can be achieved even without trade in asset markets.\(^{32}\) I refer in brief to this economy as the Cole and Obstfeld Economy.

If there are no frictions, then the equilibrium of my model reduces to that of the Cole and Obstfeld Economy. Intuitively, if Foreign financiers face no frictions then: \(\Omega^*(t) = 1 \), so that the Euler equations and the demand equations for goods simplify to those in the frictionless world of Cole and Obstfeld.

As is well known, the Cole and Obstfeld equilibrium features: perfectly correlated Home and Foreign stock markets, symmetric aggregate stock market portfolio holdings,\(^{33}\) zero holdings of risk-free bonds,\(^{34}\) equal consumption state by state, zero NX,

\(^{32}\)This occurs because the endogenous response of the ToT to supply shocks to the two goods is sufficient to implement the international wealth transfers that support the central planner’s consumption allocation.

\(^{33}\)Individual stock market positions are indeterminate since the two stocks are perfectly correlated, but each country’s holding of the aggregate stock market is determinate.

\(^{34}\)In my setting there are zero holdings in the interbank market, which is the equivalent of the risk-free international bonds in Cole and Obstfeld (1991), but the deposit market is still active. However, note that without frictions the trading in the deposit market is merely a matter of internal accounting between savers and financiers in each country, without any real effects. In this sense the Cole and Obstfeld (1991) result on the irrelevance of international asset markets for risk sharing holds in my set-up when there are no frictions.
and indeterminate NFA and CA. The exchange rate is either constant ($\alpha = 0.5$) or positively related to the ToT ($\alpha > 0.5$). These results are a far cry from the stylized facts in Facts 1-4.

Open Banking Economy: Two Trees

In line with Section 2.1.2.1.2, the equilibrium is characterized by a single state variable, the aggregate scaled net worth of Foreign financiers, and a system of three ODEs.

Proposition 2.2. The equilibrium is characterized by a system of three coupled second-order ODEs for the Home price-dividend ratio, $\tilde{Q}(\tilde{N}^*)$, the Foreign price-dividend ratio, $\tilde{Q}^*(\tilde{N}^*)$, and the marginal value of Foreign net worth, $\Omega^*(\tilde{N}^*)$:

$$0 = \mu_Q - r_b - \sigma_C \sigma^T_Q$$

$$0 = \mu_{Q^*} + \mu_{E} + \sigma_{E} \sigma^T_{Q^*} - r_b - \sigma_C (\sigma_{Q^*} + \sigma_{E})^T$$

$$0 = \mu_{\Omega^*} - \sigma_C \sigma^T_{\Omega^*}.$$

The risk sharing allocations are a generalization of equation (2.11):

$$\frac{P^*C^*}{PC} = \frac{\Omega^*}{\xi}.$$

$$C^*_H = \frac{(1 - \alpha)\Omega^*}{\alpha\xi + (1 - \alpha)\Omega^*Y}; \quad C^*_H = \frac{\alpha\xi}{\alpha\xi + (1 - \alpha)\Omega^*Y}$$

$$C^*_F = \frac{\alpha\Omega^*}{(1 - \alpha)\xi + \alpha\Omega^*Y^*}; \quad C^*_F = \frac{1}{\tau} \frac{(1 - \alpha)\xi}{(1 - \alpha)\xi + \alpha\Omega^*Y^*}.$$

Equation (2.22) is the risk sharing condition that underpins the global financial architecture. It states that the value of Foreign consumption increases relative to that of Home whenever the Foreign marginal value of net worth increases. Since in equilibrium Ω^* is counter-cyclical, this occurs in bad economic times.

The terms of trade and the exchange rate can also be understood in terms of movements in Ω^*. The risk sharing conditions above and the definitions in equation

35 The NFA indeterminacy is a consequence of the indeterminacy of the portfolio holdings of each stock. The CA is indeterminate because it is the change in NFA.

36 Consistently with the previous sections, I normalized by the value of world output expressed in the appropriate currency. Consequently, Home variables are scaled by $\frac{pY}{p^*Y^*}$ and Foreign variables by $\frac{pY^*}{p^*Y^*}$.

ToT = \xi (1 - \alpha) + \alpha \Omega^* Y; \quad \epsilon = (ToT)^{2\alpha - 1} \Omega^{\epsilon(\alpha - 1)}.

The ToT are determined by two effects. Movements in the ratio of the two trees affect the ToT by altering the relative supply of the two goods. If the Home good becomes relatively more scarce, then it also becomes relatively more expensive, and the Home ToT improve. This effect is present irrespective of domestic bias. In addition, if there is domestic bias (\alpha > 0.5), an increase in \Omega^* weakens the Home ToT. This happens because an increase in \Omega^*, according to equation (2.22), increases the relative consumption of Foreign residents. If the preferences of agents are biased toward the Foreign good (\alpha > 0.5), this induces a relative increase in the demand for the Foreign good. To clear the market, its price increases relative to the Home good. If these agents have no preference bias (\alpha = 0.5), then the ToT are unaffected.

The exchange rate is determined by the combination of three effects. The first two effects derive from the movement in the ToT analyzed above. If \alpha = 0.5, these two effects disappear because the Home and Foreign consumption baskets are identical and movements in the ToT have no effect on the exchange rate. The third effect is caused by variations in trade costs. An increase in \Omega^* induces an increase in Foreign export costs. The higher costs increase the prices Home residents pay for the Foreign good (see equation (2.24)), thus relatively increasing the Home price index and causing the Home currency to appreciate.37 The effect is absent in the limit \alpha \uparrow 1, because countries only consume their own good and never export their good.

The effects on the ToT and exchange rate can be understood in terms of the classic Keynes and Ohlin debate on the “transfer problem”.38 In my setting, an increase in \Omega^* is associated with a wealth transfer from Home to Foreign. The reaction of the exchange rate depends on what Foreign (Home) residents do with the additional (reduced) wealth.39

Traditional international macroeconomic models predict that a transfer of wealth from the US to the RoW results in a US dollar depreciation. This prediction derives from the second channel described above: the increased relative demand for RoW

37The trade cost does not affect the ToT, because in a Cobb-Douglas aggregator the unit elasticity of demand of the two goods implies that the wealth and substitution effects originating from trade costs exactly offset each other. In a more general CES aggregator, one could argue that an increase in Foreign trade costs reduces Home demand for Foreign goods and tends to improve the Home terms of trade.

38Following World War I, the Dawes committee imposed reparation payments from Germany to France. Keynes argued that, in addition to the primary burden of the wealth transfer, Germany would suffer a secondary burden due to the deterioration in its terms of trade (Keynes (1929)). Ohlin, on the contrary, argued that no secondary burden would occur as long as French people spent the transfer on German goods (Ohlin (1929)).

39The effect of trade costs on the “transfer problem” was analyzed by Samuelson (1952, 1954).
goods due to the relatively higher wealth of RoW residents. If the US, in fulfilling its role as the key country in the global financial architecture, takes more risk in equilibrium than other countries, the wealth transfer occurs during bad economic times (Fact 3). Traditional models would then predict a US dollar depreciation in such times.\footnote{This is reminiscent of "Triffin's dilemma". Triffin (1960) postulated that in running large trade deficits due to its effort to provide the world reserve currency, the US would suffer heavier losses, and potentially a run on its currency, during global crises.} If this were the case, however, the US dollar would be a risky asset for RoW residents, since it would pay low in bad states of the world. The role of the US dollar as a reserve currency (Fact 4), therefore, is inconsistent with this traditional mechanism. This is the "reserve currency paradox": the key country's currency appreciates during a crisis despite the country suffering heavier wealth losses relative to other countries.

The model rationalizes this paradox by noting that in normal times, or even for mild negative shocks, the combination of the various effects produces an ambiguous exchange-rate response. However, for sufficiently large adverse shocks, such as global crises, the relative shift in demand toward the Home good, caused by an increase in \(\tau \), dominates and the Home currency appreciates. This non-linearity allows for rich exchange rate dynamics. While it is consistent with the traditional view, with the exchange rate behaving much as predicted by traditional models in normal times, it extends this mechanism in order to make sense of the behavior of the exchange rate during extreme events.

Figures 2.7-2.8 isolate the role of the Home currency as a global safe asset by presenting the equilibrium of the model under no domestic bias (\(\alpha = 0.5 \)). In this case, the exchange rate is entirely driven by movements in trade costs. Since the Home currency appreciates whenever intermediaries lose capital, it provides a hedge for the global financial system. Correspondingly, Figure 2.8 shows that the Home currency has a safety premium (Fact 4): global financial intermediaries are willing to earn negative expected excess returns as compensation for holding this safe currency.

Figure 2.7 shows how the equilibrium risk sharing allocation between Home and Foreign is implemented via the financial intermediaries' portfolios. First, note that for the case where \(\alpha = 0.5 \) the returns of the two stocks in the same currency are perfectly correlated, as in Cole and Obstfeld (1991), because changes in the ToT exactly offset the dividend shocks.\footnote{See Appendix A for details. The drawback is that in this case, as in Cole and Obstfeld (1991), the NFA and CA are indeterminate. See Pavlova and Rigobon (2007, 2010a,b) for a discussion of how the result of Cole and Obstfeld (1991) affects a set-up with domestic bias and demand shocks.} Therefore, I focus on intermediaries' holdings of the aggregate world stock market. The insight from Cole and Obstfeld (1991) on the relevance of asset markets for risk sharing has one further implication for my model (for the case \(\alpha = 0.5 \)): despite the presence of two sources of fundamental risk, the two dimensional Brownian motion \(\vec{z} \), two independent assets are sufficient to achieve
the equilibrium risk sharing. Figure 2.7 presents the case where intermediaries can trade the world stock market and lend or borrow in the Home-currency interbank market.

Foreign intermediaries invest in the risky asset, the stock market, and hold precautionary long positions in Home currency in the interbank market. Following a negative shock, Foreign intermediaries lose capital and their heightened concern for further losses leads to a fall in their investments in the risky asset and an increased demand for the Home currency. This global flight toward the Home currency leads to an increase in its safety premium through both an expected Home currency depreciation and a more pronounced fall in the Home interest rate than in the Foreign one. Even in the limit, as Foreign intermediaries lose all capital, their long positions in Home currency allow them to hedge the risk deriving from their long stock positions and, in contrast with Section 2.1.2.1.2, Foreign intermediaries maintain a long position in the stock.

I offer a view of the international role of the US dollar as a reserve currency based on risk. This contrasts with previous models of the key currency that had focused on its role as a vehicle currency, that is, a medium of exchange, in international transactions (Krugman (1980); Matsuyama, Kiyotaki, and Matsui (1993)).

The model provides a rationale for the “Global Saving Glut”, the hypothesis formulated by Bernanke (2005) that the RoW demand for US safe assets lowered US interest rates and contributed to large US trade deficits. In the spirit of Caballero and Krishnamurthy (2009), the model stresses how Home safe liabilities are demanded by global financial intermediaries as a precautionary investment. More technically, the combination of the Home safe asset and the risky assets, the two stocks, allows Foreign intermediaries to replicate the Foreign risk-free asset, which might not be directly available to trade. Following negative shocks, the increased Foreign demand for the Home safe asset accentuates the fall in the Home risk-free rate. In contrast to the previous papers, however, I emphasize the importance of the exchange rate. Even the safest US assets, such as Treasuries and short term liabilities of the banking system, would not be particularly safe for RoW investors if the US dollar were to

42 International markets’ completeness requires three independent traded assets. Recall from Section 2.2.2.2.2 that in the Cole and Obstfeld Economy international asset markets are completely unnecessary to implement the risk sharing. Here the difference is that international asset markets are necessary to implement the asymmetric risk sharing, but an international asset market structure that falls short of the complete one is sufficient for the implementation.

43 The equilibrium for the case that allows financial intermediaries to trade the stocks and the Foreign-currency denominated interbank deposits features identical allocations and asset prices. The portfolios, however, are different: Foreign intermediaries are long the stocks and lend in the interbank market in the Foreign currency. As the Foreign intermediaries lose capital they decrease their positions in the stock and increase their lending in the Foreign currency. In the limit, as Foreign intermediaries have no net worth, they own no stocks and only lend in the Foreign currency. These portfolios are not consistent with those observed in the data (Fact 1).
A dimension along which the model could be extended is the heterogeneity of financial intermediaries. Bernanke, Bertaut, DeMarco, and Kamin (2011) and Shin (2011) provide empirical evidence that there is heterogeneity in the portfolios of RoW financial intermediaries. For example, the evidence suggests that intermediaries based in Asia and other emerging markets have long positions in US safe assets, while some of the larger European banks are both funding themselves in the US and investing these funds in a wider spectrum of US assets, including bond and equities. In short, these European intermediaries are providing off-shore financial intermediation to the US, which Bernanke et al. (2011) and Shin (2011) suggest is related to lower capital requirements for European banks.

Since the focus of this chapter is on explaining the aggregate US international position, I have grouped the RoW intermediaries into one homogenous class. This simplification allows the model to sharpen its focus on aggregate flows, and leaves it to future research to also model the heterogeneity of the RoW intermediaries.

2.3 Summary Remarks

A simple asymmetry in the global financial system, heterogeneity in financial development, can rationalize the economic role of the US in the global financial architecture. I have shown how the greater depth of financial development of the US leads to its role as the global risk taker with respect to both fundamental and financial risk. The four stylized facts that motivated my analysis emerge as consequences of the asymmetric risk taking that characterizes the global financial architecture.

The model not only provides a theoretical framework that jointly makes sense of these facts; its main contribution is to have done so by providing the underlying economic foundations through the explicit modeling of financial intermediation and its frictions. These foundations have highlighted the risks that affect the global financial system, as well as the costs and rewards for each country. The tractability of the foundations and the almost analytical solution method provide a base for future research.

44 Notable exceptions are countries with currencies that are (quasi-)pegged to the US dollar, such as China. The accumulation of precautionary reserves in US dollars, however, extends well beyond countries with pegged currencies.

45 This is a form of regulatory or tax arbitrage. Similarly, one could argue that Switzerland and Singapore, countries with high financial development, also provide off-shore intermediation. The role of these financial centers in the global financial architecture seems to be mainly related to these regulatory and tax advantages.
Chapter 3

The US Dollar Safety Premium

The international monetary system has long been characterized by the existence of a reserve currency: first it was gold, then the British pound sterling, and most recently the United States dollar. Conventional wisdom is that the reserve currency plays a special role in the international monetary system by acting as a safe asset during periods of rare, but intense, crisis. During such episodes a global flight to quality takes place: investors look for safe assets in international financial markets, concentrating their demand on short-term liabilities denominated in the reserve currency. The reserve currency should therefore, on average, earn a safety premium: the compensation that investors require to short this currency and invest in a basket of foreign currencies. This premium should vary over time and, in particular, be highest in times of global financial stress.

I document that this is exactly the role played by the US dollar during the modern floating exchange rate period (1973-2010). Figures 3.12-3.13 plot my estimates of the dollar safety premium. Periods of crisis are highlighted. The dollar safety premium is on average 1% on an annual basis. It increased to as much as 52% following the collapse of Lehman Brothers in October 2008.

The recent global financial crisis has been a painful reminder of the economic logic behind my results. The preceding period had been characterized by buoyant financial markets, low risk premia and an expanding world economy. The dollar had been on a depreciating trend since 2002 and the US was a large external debtor. During the crisis, and especially at the time of the Lehman Brothers default, the dollar experienced a knee-jerk appreciation. At the time, market commentary emphasized the global search for safe assets, which culminated in extraordinary demand for short-term US liabilities. Surprisingly this happened despite the US being a substantial international debtor with a worsening fiscal position and the US economy being among the worst hit by the global crisis. After June 2009, as the most acute phase of the crisis faded and markets began to stabilize, the dollar started to depreciate. In the
words of the US Secretary of the Treasury, Timothy F. Geithner:\(^1\)

"Over the last two and a half years, you have seen a period when the world was most concerned about the potential risk of global depression, was most concerned about the possibility of systemic collapse; you saw the world seek the safety of the risk-free asset of the United States. The dollar generally rose over that period of time, and as the world has become progressively more confident some of those safe-haven flows have been reversed."

These facts can be interpreted in terms of the dollar safety premium. When a shock, such as the Lehman Brothers collapse, hits the economy, the dollar safety premium increases on impact as investors demand more dollars. This causes a dollar appreciation on impact to the point of overshooting:\(^2\) to generate a high safety premium the dollar appreciates to such an extent that it is expected to depreciate in the future. The expected negative return from holding dollars is the compensation for its safety. As the shock fades, investor demand for the dollar decreases, thus triggering a dollar depreciation and a reduction in the dollar safety premium.

To estimate the dollar safety premium I first formalize the exchange rate dynamics in terms of risk premia (Section 3.1). The theory section of this chapter is intentionally minimalist so that the identification in the data is not strictly model dependent and its implications encompass a larger set of theoretical structural models. To estimate the dollar returns I employ a novel dataset of currency returns and a new measure of financially weighted exchange rates. I estimate the time varying dollar safety premium by employing techniques on information conditioning and instrumental variables developed in the empirical asset pricing literature (Campbell (1987); Harvey (1989); Duffee (2005)).

Despite conventional wisdom on the role of the reserve currency during crises being widely discussed in the financial press\(^3\) and the clear importance of the subject for the global economy, relatively little academic literature has been devoted to the topic. The importance of the reserve currency during times of crisis was first noted by Bagehot (1873) in his treatise on London money markets. Triffin (1960) emphasized the possibility that the key country, which runs large deficits in its aim to supply currency to the rest of the world, could fall victim to a run on its currency in times of global stress.

\(^1\)CNBC interview on November 11, 2010.

\(^2\)This effect is reminiscent of the famous Dornbusch overshooting (Dornbusch (1976)). However, the effect here is caused by changes in the risk premium that are absent from the Dornbusch model. Risk premium effects to the level of the exchange rate were introduced by Obstfeld and Rogoff (1998).

\(^3\)For a recent example from the Financial Times: “traders have long been using the US dollar as a proxy for risk appetite: its decline a signal that markets were relaxed about global economic growth, and its rise a gauge of haven flows as sentiment deteriorated” (article by Jamie Chisholm on October 11, 2010).
In the context of more recent studies, this chapter contributes to the literature on the role of the dollar in the international monetary system. This literature has investigated whether dollar denominated assets offer lower returns than comparable foreign currency assets, and whether this return differential is predictable. Gourinchas and Rey (2007a,b) find a positive and predictable return differential and call it the US “exorbitant privilege”. Curcuru, Dvorak, and Warnock (2008, 2010), and Lane and Milesi-Ferretti (2009) show that systematic bias in revisions to the US balance of payments data leads to an overestimation of the return differential. More recently, Forbes (2010), Habib (2010) and revised estimates from Gourinchas and Rey (Gourinchas, Govillot, and Rey (2010)) find a positive return differential.

The main difficulty in accurately estimating returns for long time spans is the coarse detail that national statistics provide on the nature of assets held across borders. Even within asset categories such as equity, foreign direct investment (FDI), and bonds, there exists substantial cross-sectional heterogeneity that could swamp any international asset return differential.

By focusing on the US currency return (i.e. the return differential between US and rest of the world (RoW) risk-free bonds). With a simple theoretical decomposition, I show that this return is a direct component of the return differential of any other asset class (equities, FDI, corporate bonds). The advantage of focusing on the currency return is that I can use assets that are comparable across countries and for which returns are accurately measured. Clearly this return differential does not strictly imply a return differential for the US external position; that will depend on the exact composition of the assets held in the US external account. However, should there be a return differential between comparable US and RoW assets, then it should exist irrespective of whether the assets are actually held in the US external account or not.

I estimate the conditional dollar safety premium instead of focusing on unconditional returns, as is done in the literature discussed above. In fact, I show that the unconditional dollar safety premium, while positive, is not statistically significant. This is not surprising given the low mean returns and the volatility of exchange rates. Nor is it uncommon: it is a feature shared by many other risk premia in finance, including the equity risk premium. However, the hypothesis that the dollar acts as a key currency for the global financial system has the conditional implication that its safety premium should increase during times of global financial stress. Testing this conditional statement, I provide significant statistical evidence in favor of a positive dollar safety premium, particularly in times of crisis.

Authors have advanced a variety of possible explanations for the return differential: the superior ability of the US to time its investments compared to the RoW (Curcuru et al. (2010)), US exorbitant privileges (Gourinchas and Rey (2007a)), and the superior financial development of the US (Caballero, Farhi, and Gourinchas (2008), Mendoza, Quadrini, and Ríos Rull (2009), Forbes (2010), Maggiori (2011)). In this chapter I suggest a simple risk based rationalization of the return differential. A portfolio that is short dollars and long a basket of foreign currencies earns an aver-
a positive return to compensate for the risk of negative returns in times of crisis, when the dollar appreciates due to the global flight to quality toward the reserve currency. Such a portfolio is risky, because it has a negative payoff in the bad states of the world. Time variation in this risk premium generates predictable movements in dollar returns.

This chapter is also related to the literature on the failure of the Uncovered Interest Parity (UIP) condition and the carry trade. Fama (1984) documents systematic deviations from the UIP condition, stating that the exchange rate movement should offset the interest rate differential, so that returns from currency speculation are zero. Among a vast empirical literature, important recent contributions are Lustig and Verdelhan (2007),4 Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), Lustig et al. (2010), and Lustig, Roussanov, and Verdelhan (2011), who estimate asset pricing models of currency returns with systematic deviations from UIP. The dollar safety premium estimated in this chapter is also a deviation from UIP. The focus of this chapter, however, is different from the UIP or carry trade literature: I am interested in the time series properties of the dollar safety premium, while this literature is mainly focused on the cross section of currency returns. I estimate a conditional asset pricing model, while the papers above focus on unconditional moments.5 Within the UIP literature the most closely related papers are Cumby (1988), who estimates conditional covariances of bilateral currency returns with US consumption, and Lustig, Roussanov, and Verdhean (2010), who estimate a countercyclical dollar risk premium using the average forward rate on a basket of foreign currencies and US industrial production growth.

3.1 Theory

Consider a two country world: US and RoW. By simple no-arbitrage asset pricing, there exist two stochastic discount factors (SDF), one for each country, such that

\[1 = E_t[\Lambda_{t+1} R_{t+1}]; \quad 1 = E_t[\Lambda^*_{t+1} R^*_{t+1}], \]

where \(\Lambda_{t+1} \) is the US SDF, and \(R_{t+1} \) is any US asset return. RoW variables are denoted by \(\ast \). The exchange rate is defined as the US price of RoW currency and denoted \(E_t \) (a decrease in the exchange rate is a US dollar appreciation).

4See also Burnside (2011) and Lustig and Verdelhan (2011).

5Papers on the cross sections of currency returns most commonly sort currencies into portfolios based on the level of their interest rates. This sorting is close to a model where the only conditioning information is the interest rate.
Proposition 3.1. Assume no arbitrage and that all assets are traded internationally, then there exist two SDFs such that

\[\Lambda_{t+1} = \Lambda^*_t \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}}. \]

(3.1)

Furthermore, the SDFs

\[M_{t+1} \equiv \text{proj}(\Lambda_{t+1}|A); \quad M^*_{t+1} \equiv \text{proj}(\Lambda^*_{t+1}|A^*), \]

(3.2)

where \(A^* = A\mathcal{E}_{t+1} \) is the space of internationally traded assets, always satisfy the above relationship.

A simple proof is relegated to Appendix A. The economic logic behind the proposition is provided by Backus, Foresi, and Telmer (2001) and Brandt, Cochrane, and Santa-Clara (2006). US and RoW agents agree on the prices of all assets that they can trade. Under complete markets, the span of assets covers the entire state space so that agents agree on all possible prices. Under this condition, the SDF of each country is unique and obeys the relationship in equation (3.1). However, if markets are not complete agents need only agree on the prices of assets that can actually be traded. For each country there exists an infinite set of valid SDFs. Equation (3.1) does not need to hold between any two arbitrary SDFs. However, two special SDFs continue to satisfy equation (3.1): the SDFs that lie in each country’s payoff space. I work with these SDFs for the rest of the chapter.\(^6\)

In this setting it is possible to derive an intuitive decomposition of the expected excess return of investing in a RoW asset by shorting a US asset.

Proposition 3.2. Assume that asset returns, SDFs and the exchange rate are jointly log-normally distributed. Then the expected excess return in dollars of the RoW asset over the US asset is

\[E_t[r^*_{t+1} + \Delta e_{t+1} - r_{t+1}] + \frac{1}{2} \text{Var}_t(r^*_{t+1} + \Delta e_{t+1}) - \frac{1}{2} \text{Var}_t(r_{t+1}) = \]

\[-\text{Cov}_t(m^*_{t+1}, r^*_{t+1}) + \text{Cov}_t(m_{t+1}, r_{t+1}) + \text{Cov}_t(r^*_{t+1}, \Delta e_{t+1}) - \text{Cov}_t(m_{t+1}, \Delta e_{t+1}). \]

The simple derivation is in Appendix A. Lower cases denote natural logarithms. The LHS is the expected excess log return plus Jensen’s inequality terms due to the domestic risk and exchange rate risk.

\(^6\)Working with these specific SDFs has the advantage of not having to assume complete markets. The drawback is that all subsequent derivations are valid up to the orthogonal elements to each SDF and their products being sufficiently small. This is routinely assumed to be the case in empirical finance work. An alternative setup discussed by Brandt, Cochrane, and Santa-Clara (2006) and Lustig et al. (2007,08,10) is to assume complete markets, so that the SDFs are unique, but also to assume the existence of frictions on the goods market.
use of logarithms. The RHS shows that the risk premium can be decomposed into four components:

- \(-\text{Cov}_t(m_{t+1}^*, r_{t+1}^*)\): RoW asset risk premium over the RoW risk-free rate, expressed in RoW currency;
- \(-\text{Cov}_t(m_{t+1}, r_{t+1})\): US asset risk premium over the US risk-free rate, expressed in dollars;
- \(\text{Cov}_t(r_{t+1}^*, \Delta e_{t+1})\): RoW asset is riskier for US investors if it pays higher when the dollar depreciates; and
- \(-\text{Cov}_t(m_{t+1}, \Delta e_{t+1})\): dollar currency safety premium.

Intuitively consider the case of RoW and US equities. A US investor who buys RoW equities by selling US equities will earn the RoW equity premium, pay the US equity premium, and earn/pay a compensation for foreign exchange risk.

The first two terms on the RHS of equation (3.3) are typical of closed economy analysis. Flight to quality, in that setting, is manifested as the increase in the risk premium of riskier assets (say, equities) in times of economic stress. The last two terms add the international dimension to the analysis of flight to quality: the exchange rate. In this light, global flight to quality toward the dollar is manifested as an increase in the risk premium of investing in RoW currency by funding in dollars in times of economic stress.

The last term on the RHS of equation (3.3) is identified to be the dollar safety premium (SP_t) by observing that in the case of the US and RoW risk-free rate, equation (3.3) reduces to

$$SP_t \equiv r_{t+1}^* + E_t[\Delta e_{t+1}] - r_{f,t+1} + \frac{1}{2}Var_t(\Delta e_{t+1}) = -\text{Cov}_t(m_{t+1}, \Delta e_{t+1}). \quad (3.4)$$

The dollar safety premium is positive if the dollar appreciates when the SDF increases. Logically, the dollar is safe if it appreciates in times of economic stress. Those times are characterized by high marginal utility growth, and therefore a high SDF. The safety premium is closely related to the deviation from uncovered interest parity (UIP). The UIP condition can be stated in logs as \(E_t[r_{f,t+1}^* + \Delta e_{t+1} - r_{f,t+1}] = 0\). Therefore, up to the Jensen’s inequality term \(\frac{1}{2}Var_t(\Delta e_{t+1})\) the currency risk premium is the deviation from UIP.

The last step to make the above equations operational is to specify the functional form of the SDFs in equation (3.2). \(M_{t+1} = A_t - B_t R_{f,t+1}^w\) (\(A > 0, \quad B > 0\)) is the unique US SDF lying in the payoff space: it consists of a long position in the US risk-free rate (\(A_t / R_{f,t+1}^w\)) and a short position in the world equity portfolio expressed in dollars (\(B_t\)). If one identifies the world equity portfolio to be the market portfolio, the above
SDF yields the CAPM. By substituting the log approximation \(m_{t+1} = a_t - b_t r^w_{t+1} \) to \(M_{t+1} \) in equation (3.4), the dollar safety premium reduces to

\[
SP_t = -Cov_t(m_{t+1}, \Delta e_{t+1}) = b_t Cov_t(r^w_{t+1}, \Delta e_{t+1}).
\]

There are two possible sources of time variation of the risk premium: time varying price of risk \((b_t) \), and time varying quantity of risk (covariance). Furthermore, the two variations could amplify each other (synchronous) or smooth each other (asynchronous). The challenge is that the conditional covariance is not observable and needs to be estimated.

3.2 Data

I build indices for the dollar currency return versus a basket of foreign currencies (the RoW currency), as well as comparable indices for stock market returns at monthly frequency for the period from January 1970 to March 2010.

I use the Morgan Stanley Capital International (MSCI) Barra indices to measure stock market returns. These indices are weighted by the equity market capitalization of each component country. The MSCI-Barra indices are widely used both in the financial industry and in academia (Fama and French (1998)) to measure international stock returns. They are particularly suited to this analysis because they only include stocks that can actually be traded by foreigners and are adjusted to make returns comparable across countries’ different accounting and legal systems. I use a World index that includes 23 developed and 22 emerging countries, and a Developed index that only includes the developed countries.\(^7\) The two indices are identical for the period 1970-1987 as the emerging countries are assigned a zero weight, and progressively differ for the period 1988-2010 as the emerging countries’ market capitalization increases. Figure 3.1 plots the two total return\(^8\) equity indices.

For both the Developed and World indices I build US dollar spot exchange rate indices, shown in Figure 3.2. These are market capitalization\(^9\) weighted exchange rate indices. For example, the dollar exchange rate corresponding to the World index measures the value of the dollar versus a basket of currencies, where the weight of

\(^7\)The “Developed index” corresponds to the MSCI Barra World index. The “World index” is built by using the MSCI Barra World index for the period 1970-1987 and the MSCI Barra All Country World index for the period 1988-2010. All indices are available on the MSCI Barra website and from Datastream.

\(^8\)These indices include dividend payouts.

\(^9\)The capitalization here refers to the equity market, which is particularly suited to my analysis as it makes equity and currency returns comparable. In general, it would be desirable to have a foreign exchange market capitalization weighted exchange rate, where the weight of each currency corresponds to its share of transactions in the foreign exchange market. Unfortunately, the foreign exchange market is over-the-counter and, therefore, the necessary data is not readily available.
each bilateral exchange rate10 corresponds to the weight of the country in the equity World index excluding the United States.

Financially weighted exchange rates are a notable improvement over the trade weighted or equally weighted exchange rates more commonly used in the literature to analyze broad movements in currency values. Lane and Shambaugh (2010) show that trade weighted indices are insufficient to understand the financial impact of currency movements and argue for financial exchange rates. They build financial exchange rates for each country based on the currency composition of its foreign assets and liabilities. Their exchange rates, although similar in spirit, differ from those employed here. To the best of my knowledge, I am the first to use market capitalization based exchange rates.

To measure the dollar currency returns I first build estimates of the bilateral interest rate differential between each country in the sample and the US, then weight each of these differentials using the same MSCI-Barra weights as above. One would hope that such data for the modern floating period 1973-2010 would be readily available and commonly shared among papers in the literature. Surprisingly this is not the case. I detail the methods used to build bilateral interest rate differentials in a separate note, “Note on New Estimates of Currency Returns”. The resulting dataset is more extensive both in terms of the currencies (53) and the time span (1970-2010) covered. Figure 3.3 shows the time series of the interest rate differential indices for the World and the Developed indices.

The use of World and Developed countries weighted indices for both equity and currency returns minimizes concerns about sovereign credit risk and investors’ access to these assets for trading purposes. In particular, Emerging Markets have relatively little weight in the World index until recent years, and all the results in this chapter are robust to focusing only on the more financially developed countries included in the Developed index.

3.3 Empirical Identification

To estimate the dollar safety premium in equation (3.5), I employ the instrumental variable approach pioneered by Campbell (1987) and Harvey (1989). I follow most closely the approach in Duffee (2005), who estimates the conditional covariance between US consumption and US stock returns.

To lighten the notation I suppress the superscript \(w \) from the equity returns. The

10The data for bilateral spot exchange rates is from MSCI-Barra and is available from Datastream. MSCI-Barra collects the data from Reuters’ multi contributors pages and WM-Reuters exchange rate service.
covariance in equation (3.5) can be expressed as

\[
\begin{align*}
 r_{t+1} &= E_t[r_{t+1}] + \eta_{t+1}^r; \\
 \Delta e_{t+1} &= E_t[\Delta e_{t+1}] + \eta_{t+1}^e; \\
 \text{Cov}(r_{t+1}, \Delta e_{t+1}) &= E_t[\eta_{t+1}^r \eta_{t+1}^e].
\end{align*}
\]

(3.6)

This leads to a three stage procedure. The zero stage regressions are classic predictive regressions of the type run by Campbell and Shiller (1988), and Fama (1984):

\[
\begin{align*}
 r_{t+1} &= \alpha_r Y^r_t + \epsilon_{r,t+1}; \\
 \Delta e_{t+1} &= \alpha_e Y^e_t + \epsilon_{e,t+1}.
\end{align*}
\]

(3.8)

(3.9)

where \((Y^r_t, Y^e_t)\) are vectors of predictive variables, such as the dividend-price ratio and the interest rate differential. These regressions are dubbed zero stage regressions to distinguish them from the first and second stage regressions typical of the GMM-IV setup that follows. The role of the zero stage is to extract the predictable element (the time expectation) in equation (3.6) from stock returns and exchange rate changes.

Denote the product of the residuals in equations (3.8-3.9) as \(\tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) \equiv \tilde{\epsilon}_{t+1}^r \tilde{\epsilon}_{t+1}^e\). The tilde is to stress that this is an ex-post estimate of the covariance and a time \(t+1\) object. The first stage regression projects this ex-post covariance on a set of instruments \(Z_t\) to obtain an estimate of the time \(t\) conditional covariance:

\[
\begin{align*}
 \tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) &= \alpha_z Z_t + \xi_{t+1}; \\
 \tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) &= \tilde{\alpha}_z Z_t.
\end{align*}
\]

(3.10)

(3.11)

The choice of instruments is detailed in Section 3.3.1. The conditional covariance (equation (3.11)) is the estimate of the unobservable conditional covariance in equation (3.7).

The second stage regression estimates the model in equation (3.5) with instrumental variables:

\[
\begin{align*}
 r_{f,t+1}^* + \Delta e_{t+1} - r_{f,t+1} + \frac{1}{2} \tilde{\text{Var}}(\Delta e_{t+1}) = d_0 + [d_1 + d_2 b_t] \tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) + \omega_{t+1},
\end{align*}
\]

(3.12)

where \(\tilde{\text{Var}}(\Delta e_{t+1}) \equiv (\tilde{\epsilon}_{t+1}^e)^2\) is the ex-post estimate of the variance of the exchange rate, and \(b_t\) some observable proxy for the price of risk. This setup is quite flexible. For \(d_2 = 0\), the only source of time variation in the dollar safety premium is the time variation of the covariance. For \(d_2 \neq 0\) a time varying price of risk also contributes to the time variation of the dollar safety premium.

I estimate the first stage regression using OLS and allow for both heteroskedasticity and serial correlation by using the Newey-West variance covariance matrix. To test the hypothesis of time variation in the conditional covariance I use the asymptotically valid \(\chi^2\) test that all coefficients, except the constant, are jointly zero. However, I also report the \(F\) test because of its prominent role in instrumental variable analy-
sis.11 The zero and second stage regressions are estimated jointly using GMM. This allows the second stage standard errors to not only incorporate uncertainty deriving from the first stage estimation (as it is standard in IV settings), but also the uncertainty deriving from the zero stage estimation. The details of the GMM estimation are discussed in Appendix C.

3.3.1 Choice of Instruments

My choice of predictors in \((Y_t^r, Y_t^e)\) follows an established literature started by Campbell and Shiller (1988) and Fama (1984) in using, respectively, the dividend-price ratio and the interest rate differential. I also include one lag of returns and exchange rate changes to account for possible serial correlation.12 The sets of regressors are

\[
Y_t^r = [1, dp_t, r_t] \quad \text{and} \quad Y_t^e = [1, r_{f,t+1}^* - r_{f,t+1}, \Delta e_t].
\]

The set of variables to be used as instruments \((Z_t)\) in the first stage regression can potentially contain any variable that is known at time \(t\). Cochrane (2005), however, cautions against the use of instruments that lack a theoretical underpinning in order to avoid spurious correlations. In the setting of this chapter, theory suggests that the conditional covariance should increase during times of economic stress, when risk premia are high. Correspondingly, I include instruments that have been shown to pick up increases in the risk premia in times of stress. I include the dividend-price ratio. Cochrane (2008) shows that, given the inability of the dividend-price ratio to predict future dividends, its time variation is caused by time-varying risk premia. I include one lag of stock returns and exchange rate changes since large (negative) movements are associated with increases in variance and risk premia. For similar reasons I also include lagged variances of stock returns and exchange rate changes. Menkhoff, Sarno, Schmeling, and Schrimpf (2011) show that the lagged volatility of exchange rates is a predictor of currency risk premia. Finally, I include lagged covariances to account for potential serial correlation.

To summarize, the benchmark set of instruments is

\[
Z_t = [1, dp_t, r_t, \Delta e_t, \text{var}_t^r, \text{var}_t^e, \text{cov}_t].
\]

To avoid estimated regressors bias, I follow Duffee (2005) in employing close proxies to the lagged variances and covariances that do not need to be estimated in the zero order regression. These proxies match the time series properties of the estimated series closely. To limit the number of explanatory variables I use 2-month sums for

11The \(\chi^2\) and \(F\) test are asymptotically equivalent. In small samples the \(F\) test has wider confidence intervals. However, in my results the sample length and the number of restrictions are such that the rejection regions are approximately identical for the two tests.

12I experimented with further lags. Lags beyond the first are mostly not statistically significant and do not alter the results.
the volatilities. Since the correlogram of the estimated covariances suggests autocorrelations up to the third lag, I use 3-month cross products for the covariance.

\[
\begin{align*}
\var_t' &\equiv \sum_{i=0}^{1} (r_{t-i} - \bar{r})^2; \\
\var' &\equiv \sum_{i=0}^{1} (\Delta e_{t-i} - \bar{\Delta} e)^2; \\
\cov' &\equiv \sum_{i=0}^{2} (r_{t-i} - \bar{r})(\Delta e_{t-i} - \bar{\Delta} e),
\end{align*}
\]

where barred variables are sample averages.

In an extension of the instrument set, I also include the interest rate differential because the covariance is closely related to the deviation from UIP.

The set of instruments employs only variables that closely match the stock and exchange rate indices used in the RHS of equation (3.10). In the robustness checks I extend the set of instruments to variables that, while not directly related to the indices employed here, have also been shown to predict stock returns and exchange rates.

3.4 Empirical Results: the US Dollar Safety Premium

3.4.1 The Average Safety Premium

I find that the average US dollar safety premium is 1% on an annual basis. Table 3.1 provides the sample averages of both the total premium and its subcomponents. The safety premium is similar for both the World and Developed indices. The largest monthly gains (10%) occurred in February 1973, when the Bretton Woods system broke down. The largest monthly losses occurred in November 1978 and in October 2008. The November 1978 dollar appreciation was the result of large scale US intervention\footnote{The US government approved the build-up of 30 billion dollars in foreign currency reserves to intervene in the currency market in support of the dollar. The US Treasury issued foreign currency-denominated securities, which would become known as the “Carter bonds”, in the Swiss and German capital markets in order to acquire foreign currencies needed for sale in the market. The US also drew its reserve position in the IMF.} in the currency market to support the value of the dollar against the backdrop of the second oil shock. The October 2008 dollar appreciation during the Lehman Brother crisis has already been discussed in the introduction.

The safety premium is not statistically significant. This is not surprising. Economically it is just a symptom of low Sharpe ratios (low mean returns compared to their standard deviation) and relatively short time spans. With an annualized mean of 1% and volatility of 8%, and using the standard formula \(\sigma / \sqrt{T} \), it would take...
$T \geq 64$ years to detect statistical significance! This feature is shared by many risk premia in finance. For example, the US equity premium for the same period is also not statistically significant, with a t-statistic of only 1.04.

Figures 3.4-3.5 show that the mean US dollar safety premium is fairly volatile across different choices of samples, but remains positive throughout. Figure 3.4 plots the mean safety premium for a rolling window with a fixed end in March 2010 (i.e. start-year to March 2010). The highest safety premium (2% and above) is achieved when the sample starts in the years 1983-1986.

A safety premium around 2% is comparable with the results in Lustig et al. (2010) and Menkhoff et al. (2011), whose sample starts in 1983. Since these papers use an equally weighted basket of currencies versus the dollar, in this section I also report results for an equally weighted index. Figure 3.5 plots the mean safety premium for a reverse rolling window with a fixed start in March 1970 (i.e. March 1970 to end-year). The recent crisis decreases the mean premium by about 0.2%, but does not alter the overall results.

3.4.2 Predictability of Currency and Equity Returns: Zero Stage Regressions

While the dataset covers the period from 1970 to 2010, in the benchmark econometric estimation I start the sample in January 1975 in order to eliminate possible concerns about the inclusion of the pre-floating exchange rate period or the period immediately following the break-down of the Bretton Woods system (December-March 1973).

Table 3.2 contains the results of the zero stage regressions. It re-establishes what are by now classic results from previous studies using the new dataset. The regression in equation (3.8) confirms not only the failure of the UIP condition, a coefficient different from -1, but also the carry trade phenomenon, a positive coefficient. The deviation from UIP is stronger for the Developed index than the World one, both in terms of point estimate and statistical significance. This is due to the inclusion in the World index of emerging market currencies, which have smaller deviations from UIP (Bansal and Dahlquist (2000)). The regression in equation (3.9) confirms the predictability of stock returns from the dividend-price ratio.

\footnote{It leads Cochrane (2005) to conclude that “this is a pervasive, simple, but surprisingly under-appreciated problem in empirical asset pricing”.
\footnote{Computed using the MSCI-Barra US equity Index and the 1-month US Libor rate.
\footnote{A separate UIP regression that uses an emerging market exchange rate index, not reported here, confirms this result.
\footnote{In unreported robustness checks I varied the set of forecasting variables included in each of the zero stage regressions. The results of the chapter are robust to these variations. The results are also robust to including only a constant in the zero stage regressions, so that the sample average is used to form the expectations.}
Figures 3.6-3.7 plot the ex post estimate of the covariance $\tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1})$ obtained as the product of the residuals of zero order regressions.

3.4.3 Time Varying Conditional Covariances: First Stage Regressions

The first stage regression results in Table 3.3 show that the covariance is time varying and predictable. The covariance predictability is robust to the choice of a subset of instruments or to the addition of the interest rate differential, with the χ^2 statistic rejected at the 1% level in all cases. The most substantial drop in predictability occurs when the lagged volatilities are excluded from the instrument set. The inclusion of the interest rate differential in the set of instruments does not help to predict the covariance.

Furthermore, Panel B details that in a univariate regression where the interest rate differential is the only instrument it has a negative coefficient. Theory actually predicts a positive coefficient, as a high interest rate differential with the RoW should make the dollar safer, thus increasing the covariance. In analogous univariate regressions for the other instruments, I confirm that their relationship with the covariance has the sign predicted by theory. While full results from univariate regressions are omitted in the interest of space, the sign predictions and results are summarized in Table 3.4.

Kleibergen (2002) suggests that F statistics above 10 minimize concerns of weak instruments. For this reason, while the χ^2 test is the asymptotically efficient one, I also report the F test. The F statistics of the first stage regressions with the full set of instruments are above 10 and provide support for a strong identification.\footnote{While Kleibergen (2002) has been a seminal contribution to the analysis of IV under weak instruments, the set-up considered in this chapter is more complex than standard IV analysis because of the presence of zero stage regressions (noted by Duffee (2005)). The full description of the properties of more general GMM settings under weak instruments is a work in progress in the econometrics literature.}

Figures 3.8-3.9 plot the conditional covariance estimated using the full set of instruments. Periods of crisis are highlighted. The covariance has a substantial degree of time variation and spikes in times of crisis. The global financial crisis of 2007-09, and in particular the October 2008 Lehman default, is by far the most dramatic event in my sample, as would be expected. Large increases in the covariance also occur during previous periods of crisis or financial stress, such as the collapse of LTCM and the Russian default in August-September 1998, the Worldcom and Enron scandals of the summer of 2002, the terrorist attacks on September 11, the first Gulf war, the stock market crash of 1987, and the second OPEC oil shock of November 1978, to cite a few. A complete list of these events is included in Table 3.6.

One datapoint that needs further attention is the stock market crash of 1987. The econometric procedure estimates an increase in the conditional covariance in
November after the October crash, while Figures 3.6-3.7 show that on impact (in October 1987) the ex-post covariance is negative. This could simply be due to the difference between the ex-ante covariance and its ex-post realization: the agents’ ex-ante expectations about the risk premium need not be exact period by period. A less favorable interpretation is that while the model does well, on average, in predicting the covariance, it does not fit the 1987 episode correctly. This is a valid concern, and it is not econometrically possible to distinguish between the two. However, I want to stress that the χ^2 tests are automatically penalized for this large residual.

There are three notable periods of lower covariance. The covariance trends down during the early part of the 1990s in conjunction with the “great moderation” and the associated decrease in risk premia (Lettau, Ludvigson, and Wachter (2008)). The lowest covariance is achieved during the Dotcom boom market of 1999. The “calm before the storm” of the boom years 2003-07 is noticeable in a decrease of the volatility of the covariance.

While the list of crises examined mostly includes obvious episodes, there is a valid concern of overfitting the story by only looking for crises that are evidenced in the graph. To alleviate this concern, I note that all episodes considered here, with the exception of the Latin America debt crisis of the early 1980s and the Dotcom bust of April 2001, match those identified by Bloom’s (2009) research on volatility shocks.

Figures 3.10-3.11 show the 95% confidence interval around the estimated conditional covariance. The covariance is mostly positive and, in particular, is statistically above zero during episodes of crisis. The mean covariance is 3.58×10^{-4} for the World index and 3.49×10^{-4} for the Developed index, and statistically significant at the 1% level in both cases.\(^\text{19}\)

3.4.4 Time Varying US Dollar Safety Premium: Second Stage Regressions

Table 3.5 reports the estimates of equation (3.12) under the assumption that the covariance is the only source of time variation in the dollar safety premium (i.e. $d_2 = 0$). The covariance has a statically significant and positive association with ex post dollar returns. This confirms not only that the covariance is related to the dollar safety premium, but also that increases in the covariance are increases in the dollar safety premium. Under the full set of instruments, the estimated price of risk (d_1) is around 12 and statistically significant at the 1% level for both the Developed and the World indices. This estimate, while not directly comparable, is close to the “plausibility range” of 5-10 for prices of risk from theoretical models. It is much lower than the prices of risk estimated by standard consumption models, but this is not entirely surprising since I am using market returns in the discount factors rather than

\(^{19}\)These refer to the t-tests for the intercept in the first stage regressions where all other regressors have been de-meaned.
the far less volatile consumption measures.

Table 3.5 also shows that the estimated constant d_0 is not statistically significant. Since the constant could have picked up any approximation error due to imposing a log-linear model to the data, this alleviates concerns that the model is misspecified.

Figures 3.12-3.13 plot the estimated dollar safety premium. The premium varies substantially over time, from lows of -2% during the boom years of 2003-07 to highs of 52% and 48% for the World and Developed indices, respectively, during October 2008. The premium is at approximately 10% during many of the crisis episodes considered here. During these episodes investors are willing to forgo substantial expected returns in order to benefit from the safety of the dollar. This is the price evidence of a global flight to quality toward the dollar.

By exploring the results for subsets of the instruments it becomes clear that a strong driver of the results are the lagged volatilities. Once they are excluded from the instrument set the first stage predictability drops substantially (Table 3.3) and the second stage regression loses significance (Table 3.5). This suggests that volatility or uncertainty shocks play a large role in the global flight to quality toward the dollar. In fact, as noted in the previous section, almost all of the spikes in the dollar safety premium correspond to the uncertainty shocks in Bloom (2009). This opens possible new directions for future theoretical work on the topic. The exclusion of lagged equity returns and exchange rate changes also deteriorates the second stage regressions, but there is no corresponding deterioration in the first stage predictability. The results are robust, but overall weakened, by the inclusion of the interest rate differential or the exclusion of lagged covariances and the dp ratio from the instrument set.

In the benchmark estimates, I started the sample in January 1975 in order to exclude the early period of adjustment to floating exchange rates (1973-1975). By including this earlier period, Figures 3.14-3.15 interestingly highlight two more time periods (see Table 3.6): the first OPEC crisis and the Arab-Israeli War in December 1973, and the Franklin National debacle of September-October 1974.

The above results provide evidence that the conditional CAPM can explain the time series behavior of the US dollar returns versus a basket of foreign currencies. Lettau, Maggiori, and Weber (2011) find that by allowing variation in both the price of risk and the covariances in good and bad times CAPM can also price the cross-section of currency returns. In both the time series and the cross-section it is crucial for the empirical performance of CAPM to correctly account for the time variation in expected returns present in the data.

3.5 Summary Remarks

I have shown that the US dollar earns a safety premium versus a basket of foreign currencies and that this premium is particularly high in times of crisis. These findings support the view that the US dollar acts as reserve currency in the inter-
national monetary system and that it is a natural safe haven during crises, when a
global flight to quality toward the reserve currency takes place.

These findings open new avenues for research to explore what constitutes a re-
serve currency and the drivers behind its role in the monetary system. They suggest
the need to incorporate currency risk premia in the study of global imbalances and
external adjustment models more generally.

The dollar safety premium shown here is a primitive of the valuation channel of
external adjustment pioneered by Obstfeld and Rogoff (1995) and analyzed by the
subsequent literature.20 In this light, note that the risk premium view of the role
of the reserve currency stresses that US investors earn a premium on their currency
investments abroad as a compensation for risk: the risk of large negative payoffs due
to an appreciating dollar precisely in times of crisis. It would be incorrect to infer
that the dollar, or US investors, earn a free lunch. While the dollar safety premium
might facilitate the US external deficit adjustment and my results suggest a “run to”
the dollar at times of crisis, a serious consideration of the inherent riskiness prevents
us from simply brushing off Triffin’s concerns that eventually larger US deficits could
lead to an inversion of the dollar safety premium and a “run from” the dollar during
a crisis.

20Obstfeld and Rogoff (2005); Gourinchas and Rey (2007b); Mendoza et al. (2009); Pavlova and
Rigobon (2010b,a).
Bibliography

Appendix A

Proofs

Chapter 1

Lemma 1.1. Given the conjecture that the saver’s value function only depends on scaled deposits and scaled net transfers, \(U(\tilde{D}, \tilde{\Pi}) \), the optimization problem is solved by the following Hamilton-Jacobi-Bellman (HJB) equation:

\[
0 = \sup_{\tilde{C}} \left\{ \log(\tilde{C}) dt - \rho U(\tilde{D}, \tilde{\Pi}) dt + E_t \left[dU(\tilde{D}, \tilde{\Pi}) \right] \right\}
\]

s.t. \[d\tilde{D} = \tilde{D}(r_d - \mu + \sigma^2) dt + (\tilde{\Pi} - \tilde{C}) dt + \tilde{D} \sigma dz\]

\[d\tilde{\Pi} = \{ \bar{N}\lambda(r_d - \lambda) + \bar{Q}[\lambda(\mu_Q + \delta - r_d) - \delta \mu_Q - \sigma \sigma_Q(\lambda - \delta)] + \bar{\Pi}(\sigma^2 - \mu) + \delta \} dt + [\bar{Q}\sigma_Q(\lambda - \delta) - \bar{\Pi}\sigma] dz\].

The first order condition (FOC) is: \(\tilde{C}^{-1} = U'_{D} \), where the left hand side (LHS) is the first derivative of \(U \) with respect to the scaled deposits. The verification that the value function only depends on \(\{\tilde{D}, \tilde{\Pi}\} \) follows by substituting the FOC back into the HJB equation, and from the fact that:

\[
\bar{N} = \frac{\bar{\Pi} + \delta \bar{D}}{\lambda - \delta}
\]

\[
\bar{Q} = \frac{\bar{\Pi} + \lambda \bar{D}}{\lambda - \delta},
\]

and from the fact that \(\{\bar{Q}, \mu_{Q}, \sigma_{Q}, r_{d}\} \) are going to only be functions of \(\bar{N} \) and can therefore be recovered by knowing \(\{\bar{D}, \bar{\Pi}\} \). The sufficiency of the HJB equation for the solution of the optimization problem follows standard steps from the Verification Theorem.\(^1\) An explicit verification is omitted here and in the following proofs.

To establish the claim that \(-r_d \ dt = E_t \left[\frac{dA}{A} \right] \), I employ the approach in Cox, Ingersoll, and Ross (1985). I take the difference between two expressions. The first

\(^1\)See Øksendal (2003, page 241).
expression is obtained by using the FOC above to write \(\Lambda = e^{-\rho t} \frac{U'}{Y} \), and by applying Ito’s lemma to this function. The second expression is obtained by taking the partial derivative of the HJB equation above with respect to \(\tilde{D} \) and by then multiplying it by \(e^{-\rho t} \). Taking the difference between the two expressions establishes, after tedious but standard algebra, the claim.

Lemma 1.2. Given the conjecture that the financier’s value function depends on aggregate scaled net worth and the individual financier’s net worth, \(V(\tilde{N}, n) \), the optimization problem is solved by the following HJB equation:

\[
0 = \sup_s \left\{ \lambda \Lambda ndt + E_t \left[d(\Lambda V(\tilde{N}, n)) \right] + \chi(t)dt V(\tilde{N}, n) \right\}
\]

s.t. \(dn = s(dQ + Y dt) - r_d d dt \)

\[
d\tilde{N} = \left[\tilde{N}(r_d - \lambda - \mu + \sigma^2) + \tilde{Q}(\mu_q - r_d + \delta - \sigma \sigma_q) \right] dt + (\tilde{Q} \sigma_q - \tilde{N} \sigma) dz,
\]

where \(\chi \) is the Lagrange multiplier. The FOC is:

\[
\mu_Q - r_d = \sigma C \sigma Q - \sigma \Omega \sigma Q. \tag{A.1}
\]

When substituting the FOC back into the HJB equation, I obtain a restriction that the function \(\Omega \) has to satisfy for the conjecture of the value function to be valid:

\[
0 = \lambda \left(1 - \frac{\Omega}{\Omega} \right) + \mu_{\Omega} - \sigma C \sigma \Omega. \tag{A.2}
\]

As long as \(\{\tilde{Q}, \mu_Q, \sigma_Q, r_d\} \) only depend on \(\tilde{N} \) in equilibrium, then the conjecture that \(\Omega \) only depends on \(\tilde{N} \) is verified.

Using the saver’s Euler equation in equation (1.4) and equation (A.2), algebraic manipulations yield the result in equation (1.6). The additional use of the financier’s FOC yields the result in equation (1.5).

Proposition 1.1. The proofs of Lemma 1.1 and 1.2 state that to solve the saver’s and financier’s optimization problems one only needs to know the variable \(\tilde{N} \), as long as \(\{\tilde{Q}, \mu_Q, \sigma_Q, r_d\} \) only themselves depend on that variable. The saver’s Euler equation, equation (1.4), and the market clearing condition \(C = Y \) together imply that the deposit rate is constant in equilibrium and is given by \(r_d = \rho + \mu - \sigma^2 \). Applying Ito’s lemma to \(\tilde{Q} = \frac{Q}{Y} \) and to the conjecture \(\tilde{Q}(\tilde{N}) \) and matching the corresponding drift and diffusion terms yields:

\[
\mu_Q(t) = \frac{1 + \tilde{Q}[\mu + \tilde{Q}'(\delta - \mu - \rho)] + \tilde{N} \tilde{Q}'(\rho - \lambda)}{\tilde{Q}(1 - \tilde{Q}')} + \frac{(\tilde{Q} - \tilde{N}) \tilde{Q}' \sigma^2}{\tilde{Q}(1 - \tilde{Q}')} + \frac{(\tilde{Q} - \tilde{N})^2 \tilde{Q}'' \sigma^2}{2\tilde{Q}(1 - \tilde{Q}')^3}
\]

\[
\sigma_Q(t) = \frac{\tilde{Q} - \tilde{N} \tilde{Q}'}{\tilde{Q}(1 - \tilde{Q}')} \sigma.
\]
Substituting these expressions into the financier’s FOC (equation (A.1)) yields the ODE for \(\dot{Q}(\hat{N}) \), reported in implicit form in equation (1.9), thus verifying that \(\hat{N} \) is the only state variable. The proof that the state variable is a strong Markov process follows from its dynamics in equation (1.7), where the drift and diffusion terms only depend on \(\hat{N} \) itself.

Equation (A.2) is the ODE for \(\Omega \) reported in equation (1.9). The ODEs in equations (1.8-1.9) are implicit and I report here their explicit expressions:

\[
\ddot{Q} = \frac{2(-1 + \dot{Q}') \left\{ (-1 + \dot{Q}')(1 + \dot{Q}(\dot{Q}' - \rho)\hat{N}\dot{Q}'(-\lambda + \rho)\Omega) \right\}}{(N - Q)^2\sigma^2\Omega} + \frac{2(-1 + \dot{Q}') \left[(-\hat{N} + \dot{Q}')(\dot{Q} - \hat{N}\dot{Q}')\sigma^2\Omega' \right]}{(N - Q)^2\sigma^2\Omega} \tag{A.3}
\]

\[
\ddot{\Omega} = \frac{2(-1 + \dot{Q}')^2\lambda\Omega(-1 + \Omega + \hat{N}\Omega')}{(N - Q)^2\sigma^2\Omega} + \frac{2\Omega' \left\{ (-1 + \dot{Q}')(\dot{Q}\delta + \hat{N}\rho) + (-\hat{N} + \dot{Q})(\dot{Q} - \hat{N}\dot{Q}')\sigma^2\Omega' \right\}}{(N - Q)^2\sigma^2\Omega}, \tag{A.4}
\]

where the superscript ” denotes the second derivative of a function.

Lucas Economy: Equilibrium Details

Assume that there are no frictions, so that the constraint \(V(t) \geq 0 \) is no longer present in the financier’s optimization problem. Since financiers are unconstrained in raising deposits, \(\Omega(\hat{N}) = 1 \) and \(\dot{Q}(\hat{N}) = \frac{1}{\rho} \). These constant functions satisfy the ODEs in (A.3-A.4). The risk premium is constant and is given by \(\mu_Q - r_d = \sigma^2 \). Note that financiers can make arbitrary large losses on their investment strategy because they are raising risk-free deposits with a positive interest rate, and investing in a risky asset with a positive (and finite) risk premium. As a technical condition, to ensure that the financier’s optimization problem is well defined, I rule out the “doubling portfolio strategy” by restricting the set of admissible investment strategies to those that are square integrable.\(^2\)

To confirm that the underlying micro-foundations of the model are economically sensible, I analyze the dynamics of \(\hat{N} \equiv \frac{N}{Q} \):

\[
d\hat{N} = (\lambda - \rho)(\frac{\delta}{\lambda - \rho} - \hat{N})dt + \sigma(1 - \hat{N})dz.
\]

Under the restriction \(\delta < \lambda - \rho \), the above stochastic process is mean-reverting and lies in the interval \((-\infty, 1)\).\(^3\) The stochastic steady state is \(\hat{N}^{SS} = \frac{\delta}{\lambda - \rho} \). Note that

\(^2\)See Duffie (2001, 6.c) for details.

\(^3\)A precise proof of the boundary behavior is beyond the scope of this paper. I only note that,
deposits are always positive.

Under the restriction $\delta = \lambda - \rho$ the process, started at $\dot{N}(t = 0) < 1$, will eventually drift to the absorbing upper boundary\(^4\) of 1. Consequently, the stochastic steady state is $\dot{N}_{SS} = 1$. In this scenario, financiers eventually accumulate enough capital to purchase all shares in the output tree without having to raise deposits.

Chapter 2

Lemma 2.1. Since the Home country is unconstrained, the proofs for the autarky case make clear that its consumption and portfolio problems are identical to those of a representative agent with logarithmic utility. The Euler equations in (2.3-2.5) are standard for such an agent. Λ is the Home SDF. I focus here only on the optimization problems of Foreign agents.

Foreign savers solve a problem analogous to Lemma 1.1, so an entirely similar proof applies. Consider the problem of the representative financier in equation (2.1) for $t < t'$. Since the financier pays no net worth to the household for any $t < t'$, the discounted value of her intermediary needs to be a local martingale along the optimal path. The HJB equation is:

$$0 = \sup_{\{b^*(u), s^*(u)\}} E_t[\Delta^*V^*] + \chi(t)dt V^*,$$

where χ is the Lagrange multiplier. Conjecture that the value of the intermediary only depends on its capital and aggregate Foreign scaled net worth: $V(\tilde{N}^*, n^*) = \Omega^*(\tilde{N}^*)n^*$. The FOCs are:

$$\mu_Q - r_d^* = \sigma_{C^*}\sigma_Q - \sigma_{\Omega^*}\sigma_Q \quad (A.5)$$

$$r_b = r_d^*. \quad (A.6)$$

Substituting the FOCs in the HJB equation leads to a restriction that Ω^* has to satisfy:

$$0 = \mu_{\Omega^*} - \sigma_{C^*}\sigma_{\Omega^*}. \quad (A.7)$$

Now consider the problem of the financier for $t > t'$. I conjecture that in this case $\Omega^* = 1$ and the financier will pay out net worth when selected to switch roles. The

\(^4\)This occurs because the drift of the process approaching the upper boundary is positive and decreases to zero in the limit, while the diffusion term converges to zero. See Karlin and Taylor (1981) for a rigorous description.
HJB equation is:

$$0 = \sup_{\{b^*(u), s^*(u)\}} \left\{ \lambda \Lambda_n^* \lambda n^* dt + E_t[d(\Lambda_n^* V^*)] + \chi(t) dt V^* \right\},$$

where $\Lambda_n^* = e^{-(\rho+\lambda)t} \frac{1}{C^*}$. The FOCs are analogous to those above for the case $t < t'$, except that $\sigma_\Omega^* = 0$. Plugging the FOCs back into the HJB equation verifies the guess that $\Omega^* = 1$. However, for this conjecture to be an equilibrium, the upper boundary of the state space needs to be absorbing. This restriction is verified in Proposition 2.1.

It remains to be verified that for $t < t'$ an individual financier will not want to deviate from the HJB problem described above for the representative financier. An individual financier faces the possibility that at some time t^A, where $t < t^A < t'$, she will switch jobs and the net worth of her intermediary will be reinvested with an incoming financier. Consider intermediary A with capital $n^A(t)$ that is liquidated at time t^A, the capital of which is inherited by intermediary B. At time t^A, the value of intermediary B is a linear function of its net worth. The linearity allows me to only concentrate on the capital inherited by intermediary A and, without loss of generality, to ignore the start up capital injected in intermediary B by the household. It follows that $V^B(t^A) = \Omega^*(\tilde{N}^*(t^A))n^A(t^A)$. Using the definition of the value of the intermediary and the law of iterated expectations one has:

$$V^A(t) = E_t \left[\frac{\Lambda^*(t^A)}{\Lambda^*(t)} V^B(t^A) \right] = E_t \left[\frac{\Lambda^*(t^A)}{\Lambda^*(t)} E_{t^A} \left[\int_{t^A}^{\infty} \frac{\Lambda^*(s)}{\Lambda^*(t)} n^B(s) e^{-\lambda(s-t')} ds \right] \right] = E_t \left[\int_{t^A}^{\infty} \frac{\Lambda^*(s)}{\Lambda^*(t)} n^A(s) e^{-\lambda(s-t')} ds \right].$$

Since the chosen timing of the liquidation t^A is arbitrary, this argument holds for a generic intermediary. This proves that the maximization problem for an individual intermediary is equivalent to the problem of the representative intermediary.

Using the Foreign saver’s Euler equation and the restriction on the dynamics of Ω^* in equation (A.7) yields the financier’s pricing equation for the deposit rate in equation (2.7). Using equation (A.6) gives the result in equation (2.8). Equation (A.5), equation (2.7), and equation (A.7) together yield equation (2.6). One concludes that the Foreign SDF is $\Lambda^* \Omega^*$.

Proposition 2.1. The pricing equations for the Open Banking Economy (2.3-2.8) and the fact that bankers can trade both the risk-less interbank rate and the stock
together impose that:

\[
\frac{d\Lambda^* \Omega^*}{\Lambda \Omega^*} = -r_b \ dt - \frac{\mu_Q - r_b}{\sigma_Q} d\zeta
\]

\[
\frac{d\Lambda}{\Lambda} = -r_b \ dt - \frac{\mu_Q - r_b}{\sigma_Q} d\zeta.
\]

This in turn, yields:

\[
\frac{C^*}{C} = \frac{\Omega^*}{\xi},
\]

where \(\xi\) is a scaling constant to be determined.

The verification that the equilibrium can be solved as a function of a single state variable, the scaled net worth of Foreign intermediaries, requires solving a system of equations. As for the autarky case, this is straightforward but algebra intensive. I provide here the steps of the substitutions that I follow, although the substitutions can clearly be made in different orders. To solve for the equilibrium I have normalized all variables for the size of the output tree, so that in the resulting system \(Y\) is no longer a state-variable. The equilibrium risk sharing condition in equation (2.11) shows that the ratio of the two countries’ consumption is fully summarized by \(\Omega^*\). This relationship and the fact that the Home country is unconstrained together allow me to further reduce the number of state variables, since keeping track of \(\Omega^*\) is sufficient to keep track of the ratio of net-wealth in the two countries \(\frac{W^*}{W}\).

The conjecture that \(\Omega^*\) only depends on \(\tilde{N}^*\) remains to be verified. The steps are as follows. Use the risk sharing condition and goods market clearing to derive expressions for the drift and diffusion of consumption in each country. To compute the stock and international bond portfolio for each country use the standard derivation, as in frictionless open economies with complete markets à la Lucas. The Home country net wealth is \(W(t) = SQ - B\) and the consumption optimality condition and budget constraint imply \(W(t) = \frac{1}{\rho} C(t)\). Applying Ito’s lemma to both sides of this last equality and requiring the equality of the resulting LHS drift and diffusion terms with those of the dynamic Home net wealth budget constraint yields two equations linear in two unknowns: the stock position \(S\), and the international borrowing \(B\). The market clearing condition for stock and international bond (interbank loans) markets yield \(S^*\) and \(B^*\).

Use the Home saver pricing equation (2.4) to derive an expression for the risk-free rate. Finally, use the conjecture that \(\{\tilde{Q}, \Omega^*\}\) only depend on \(\tilde{N}^*\) to derive expressions for the drift and diffusion of these processes using similar steps to those in the proof of Proposition 1.1. These operations produce a system of equations in \(\{\mu_Q, \sigma_Q, r_b, S, B, S^*, B^*\}\); its solution expresses these variables as functions of \(\tilde{N}^*\) and the level and first two derivatives of the functions \(\{\tilde{Q}, \Omega^*\}\). Finally, substitute the variables in equations (A.5) and (A.7), the implicit ODEs reported in the main text,
to obtain two coupled second order ODEs for \{\tilde{Q}, \Omega^*\}, thus verifying the conjecture. I report here the extensive form of the ODEs:

\[
\tilde{Q}'' = -\frac{2(-1 + \tilde{Q}'S^*)^2((1 + \xi)(1 + \tilde{N}\tilde{Q}'\rho) + \tilde{Q}(\tilde{Q}'\delta - (1 + \xi)\rho))}{(\tilde{N} - \tilde{Q}S^*)^2(1 + \xi)\sigma^2} + \frac{2(\tilde{Q} - \tilde{N}\tilde{Q}')(1 + \tilde{Q}'S^*)}{\tilde{N} - \tilde{Q}S^*)}\Omega^* - \frac{2(\tilde{Q} - \tilde{N}\tilde{Q})\xi\Omega^{*2}}{\Omega(\xi + \Omega^*)^2}
\]

\[
\Omega^{*''} = \frac{2(-1 + \tilde{Q}'S^*)}{(\tilde{N} - \tilde{Q}S^*)^2} \left(\tilde{N} - \tilde{Q}S^* - \frac{(-1 + \tilde{Q}'S^*)\tilde{Q}(1 + \xi)\rho}{(1 + \xi)\sigma^2} \right) \Omega^* + \frac{2(\tilde{N}\xi\Omega^{*3}}{(\tilde{N} - \tilde{Q}S^*)\Omega^*(\xi + \Omega^*)} + \frac{2\tilde{N}\xi\Omega^{*3}}{(\tilde{N} - \tilde{Q}S^*)\Omega^*(\xi + \Omega^*)^2}.
\]

The scaling constant \(\xi\) is pinned down by requiring that the initial net wealth in each country equals the present value of future consumption. For the Home country, this implies the restriction \(W(0) = \frac{1}{\rho}C(0)\). The starting conditions, \(\{S(0) = 1/2, S^*(0) = 1/2, B(0) = 0, B^*(0) = 0, Y(0), N^*(0), D^*(0)\}\), are chosen so that countries are symmetric. Each country starts with half of the shares in the stock and no interbank loans. Within each country, the shares are held by its intermediaries, which have a starting balance sheet composed of \(N(0)\) net worth and \(D(0)\) deposits (where \(1/2 Q(0) = N(0) + D(0)\)). Using the starting conditions and consumption rule for the Home country I have:

\[
\frac{1}{2} \tilde{Q}(0) = \frac{\xi}{(\xi + \Omega^*(0))\rho}.
\]

Given \(\tilde{N}^*(0)\), the above equation pins down the value of \(\xi\). As discussed in Appendix B, the solution for \(\xi\) is unique for all the numerical solutions of the model.

For the equilibrium to be well defined it remains to be verified that, having started the state variable such that \(\tilde{N}^*(0) < \tilde{N}^{*SS} = \frac{1}{\rho(1 + \xi)}\), the stochastic steady state (i.e. the upper boundary) is reached and is absorbing, and that \(V^*\) exists and is strictly positive for every \(\tilde{N}^*(t)\) with \(t < t'\). The imposed parameter restriction \(\delta = \lambda - \rho\), as discussed in Appendix B, ensures that this is the case.

Open Lucas Economy: Equilibrium Details

Assume that there are no frictions in the Foreign financial sector, so that the constraint \(V^*(t) \geq 0\) is no longer present in the Foreign financier’s optimization problem. Since Foreign financiers are unconstrained in raising deposits, \(\Omega^*(\tilde{N}^*) = 1\) and \(\tilde{Q}(\tilde{N}^*) = \frac{1}{\rho}\). These constant functions satisfy the ODEs in equations (A.8-A.9).

The risk sharing condition in equation (2.11) now simplifies to the statement that consumption in the two countries is equal in every state (the equality follows from \(\xi = 1\) since the two countries are symmetric). The risk premium is constant and equal to \(\mu_Q - r_d = \sigma^2\). The equilibrium allocation is supported by international portfolios,
where each country’s financiers own half of the stock and no interbank loans.

The stochastic steady steady state is $N^{**SS} = \frac{1}{N}$, which is also the absorbing upper boundary of the state space.

Open Economy, Two Trees: Static Optimization for Consumption Baskets

Consider the problem for the Home country:

$$\max_{C_H, C_F} C_H^\alpha C_F^{1-\alpha}$$

s.t. $$C_H p + C_F p \tau = CP,$$

where CP, aggregate expenditure, is given. Substituting the budget constraint for C_F, and re-arranging the FOC for C_H yields the results in equations (2.14-2.15). The price indices for each country are derived by substituting equations (2.14-2.15) in the consumption basket, imposing $C = 1$, and rearranging to yield:

$$P = p^{\alpha} (p^* \tau)^{1-\alpha} \alpha^{-\alpha} (1 - \alpha)^{\alpha - 1}; \quad P^* = p^{1-\alpha} p^* \alpha^{-\alpha} (1 - \alpha)^{\alpha - 1}.$$

Simple algebra then yields the expression for the exchange rate as a function of the terms of trade reported in equation (2.16).

Open Economy, Two Trees: The Home and Foreign Optimal Consumption and Investment Problems

As in the proof of Lemma 2.1, since Home agents do not face financial frictions their optimization problem is equivalent to that of a Home representative agent with logarithmic preferences. Since such an optimization problem is standard, I only report here the corresponding Euler equations:

$$0 = \Lambda \frac{p Y}{P} dt + E_t [d(\Lambda Q)] \quad (A.11)$$

$$0 = \Lambda \frac{p^* Y^*}{P} dt + E_t [d(\Lambda E Q^*)] \quad (A.12)$$

$$0 = E_t [d(\Lambda D_a)] \quad (A.13)$$

$$0 = E_t [d(\Lambda B_a)] \quad (A.14)$$

$$0 = E_t [d(\Lambda E B^*_a)] \quad (A.15)$$

where $\Lambda \equiv e^{-\rho t \frac{1}{T}}$, D_a is the Home-currency deposit asset, B_a is the Home-currency interbank asset, and B^*_a is the Foreign-currency deposit asset with dynamics, respectively:

$$\frac{dD_a}{D_a} = r_d dt; \quad \frac{dB_a}{B_a} = r_b dt; \quad \frac{dB^*_a}{B^*_a} = r^*_b dt.$$

The no arbitrage condition implies: $r_d = r_b$. Equation (2.18) is derived by rearranging equations (A.14-A.15) and using the dynamics of the exchange rate.
The Foreign saver solves a problem identical to that in the previous sections and the corresponding Euler equation is: \(0 = E_t [d(\Lambda^* D^*_{a})]\).

The representative Foreign financier’s optimization problem in equation (2.17) is solved analogously to the proof of Lemma 2.1, so I only describe here the differences. For \(t < t'\) the HJB equation is:

\[
0 = \sup_{\{b^*(u), b(u), s^*(u), s(u)\}} E_t [d(\Lambda^* V^*)] + \chi(t) dt V^*
\]

where \(\chi\) is the Lagrange multiplier. Conjecture that the value of the intermediary has the form: \(V(\tilde{N}^*, n^*) = \Omega^*(\tilde{N}^*)n^*\). The FOCs are:

\[
\begin{align*}
\mu_{Q^*} - r^*_d &= \sigma_{C^*}\sigma_{Q^*}^T - \sigma_{\Omega^*}\sigma_{Q^*}^T, \\
\mu_{Q} - \mu_{E} + \sigma_{Q^*}\sigma_{E}^T - \sigma_{\Omega^*}(\sigma_{Q^*} - \sigma_{E})^T - \sigma_{\Omega^*}(\sigma_{Q} - \sigma_{E})^T &= \sigma_{C^*}(\sigma_{Q} - \sigma_{E})^T - \sigma_{\Omega^*}(\sigma_{Q} - \sigma_{E})^T, \\
(r^*_b - r_b + \mu_{E}) &= \sigma_{C^*}\sigma_{E}^T - \sigma_{\Omega^*}\sigma_{E}^T, \\
r_b &= r^*_d.
\end{align*}
\]

Substituting the FOCs in the HJB equation leads to a restriction that \(\Omega^*\) has to satisfy:

\[
0 = \mu_{\Omega^*} - \sigma_{C^*}\sigma_{\Omega^*}^T.
\]

The problem for \(t > t'\) follows the same logic as in the proof of Lemma 2.1 and requires \(\Omega^* = 1\). Using the FOCs and the Foreign saver’s Euler equation I obtain the Foreign representative financier’s Euler equations:

\[
\begin{align*}
0 &= \Lambda^*\Omega^* \frac{p Y^*}{P^*} dt + E_t\left[d(\Lambda^* \Omega^* \frac{Q^*}{E})\right], \\
0 &= \Lambda^*\Omega^* \frac{p^* Y^*}{P^*} dt + E_t\left[d(\Lambda^* \Omega^* Q^*)\right], \\
0 &= E_t\left[d(\Lambda^* \Omega^* D^*_{a})\right], \\
0 &= E_t\left[d(\Lambda^* \Omega^* B^*_{a})\right].
\end{align*}
\]

The above Euler equations show that \(\Lambda\) and \(\Lambda^*\Omega^*\) are the Home and Foreign SDFs respectively.

Proposition 2.2. The pricing equations (A.11-A.15,A.21-A.25) and the fact that bankers can trade at least three independent assets imply that \(\Lambda = \Lambda^* \frac{\Omega^*}{\xi}\) and therefore:

\[
\frac{P^* C^*}{P C} = \frac{\Omega^*}{\xi},
\]

where \(\xi\) is a scaling constant to be determined.
Substituting the demand functions for the consumption of each individual good in equations (2.14-2.15), and using the goods’ market clearing conditions, \(C_H + C^*_H = Y\) and \(\tau C_F + C^*_F = Y^*\), yield the consumption allocations in equations (2.23-2.24).

The proof that the equilibrium can be solved as a function of a single state variable, the scaled net worth of Foreign intermediaries, follows steps similar to the proof of Proposition 2.1. The substitutions are algebra intensive but straightforward and are omitted in the interest of space. The ODEs, reported in implicit form in Proposition 2.2, are obtained by using: the Home Euler equations (A.11,A.14) to derive the Home financier’s trade off between the Home stock and the Home interbank interest rate, which is the ODE in equation (2.19); the Home Euler equations (A.12,A.14) to derive the Home financier’s trade off between the Foreign stock and the Home interbank rate, which is the ODE in equation (2.20); and the restriction on \(\Omega^*\) in equation (A.20), which is the ODE in equation (2.21). The explicit form of the ODEs is omitted here because of the length of the expressions, but can be derived based on the information provided in this proof and is available on request.

The international asset market structure of the model includes, by design, redundant assets. Since the fundamental source of risk is the two-dimensional vector of Brownian motions \(\vec{z}\), three assets with linearly independent returns are sufficient for a complete international asset market. For \(\alpha > 0.5\) the two stocks are linearly independent and, therefore, the addition of either the Home or Foreign interbank asset is potentially sufficient to implement the equilibrium risk sharing. Various combinations are theoretically possible. The implementation that is of interest for this paper is the one where agents are not allowed to short-sell arbitrary large positions in the stocks and where the Foreign interbank market is shut-off. To derive the portfolio implementation of the equilibrium risk sharing recall that since the Home representative agent has logarithmic preferences one has: \(W(t) = \frac{1}{\rho} C(t)\). Applying Ito’s Lemma to both sides of this equation and using the Home dynamic budget constraint one has:

\[
\begin{bmatrix}
Q \sigma_T, & Q^* \mathcal{E}(\sigma_e + \sigma_{Q'})^T, & -\sigma_e^T
\end{bmatrix}
\begin{bmatrix}
S_H, & S_F, & B_F
\end{bmatrix}^T = \frac{C}{\rho} \sigma_C,
\]

and \(B_H\) can be obtained as the residual term in the Home budget constraint. The portfolios are derived by solving this linear system of equations and by imposing restrictions on \(\{S_H, S_F, B_F, B_H\}\).

The scaling constant \(\xi\) is pinned down in a fashion similar to the proof of Proposition 2.1. Recall that for the Home country one has \(W(0) = \frac{1}{\rho} C(0)\). The starting conditions, \(\{S_H(0) = 1, S^*_F(0) = 1, B_H(0) = 0, B_F(0) = 0, Y(0) = Y^*(0), N^*(0), D^*(0)\}\), are chosen so that countries are symmetric. Each country starts with all the shares in the domestic-tree stock and no interbank loans. Within each country, the shares are held by its intermediaries, which have a starting balance sheet composed of \(N(0)\) net worth and \(D(0)\) deposits (where \(Q(0) = N(0) + D(0)\)). Using the starting conditions
and the consumption allocation for the Home country I have:

\[
\tilde{Q}(0) = \frac{\xi}{(\alpha \xi + (1 - \alpha)\Omega^*(0))\rho}.
\] (A.27)

Given \(\tilde{N}^*(0)\), the above equation pins down the value of \(\xi\). The solution for \(\xi\) is unique for all the numerical solutions of the model.

The stochastic steady state of this economy is \(\tilde{N}^*_{SS} \frac{1}{\rho(1 + \xi)}\). Given the restriction \(\delta = \lambda - \rho\), Appendix B verifies that this is the absorbing upper bound of the state space. The steady state stock positions \(\{\tilde{S}_H, \tilde{S}_F\}\) are defined as the limits of the positions approaching the steady state.

Case \(\alpha = 0.5\)

The price-dividend ratios are given by

\[
\tilde{Q}(t) = \frac{1}{\rho(t)Y(t)} Et\left[\int_t^\infty \frac{\Lambda(u)}{\Lambda(t)} \frac{p(u)}{P(u)} Y(u) du \right] =
\]

\[
= E_t\left[\int_t^\infty e^{-\rho(u-t)} \frac{\alpha \xi + (1 - \alpha)\Omega^*(u)}{\alpha \xi + (1 - \alpha)\Omega^*(t)} du \right]
\]

\[
\tilde{Q}^*(t) = \frac{1}{\rho^*(t)Y^*(t)} Et\left[\int_t^\infty \frac{\Lambda(u)}{\Lambda(t)} \frac{p^*(u)}{P(u)} Y^*(u) du \right] =
\]

\[
= E_t\left[\int_t^\infty e^{-\rho(u-t)} \frac{(1 - \alpha)\xi + \alpha\Omega^*(u)}{(1 - \alpha)\xi + \alpha\Omega^*(t)} du \right],
\]

so that if \(\alpha = 0.5\), one has \(\tilde{Q} = \tilde{Q}^*\). It follows that \(Q = Q^*\frac{p}{P} \frac{Y}{Y^*}\), and since in this case \(ToT = \frac{Y}{Y^*}\), one concludes \(Q = Q^*\mathcal{E}\). This establishes the claim in the main text that in the case \(\alpha = 0.5\) stock returns, in the same currency, are perfectly correlated. The portfolio implementation of the equilibrium risk sharing can be derived using equations (A.26) and by imposing \(B_F = 0\) and collapsing \(\{S_H, S_F\}\) into a single world stock market position \(S\). Equations (A.26), in this case, are a system of two equations in one unknown \((S)\), but they admit a unique solution since the two equations are linearly dependent. This proves the claim in the main text that two assets are sufficient to implement the equilibrium allocation.

Cole and Obstfeld Economy: Equilibrium Details

Assume that there are no frictions in the Foreign financial sector, so that the constraint \(V^*(t) \geq 0\) is no longer present in the Foreign financier’s optimization problem. Since Foreign financiers are unconstrained in raising deposits, \(\Omega^*(\tilde{N}^*) = 1\) and \(\tilde{Q}(\tilde{N}^*) = \tilde{Q}^*(\tilde{N}^*) = \frac{1}{\rho}\). These constant functions satisfy the ODEs in equations (2.19-2.21). The risk sharing condition in equation (2.22) now simplifies to the statement that consumption in the two countries is equal in every state (the equality follows from \(\xi = 1\) since the two countries are symmetric). The two stocks have perfectly
correlated returns: \(Q = Q^*E \). The equilibrium allocation can be implemented with no trading in the stock and in the interbank market, and trading only in the deposit and goods markets.

The stochastic steady steady state is \(\tilde{N}^{*SS} = \frac{1}{2p} \), which is also the absorbing upper boundary of the state space.

Chapter 3

Proposition 3.1. Let \(\Lambda_{t+1} \) denote a US SDF. Now consider the stochastic process \(\Lambda_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \) and an arbitrary traded asset return in RoW currency \(R^*_{t+1} \); one has

\[
1 = E_t[\Lambda_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} R^*_{t+1}].
\]

It follows that \(\Lambda_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \) is a RoW SDF. Denote this RoW SDF by \(\Lambda^*_{t+1} \).

Consider the orthogonal projections of the US and RoW SDFs above on the space of traded assets \(A \) and \(A^* \), given respectively by \(M_{t+1} = \text{proj}(\Lambda_{t+1}|A) \) and \(M^*_{t+1} = \text{proj}(\Lambda^*_{t+1}|A^*) \). Recall that such projections are also SDF and are unique (see Cochrane (2005, page 64)). Given that \(M_{t+1} \) is a SDF and lies in \(A \), then \(M_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \) is also a SDF and lies in \(A^* \). Then

\[
M^*_{t+1} = M_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t}.
\]

Proposition 3.2. Let \(R_{t+1} \) and \(R^*_{t+1} \) denote two arbitrary traded asset returns denominated in US dollars and RoW currency, respectively. Consider the excess return

\[
0 = E_t[M_{t+1}(R^*_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} - R_{t+1})].
\]

Since all variables are jointly log-normally distributed taking the expectation and then taking logarithms leads to

\[
E_t[r^*_{t+1} + \Delta e_{t+1} - r_{t+1}] + \frac{1}{2} Var_t(r^*_{t+1} + \Delta e_{t+1}) - \frac{1}{2} Var_t(r_{t+1}) = -Cov_t(m_{t+1}, r^*_{t+1}) + Cov_t(m_{t+1}, r_{t+1}) - Cov_t(m_{t+1}, \Delta e_{t+1}).
\]

The equation in the text follows from the substitution \(m^*_{t+1} = m_{t+1} + \Delta e_{t+1} \).
Appendix B

Numerical Solution Methods

The systems of ODEs in Chapter 1 and 2 are solved as boundary value problems (BVP) using the Matlab routine \textit{bvp4c}.

Chapter 1

The system of coupled second order ODEs in equations (A.3-A.4) is to be solved over the interval \((0, \tilde{N})\), where \(\tilde{N}\) is unknown. The ODEs are singular at both boundaries of the interval. To deal with the singularity, I use asymptotic approximations to derive the boundary conditions. The boundary conditions are:\footnote{Intuitively, seven boundary conditions are required to solve the system: four boundary conditions because it is a system of two second order ODEs, one boundary condition to pin down the unknown parameter \(\tilde{N}\), and two boundary conditions to pin down the unknown parameters \(\{a, \epsilon\}\) introduced by the asymptotic approximations of the ODEs at the lower boundary.}

\begin{align*}
\tilde{Q} \left(\tilde{N} \right) &= \tilde{N} \quad \text{(B.1)} \\
\tilde{Q}' \left(\tilde{N} \right) &= \frac{1}{\rho + \tilde{Q}' \left(\tilde{N} \right) (\lambda - \delta - \rho)} \quad \text{(B.2)} \\
\Omega \left(\tilde{N} \right) &= \frac{\lambda + \Omega' \left(\tilde{N} \right) \tilde{Q} \left(\tilde{N} \right) (\delta + \rho - \lambda)}{\lambda} \quad \text{(B.3)} \\
\tilde{Q}(\epsilon) &= a - \sqrt{\frac{a\sigma^2}{\delta}} \epsilon^{\frac{1}{2}} \quad \text{(B.4)} \\
\tilde{Q}'(\epsilon) &= -\frac{1}{2} \sqrt{\frac{a\sigma^2}{\delta}} \epsilon^{-\frac{1}{2}} \quad \text{(B.5)} \end{align*}
\[\Omega(\epsilon) = 1 + \frac{e[1 - a(\rho - \sigma^2)]}{\lambda \sqrt{\frac{aa^2}{\delta}}} + e^\frac{1}{2} \epsilon \]
(B.7)

\[\Omega'(\epsilon) = \frac{1}{2} e^{-\frac{1}{2}} \epsilon, \]
(B.8)

where \{a, e\} are unknown parameters, and \(\epsilon \) is “small”. The boundary condition in equation (B.1) is obtained by imposing that \(\sigma_{\tilde{N}}(\tilde{N}) = 0 \). The boundary conditions in equations (B.2-B.3) are obtained by imposing that \(\lim_{\tilde{N} \to \tilde{N}} \tilde{Q}''(\tilde{Q} - \tilde{N}) = 0 \) and \(\lim_{\tilde{N} \to \tilde{N}} \Omega''(\tilde{Q} - \tilde{N}) = 0 \). Intuitively, these conditions are requiring \(\tilde{N} \) to be an upper bound for the state space and, since intermediaries are highly capitalized, the solutions to change “smoothly” approaching this upper bound.

The boundary conditions in equations (B.4-B.8) are obtained by using Laurent asymptotic approximations of the ODEs\(^2\) in the limit as \(\tilde{N} \) approaches zero and by requiring zero to be a reflective boundary.

To adapt the problem to the Matlab routine \texttt{bvp4c}, I re-write the system of ODEs by changing variables. Letting \(x = \frac{\tilde{N}}{\tilde{N}} \), I solve for the functions \(\{\tilde{Q}(x), \Omega(x)\} \) on the interval \([\epsilon, 1 - \epsilon]\).

Note that simpler boundary conditions can be used under the parameter restriction \(\delta = \lambda - \rho \). In this case, \(\tilde{N} = \frac{1}{\rho} \) and the upper boundary conditions are \(\tilde{Q}(\frac{1}{\rho}) = \frac{1}{\rho} \) and \(\Omega(\frac{1}{\rho}) = 1 \). Intuitively, in this case the upper bound of the state space is absorbing and coincides with the Lucas Economy equilibrium.

The upper boundary conditions impose that \(\sigma_{\tilde{N}}(\tilde{N}) = 0 \); it remains to be verified that \(\mu_{\tilde{N}}(\tilde{N}) \leq 0 \). An inspection of the dynamics of \(\tilde{N} \) in equation (1.7) confirms that under the parameter restriction \(\delta = \lambda - \rho \) one has \(\mu_{\tilde{N}}(\tilde{N}) = 0 \), and under the restriction \(\delta < \lambda - \rho \) one has \(\mu_{\tilde{N}}(\tilde{N}) < 0 \).

Chapter 2

Section 2.1: Open Economy Single Tree

The system of coupled second order ODEs in equations (A.8-A.9) is to be solved over the interval \((0, \frac{1}{\rho(1+\xi)})\). The ODEs are singular at both boundaries of the interval. To deal with the singularity, I use asymptotic approximations to derive the boundary conditions. The boundary conditions are.\(^3\)

\(^2\)I report here the first two terms of the approximations, which I found to be sufficient in practice for an accurate numerical solution. I have also experimented with including higher order terms.

\(^3\)Intuitively, four boundary conditions are required to solve the system of two second order ODEs.
\[\tilde{Q}\left(\frac{1}{\rho(1+\xi)}\right) = \frac{1}{\rho} \quad \text{(B.9)} \]
\[\Omega^*\left(\frac{1}{\rho(1+\xi)}\right) = 1 \quad \text{(B.10)} \]
\[\frac{\tilde{Q}''(\epsilon)}{\tilde{Q}'(\epsilon)} = -\frac{1}{2} \quad \text{(B.11)} \]
\[\frac{\Omega^{**}(\epsilon)}{\Omega'^*(\epsilon)} = -\frac{1}{2} \quad \text{(B.12)} \]

where \(\epsilon \) is “small”. The boundary conditions in equations (B.9-B.10) are the equilibrium solutions for the Open Lucas Economy. Intuitively, the upper bound of the state space is absorbing and coincides with the Lucas Economy equilibrium. The boundary conditions in equations (B.11-B.12) are obtained by using Laurent asymptotic approximations of the ODEs in the limit as \(\tilde{N}^* \) approaches zero and by requiring zero to be a reflective boundary.\(^4\)

The upper boundary conditions impose that \(\sigma_{\tilde{N}^*}\left(\frac{1}{\rho(1+\xi)}\right) = 0 \); it remains to be verified that the upper bound of the state space is the absorbing stochastic steady state of the model. This is achieved by requiring that \(\delta = \lambda - \rho \). Under this restriction, the numerical solution shows that \(\mu_{\tilde{N}^*} > 0 \) on the open interval \((0, \frac{1}{\rho(1+\xi)})\) and that \(\mu_{\tilde{N}^*}\left(\frac{1}{\rho(1+\xi)}\right) = 0 \). Intuitively the state variable, having started at \(\tilde{N}^*(0) < \tilde{N}^{*SS} \), drifts toward the upper bound of the state space and remains there once it has been reached. Finally, the numerical solution shows that \(\Omega^*(t) > 1 \ \forall \ t < t' \), thus confirming that \(V^* \) exists and is non-zero.

In analogy with the autarky case, to deal with the singularities I solve the system on the interval \([\epsilon, \frac{1}{\rho(1+\xi)} - \epsilon]\).

For simplicity, instead of selecting a starting value \(\tilde{N}^*(0) \), I guess a value for \(\xi \), solve the ODE system, and then back out the implied value for \(\tilde{N}^*(0) \) using equation (A.10). In all my numerical trials the implied value for \(\tilde{N}^*(0) \) is unique.

Section 2.2: Open Economy Two Trees

The system of coupled second order ODEs in equations (2.19-2.21) is to be solved over the interval \((0, \frac{1}{\rho(1+\xi)}\). The ODEs are singular at both boundaries of the interval. To deal with the singularity, I use asymptotic approximations to derive the boundary conditions. The boundary conditions are:\(^5\)

\(^4\)In contrast with the autarky model, where the first two terms of the approximations are used as boundary conditions, it is sufficient for an accurate numerical solution to provide the numerical solver with information about the rate at which the solutions move approaching zero (i.e. the exponent of the series expansion, which I find to be equal to \(\frac{1}{2} \)).

\(^5\)Intuitively, six boundary conditions are required to solve the system of three second order ODEs.
\[\tilde{Q} \left(\frac{1}{\rho(1 + \xi)} \right) = \frac{1}{\rho} \]

\[\tilde{Q}^* \left(\frac{1}{\rho(1 + \xi)} \right) = \frac{1}{\rho} \]

\[\Omega^* \left(\frac{1}{\rho(1 + \xi)} \right) = 1 \]

\[\frac{\tilde{Q}''(\epsilon)}{Q'(\epsilon)} = -\frac{1}{2} \]

\[\frac{\tilde{Q}''(\epsilon)}{Q''(\epsilon)} = -\frac{1}{2} \]

\[\frac{\Omega''(\epsilon)}{\Omega'(\epsilon)} = -\frac{1}{2} \]

where \(\epsilon \) is “small”. The intuition for the boundary conditions, the solution method, and the verification of the stochastic steady state are analogous to those for the Open Banking Economy with a single tree in the previous section.
Appendix C

GMM Estimation Details

The zero and second stage regressions are estimated jointly with GMM. The set of moments is

$$g_T(\beta) = \frac{1}{T} \begin{bmatrix} Y^r \eta^r \\ Y^e \eta^e \\ Z' \omega \end{bmatrix}.$$

The estimation of $\hat{\beta}$ follows by solving $a_T g_T(\beta) = 0$, where a_T takes the form

$$a_T = -\frac{1}{T} \begin{bmatrix} I_2 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & X'W \end{bmatrix},$$

where I_2 is the 2×2 identity matrix and

$$X'p = [1 \ \widetilde{Cov}(r_{t+1}, \Delta e_{t+1}) \ b \ast \widetilde{Cov}(r_{t+1}, \Delta e_{t+1})]$$

is the set of regressors for the second stage regression. The constant price of risk case omits the last regressor.

In the first stage of GMM the matrix W is set to $(Z'Z)^{-1}$ so that the estimator for the last two/three parameters is identical to the IV 2SLS estimator. In subsequent iterations of GMM “efficiency” is achieved by setting W equal to the inverse of the bottom right 2×2 or 3×3 (again depending on the choice of model) block of the estimated spectral density matrix of the moments. I estimate the spectral density matrix by Newey-West with lag length set to the square root of the sample size. This produces IV estimators corrected for heteroskedasticity and serial correlation. I keep iterating the GMM procedure until the GMM results stabilize. While there is no fix point theorem to guarantee GMM convergence, my results completely stabilize after 8 to 10 iterations.\(^1\)

\(^1\)For an application of iterative GMM see, for example, Cochrane (1996). Ferson and Foerster
Table 3.1: US Dollar Mean Safety Premium

<table>
<thead>
<tr>
<th></th>
<th>World</th>
<th>Developed</th>
<th>Equally Wght</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.98%</td>
<td>0.99%</td>
<td>1.18%</td>
</tr>
<tr>
<td>Stand. Dev</td>
<td>8.06%</td>
<td>8.26%</td>
<td>7.16%</td>
</tr>
<tr>
<td>Max</td>
<td>10.34%</td>
<td>10.33%</td>
<td>10.21%</td>
</tr>
<tr>
<td>Max Date</td>
<td>Feb-73</td>
<td>Feb-73</td>
<td>Feb-73</td>
</tr>
<tr>
<td>Min</td>
<td>-9.15%</td>
<td>-9.16%</td>
<td>-8.36%</td>
</tr>
<tr>
<td>Min Date</td>
<td>Nov-78</td>
<td>Nov-78</td>
<td>Oct-08</td>
</tr>
</tbody>
</table>

Subcomponents

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δe</td>
<td>0.72%</td>
<td>1.12%</td>
<td>-2.20%</td>
</tr>
<tr>
<td>$r^*_f - r_f$</td>
<td>-0.05%</td>
<td>-0.45%</td>
<td>3.13%</td>
</tr>
</tbody>
</table>

Statistics are for monthly currency returns from January 1970 to March 2010. The mean and standard deviations are annualized, while the Max and Min realizations are on a monthly basis. The Max and Min date refer to the month when the highest and lowest returns occurred, respectively. The subcomponents Δe, and $r^*_f - r_f$ are the mean log exchange rate change and interest rate differential for each index.

(1994) find that iterative GMM has better finite sample properties in conditional asset pricing models than two stage GMM.
Table 3.2: Zero Stage Regressions: Equity Returns and Exchange Rate Changes

<table>
<thead>
<tr>
<th>Equity Returns</th>
<th>(r_{t+1})</th>
<th>(r_{t+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>const.</td>
<td>0.0463</td>
<td>0.0448</td>
</tr>
<tr>
<td></td>
<td>[2.41]</td>
<td>[2.34]</td>
</tr>
<tr>
<td>(dp_t)</td>
<td>0.0106</td>
<td>0.0102</td>
</tr>
<tr>
<td></td>
<td>[2.03]</td>
<td>[1.95]</td>
</tr>
<tr>
<td>(r_t)</td>
<td>0.1259</td>
<td>0.1227</td>
</tr>
<tr>
<td></td>
<td>[1.68]</td>
<td>[1.67]</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.0238</td>
<td>0.0228</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exchange Rate Changes</th>
<th>(\Delta e_{t+1})</th>
<th>(\Delta e_{t+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>const.</td>
<td>0.0004</td>
<td>0.0013</td>
</tr>
<tr>
<td></td>
<td>[0.29]</td>
<td>[1.01]</td>
</tr>
<tr>
<td>(r^*f,t+1 - r{f,t+1})</td>
<td>0.1072</td>
<td>0.1330</td>
</tr>
<tr>
<td></td>
<td>[1.96]</td>
<td>[2.22]</td>
</tr>
<tr>
<td>(\Delta e_t)</td>
<td>0.0526</td>
<td>0.0415</td>
</tr>
<tr>
<td></td>
<td>[0.99]</td>
<td>[0.81]</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.0133</td>
<td>0.0169</td>
</tr>
</tbody>
</table>

Top panel: regression of the one month return of the equity index on a constant, the logarithm of the dividend-price ratio for the equity index and the lagged equity index return (see equation (3.8)). The explanatory variables are lagged one month. The regression results are provided for both the World and Developed equity indices. Bottom panel: regression of the one month logarithmic exchange rate change for the currency index on a constant, the interest rate differential for the currency index and the lagged logarithmic exchange rate change for the currency index (see equation (3.9)). The explanatory variables are lagged one month. The regression results are provided for both the World and Developed currency indices. The regressions are for the period January 1975-March 2010: 423 observations. The estimates are OLS and the standard errors are Newey-West with 4 lags. The t-statistic is reported in square brackets.
Table 3.3: First Stage Regressions

Panel A: Exploring covariance predictability

<table>
<thead>
<tr>
<th>Instruments</th>
<th>World</th>
<th></th>
<th>Developed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F−Stat</td>
<td>χ^2−Stat</td>
<td>χ^2 p−val</td>
<td>F−Stat</td>
</tr>
<tr>
<td>All</td>
<td>15.76</td>
<td>94.56</td>
<td>(0.0000)</td>
<td>15.38</td>
</tr>
<tr>
<td>ex dp ratio</td>
<td>14.03</td>
<td>70.16</td>
<td>(0.0000)</td>
<td>13.18</td>
</tr>
<tr>
<td>ex covariance</td>
<td>17.10</td>
<td>85.52</td>
<td>(0.0000)</td>
<td>15.65</td>
</tr>
<tr>
<td>ex volatilities</td>
<td>5.12</td>
<td>20.46</td>
<td>(0.0004)</td>
<td>4.11</td>
</tr>
<tr>
<td>ex return & exch. rate chg.</td>
<td>19.70</td>
<td>78.78</td>
<td>(0.0000)</td>
<td>19.15</td>
</tr>
<tr>
<td>cum int. diff.</td>
<td>14.12</td>
<td>98.85</td>
<td>(0.0000)</td>
<td>13.49</td>
</tr>
</tbody>
</table>

Panel B: Details

<table>
<thead>
<tr>
<th></th>
<th>World</th>
<th></th>
<th>Developed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff. $\times 10^4$</td>
<td>χ^2−Stat</td>
<td>χ^2 p−val</td>
<td>Coeff. $\times 10^4$</td>
</tr>
<tr>
<td>int. diff.</td>
<td>-0.60</td>
<td>1.20</td>
<td>(0.2725)</td>
<td>-0.44</td>
</tr>
<tr>
<td></td>
<td>[1.10]</td>
<td>[0.67]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel A: regression of the cross product of residuals from the zero stage regressions for the currency and equity indices on the set of instruments (see equation (3.10)). The set of instruments (All) includes: a constant, the dividend-price ratio for the equity index, the one month lagged return for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. Robustness checks are performed by excluding subsets of the instruments. For example, the “ex dp ratio” line reports the regression results for the set of instruments excluding the equity index dividend-price ratio. The “cum int. diff.” line reports the regression results adding to the set of instruments the interest rate differential for the currency index. The F-statistic and the Wald χ^2 statistic are reported for the null hypothesis that all coefficients, except the constant, are jointly zero. The p-value for the Wald χ^2 test is reported in parenthesis. *Panel B*: regression of the cross product of residuals from the zero stage regressions for the currency and equity indices on a constant and the interest rate differential for the currency index. The F-statistic and the Wald χ^2 statistic are reported for the null hypothesis that all coefficients, except the constant, are jointly zero. The p-value for the Wald χ^2 test is reported in parenthesis. The point estimate for the coefficient on the interest rate differential and the corresponding t-statistic, in square brackets, are reported in addition to the Wald χ^2 statistic and corresponding p-value as described above. The regressions are for the World and Developed equity and currency indices for the period April 1975-March 2010: 420 observations. The estimates are OLS and the standard errors are Newey-West with lag set at the square root of the sample length (20 month).
Table 3.4: Instruments Theoretical Sign Predictions

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Definition</th>
<th>Predicted Sign (α_z)</th>
<th>$\hat{\alpha}_z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dp_t</td>
<td>dividend price ratio</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>var_t^r</td>
<td>lagged equity return volatility</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>var_t^e</td>
<td>lagged exchange rate volatility</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>$r_{f,t+1}^* - r_{f,t+1}$</td>
<td>interest rate differential</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>r_t</td>
<td>lagged equity return</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Δe_t</td>
<td>lagged exchange rate change</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cov_t'</td>
<td>lagged covariance</td>
<td>+/-</td>
<td>+</td>
</tr>
</tbody>
</table>

The table reports the set of instruments used in the first stage regressions. The column “Predicted Sign (α_z)” reports the sign that theoretical reasoning predicts for each instrument in the first stage regression. The theoretical reasoning underlying each sign prediction is discussed in Section 3.4.3. The column “$\hat{\alpha}_z$” reports the estimated sign of each instrument in a first stage regression using the entire set of instruments, including the interest rate differential. The estimated signs are identical for the World and Developed indices.
Table 3.5: Second Stage Regressions

<table>
<thead>
<tr>
<th></th>
<th>World</th>
<th>Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d_0</td>
<td>d_1</td>
</tr>
<tr>
<td>All</td>
<td>-0.0028</td>
<td>12.0672</td>
</tr>
<tr>
<td></td>
<td>[-1.45]</td>
<td>[3.19]</td>
</tr>
<tr>
<td>ex dp ratio</td>
<td>-0.0042</td>
<td>16.3391</td>
</tr>
<tr>
<td></td>
<td>[-1.59]</td>
<td>[2.55]</td>
</tr>
<tr>
<td>ex covariance</td>
<td>-0.0031</td>
<td>13.1771</td>
</tr>
<tr>
<td></td>
<td>[-1.56]</td>
<td>[3.16]</td>
</tr>
<tr>
<td>ex volatilities</td>
<td>-0.0005</td>
<td>3.6559</td>
</tr>
<tr>
<td></td>
<td>[-0.22]</td>
<td>[0.82]</td>
</tr>
<tr>
<td>ex return & exch. rate chg.</td>
<td>-0.0009</td>
<td>4.6295</td>
</tr>
<tr>
<td></td>
<td>[-0.44]</td>
<td>[1.07]</td>
</tr>
<tr>
<td>cum int. diff.</td>
<td>0.0001</td>
<td>10.2047</td>
</tr>
<tr>
<td></td>
<td>[0.03]</td>
<td>[2.54]</td>
</tr>
</tbody>
</table>

Results for the second stage regressions for the case of no time variation in the price of risk. The LHS variable is the US dollar safety premium: the monthly logarithmic return of investing in the currency index while funding in US dollars plus the Jensen’s inequality term. The RHS regressors are a constant and the estimated, in the first stage, conditional covariance between the equity and currency indices returns. See equation (3.12) for details. Robustness checks are performed by varying the set of instruments included in the first stage regressions and, therefore, the resulting estimated covariance that is used as a regressor in the second stage regression reported here. The set of instruments (All) includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The “ex dp ratio” line, for example, reports the regression results for the set of instruments excluding the equity index dividend-price ratio. The “cum int. diff.” line reports the regression results, adding to the set of instruments the interest rate differential for the currency index. The standard errors are computed using GMM to jointly estimate the zero, and second stage regressions. The standard errors are based on the Newey-West estimate of the spectral density matrix in GMM, with lag set to the square root of the sample size (20 lags here), and are corrected for the uncertainty deriving from using estimated regressors from the zero and first stage. See Appendix B for details of the estimation.
Table 3.6: Episodes of Crisis

<table>
<thead>
<tr>
<th>Event</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEC I, Arab-Israeli War</td>
<td>December 1973</td>
</tr>
<tr>
<td>Franklin National</td>
<td>September-October 1974</td>
</tr>
<tr>
<td>OPEC II, Fed currency Intervention</td>
<td>November 1978</td>
</tr>
<tr>
<td>Iran Hostage Crisis</td>
<td>November 1979</td>
</tr>
<tr>
<td>Silver Wednesday, US-Iran Military Intervention</td>
<td>March 1980</td>
</tr>
<tr>
<td>Latam defaults</td>
<td>Early 1980s*</td>
</tr>
<tr>
<td>1987 crash - Black Monday</td>
<td>October 1987</td>
</tr>
<tr>
<td>Gulf War I</td>
<td>September-October 1990</td>
</tr>
<tr>
<td>Asian Crisis</td>
<td>November 1997</td>
</tr>
<tr>
<td>Russian, LTCM default</td>
<td>August-September 1998</td>
</tr>
<tr>
<td>Dotcom Bust</td>
<td>April 2001*</td>
</tr>
<tr>
<td>9/11 terrorist attack</td>
<td>September 2001</td>
</tr>
<tr>
<td>Worldcom, Enron bankruptcy</td>
<td>July-September 2002</td>
</tr>
</tbody>
</table>

All but episodes marked by * are from Bloom (2009). Bloom uses the US VXO implied volatility index, backdated using realized volatility, and selects the events as “those with stock-market volatility more than 1.65 standard deviations above the Hodrick Prescott detrended (filter multiplier set at 129,600) mean of the stock-market volatility series”. The * episodes are added to the list of crises to account for two well known historical events absent from the list in Bloom (2009). I split the March 1980 event that Bloom completely attributed to the Iran hostage crisis into two: the November 1979 start of the crisis and the March 1980 US military intervention that also coincided with the panic following the cornering of the silver market by the Hunt brothers. Two events from Bloom’s list are not present here. The October-August 1982 “Monetary policy turning point” has been replaced by the more general label of “Latam defaults” crises to highlight the protracted period of high volatility without necessarily singling out the monthly evolution of events. The “Gulf War II” event of March 2003 has been omitted since there was no evidence in my time series of a market reaction.
Figure 1.1: Autarky Equilibrium: Converges to Lucas Equilibrium

Numerical solution for the equilibrium in Section 1.1 for the case $\delta = \lambda - \rho$: the Banking Economy eventually converges to the Lucas Economy. Parameter values: $\rho = 0.01$, $\delta = 0.022$, $\mu = 0.01$, $\sigma = 0.1$. Note that the graphs plot the solution for the state space of the Banking Economy, the range of the state variable \tilde{N}. The Lucas Economy solution is plotted over the same state space for comparison purposes, but the state space of the Lucas Economy extends beyond the one of the Banking Economy. The state space of the Banking Economy is $(0, \frac{1}{\rho}]$, and the stochastic steady state is $\frac{1}{\rho}$.
Figure 1.2: Autarky Equilibrium: Interior Stochastic Steady State

Numerical solution for the equilibrium in Section 1.1 for the case $\delta < \lambda - \rho$: the Banking Economy has an interior stochastic steady state. Parameter values: $\rho = 0.01$, $\delta = 0.022$, $\lambda = 0.0398$, $\mu = 0.01$, $\sigma = 0.1$. Note that the graphs plot the solution for the state space of the Banking Economy, the range of the state variable \tilde{N}. The Lucas Economy solution is plotted over the same state space for comparison purposes, but the state space of the Lucas Economy extends beyond the one of the Banking Economy. The state space of the Banking Economy is $(0, 0.9543)$, and the stochastic steady state is 69.76.
Figure 1.3: Autarky Equilibrium: Stochastic Steady State

Drift of Scaled Net-Worth: \hat{N}_μ, Lucas Steady State

Diffusion of Scaled Net-Worth: \hat{N}_σ, Lucas Steady State

Drift of Scaled Net-Worth: \check{N}_μ, Interior Steady State

Diffusion of Scaled Net-Worth: \check{N}_σ, Interior Steady State

Numerical solution for the equilibrium in Section 1.1 for the case $\delta = \lambda - \rho$ (top two graphs) and $\delta < \lambda - \rho$ (bottom two graphs). Parameter values for the first case: $\rho = 0.01$, $\delta = 0.022$, $\lambda = 3.98$, $\mu = 0.01$, $\sigma = 0.1$. These are the drift and diffusion of the state variable, scaled net-worth \hat{N}, for the equilibrium in Figure 1.1. Parameter values for the second case: $\rho = 0.01$, $\delta = 0.022$, $\lambda = 0.0398$, $\mu = 0.01$, $\sigma = 0.1$. These are the drift and diffusion of the state variable, scaled net-worth \check{N}, for the equilibrium in Figure 1.2. The red dot in the two graphs on the left corresponds to each case’s stochastic steady state. The state space of the case $\delta = \lambda - \rho$ is $(0, \frac{1}{\rho}]$, and the stochastic steady state is $\frac{1}{\rho}$. The state space of the case $\delta < \lambda - \rho$ is $(0, 95.43)$, and the stochastic steady state is 69.76.
Figure 1.4: Autarky Equilibrium: Stationary Distribution

Plot of the limiting stationary distribution of the state variable, scaled net-worth \tilde{N}, for the equilibrium in Section 1.1 for the case $\delta < \lambda - \rho$. Parameter values: $\rho = 0.01$, $\delta = 0.022$, $\lambda = 0.0398$, $\mu = 0.01$, $\sigma = 0.1$. This is the stationary distribution for the equilibrium in Figure 1.2. The state space is $(0, 95.43)$, and the stochastic steady state is 69.76. The approximation to the stationary distribution is obtained by simulating 5,000 paths for 100 years at daily frequency (36,500 periods) for the process \tilde{N}.
Figure 2.1: US External Balance Sheet: 2007

Source: Balance of Payment Statistics. US external balance sheet at year-end 2007. US external assets: US residents’ holdings of assets abroad, by asset class. US external liabilities: RoW residents’ holdings of assets in the US, by asset class. Debt assets and liabilities are (debt + other investments). The NFA position is reported in red and as a negative number on the asset side, to stress that it is the amount owed by the US to the RoW. See source for details on dataset construction.
Figure 2.2: Asset Class Composition of US External Assets and Liabilities

Source: Lane and Milesi-Ferretti (2007) and Balance of Payment Statistics. The data are annual 1970-2010. The percentages are computed as: (Equity+FDI)/(Total Assets-Derivatives) for assets and (Debt+Other Investments)/(Total Liabilities-Derivatives) for liabilities. Derivatives positions are excluded in order to avoid possible issues associated with the netting of contracts. In any case, data on derivatives held in the external portfolio are only available for the years 2005-10. See source for details on dataset construction.

Figure 2.3: Currency Composition of US External Assets and Liabilities

Figure 2.4: US Dollar Safety Premium

Source: Maggiori (2010). The data are monthly January 1975-March 2010. The estimated annualized compensation that an investor would require at each point in time to invest in a basket of foreign currency while shorting the US dollar. For example, the estimate of 53% for October 2008 is interpreted as investors requiring an annualized expected return of 53% to invest in foreign currency instead of the US dollar. The basket of foreign currency is weighted using the MSCI (All Country) World Index market capitalization. See source for details on dataset construction and estimation.
Figure 2.5: Open Economy Equilibrium, Single Tree: Allocations

Foreign Marginal Value of Net-Worth: Ω^*

Price Div. Ratio: \hat{Q}

Consumption Shares

Home Net Foreign Assets / Output

Foreign Interbank Position / Output: \hat{B}^*

Foreign Stock Position: S^*

Numerical solution for the equilibrium in Section 2.1. Parameter values: $\rho = 0.01$, $\delta = 0.004$, $\lambda = 0.014$, $\mu = 0.01$, $\sigma = 0.05$. The starting scaled net-worth is $\hat{N}^*(0) = 5.2$, which results in $\xi = 1.12$.

Note that the graphs plot the solution for the state space of the Open Banking Economy, the range of the state variable \hat{N}^*. The Open Lucas Economy solution is plotted over the same state space for comparison purposes, but the state space of the Open Lucas Economy extends beyond the one of the Open Banking Economy. The state space of the Open Banking Economy is $[0, \frac{1}{\rho(1+\xi)}]$; in the figures above it has been cut on the right to allow for better visualization. The stochastic steady state is $\frac{1}{\rho(1+\xi)}$.

Numerical solution for the equilibrium in Section 2.1. Parameter values: $\rho = 0.01$, $\delta = 0.004$, $\lambda = 0.014$, $\mu = 0.01$, $\sigma = 0.05$. The starting scaled net-worth is $\bar{N}^*(0) = 5.2$, which results in $\xi = 1.12$. Note that the graphs plot the solution for the state space of the Open Banking Economy, the range of the state variable \bar{N}^*. The Open Lucas Economy solution is plotted over the same state space for comparison purposes, but the state space of the Open Lucas Economy extends beyond the one of the Open Banking Economy. The state space of the Open Banking Economy is $[0, \frac{1}{\rho(1+\xi)}]$; in the figures above it has been cut on the right to allow for better visualization. The stochastic steady state is $\frac{1}{\rho(1+\xi)}$.

Figure 2.6: Open Economy Equilibrium, Single Tree: Asset Prices
Figure 2.7: Open Economy Equilibrium, Two Trees, No Domestic Bias: Allocations

Numerical solution for the equilibrium in Section 2.2. Parameter values: $\rho = 0.01$, $\delta = 0.004$, $\lambda = 0.014$, $\mu = 0.01$, $\sigma_z = \sigma_z^* = 0.05$, $\alpha = 0.5$. The starting scaled net-worth is $\tilde{N}^*(0) = 3.5$, which results in $\xi = 1.12$. Note that the graphs plot the solution for the state space of the Open Banking Economy with two trees, the range of the state variable \tilde{N}^*. The Cole and Obstfeld Economy solution is plotted over the same state space for comparison purposes, but the state space of the Cole and Obstfeld Economy extends beyond the one of the Open Banking Economy. The state space of the Open Banking Economy is $(0, \frac{1}{\rho(1+\xi)^2})$; in the figures above it has been cut on the right to allow for better visualization. The stochastic steady state is $\frac{1}{\rho(1+\xi)}$.
Numerical solution for the equilibrium in Section 2.2. Parameter values: $\rho = 0.01$, $\delta = 0.004$, $\lambda = 0.014$, $\mu = 0.01$, $\sigma_z = \sigma_{z^*} = 0.05$, $\alpha = 0.5$. The starting scaled net-worth is $\tilde{N}^*(0) = 3.5$, which results in $\xi = 1.12$. Note that the graphs plot the solution for the state space of the Open Banking Economy with two trees, the range of the state variable \tilde{N}^*. The Cole and Obstfeld Economy solution is plotted over the same state space for comparison purposes, but the state space of the Cole and Obstfeld Economy extends beyond the one of the Open Banking Economy. The state space of the Open Banking Economy is $(0, \frac{1}{\rho(1+\xi)})$; in the figures above it has been cut on the right to allow for better visualization. The stochastic steady state is $\frac{1}{\rho(1+\xi)}$.
Figure 3.1: Equity Total Return Indices: World and Developed

The indices are total return, capital gains plus dividends. The World index includes 23 developed and 22 emerging countries. The Developed index only includes the 23 developed countries. The indices are stock market capitalization weighted using the MSCI Barra weights. Both indices include the United States. The two indices are identical for the period 1970-1987 as the emerging countries are assigned a zero weight, and progressively differ for the period 1988-2010 as the emerging countries’ market capitalization increases. The Developed index corresponds to the MSCI Barra World index. The World index is built by using the MSCI Barra World index for the period 1970-1987 and the MSCI Barra All Country World index for the period 1988-2010. The data are monthly Dec 1969-Mar 2010.
The US dollar spot exchange rate indices are market capitalization weighted indices. The World index includes 23 developed and 22 emerging countries. The Developed index only includes the 23 developed countries. The indices are stock market capitalization weighted using the MSCI Barra weights. The two indices are identical for the period 1970-1987 as the emerging countries are assigned a zero weight, and progressively differ for the period 1988-2010 as the emerging countries’ market capitalization increases. The dollar exchange rate corresponding to the World (Developed) index measures the value of the dollar versus a basket of currencies, where the weight of each bilateral exchange rate corresponds to the weight of the country in the equity World (Developed) index excluding the United States. Bilateral spot exchange rates are from MSCI-Barra. The data are monthly Jan 1970-Mar 2010.
The interest rate differential indices between the Rest of the World and the US are market capitalization weighted indices. The World index includes 23 developed and 22 emerging countries. The Developed index only includes the 23 developed countries. The indices are stock market capitalization weighted using the MSCI Barra weights. The two indices are identical for the period 1970-1987 as the emerging countries are assigned a zero weight, and progressively differ for the period 1988-2010 as the emerging countries’ market capitalization increases. The World (Developed) index measures the weighted interest rate differential between the US and the countries included in the index, where the weight of each bilateral interest rate differential corresponds to the weight of the country in the equity World (Developed) index excluding the United States. Bilateral interest rate differentials are from Maggiori (2010). The data are monthly Jan 1970-Mar 2010.
Figure 3.4: Mean US Dollar Safety Premium Rolling Window: Start Date to 2010

Plots the average US dollar safety premium for three indices: World, Developed, and Equally Weighted. The average is taken over a window with a rolling start date and a fixed end date in March 2010. Therefore, the datapoint for January 1970 is the average for the period Jan 1970-Mar 2010 and the datapoint for February 1970 is the average for the period Feb 1970-March 2010. The safety premium in each month is computed as the sum of the logarithmic interest rate differential, the logarithmic exchange rate change, and the Jensen’s inequality term. The World index includes 23 developed and 22 emerging countries. The Developed index only includes the 23 developed countries. The indices are stock market capitalization weighted using the MSCI Barra weights. The two indices are identical for the period 1970-1987 as the emerging countries are assigned a zero weight, and progressively differ for the period 1988-2010 as the emerging countries’ market capitalization increases. The Equally weighted index includes all the 55 countries in the World index and assigns equal weight to each country. The data are monthly Jan 1970-Mar 2010.
Figure 3.5: Mean US Dollar Safety Premium Reverse Rolling Window: 1970 to End Date

Plots the average US dollar safety premium for three indices: World, Developed, and Equally Weighted. The average is taken over a window with a fixed start date in January 1970 and a rolling end date. Therefore, the datapoint for March 2010 is the average for the period Jan 1970-Mar 2010 and the datapoint for February 2010 is the average for the period Feb 1970-Feb 2010. The safety premium in each month is computed as the sum of the logarithmic interest rate differential, the logarithmic exchange rate change and the Jensen’s inequality term. The World index includes 23 developed and 22 emerging countries. The Developed index only includes the 23 developed countries. The indices are stock market capitalization weighted using the MSCI Barra weights. The two indices are identical for the period 1970-1987 as the emerging countries are assigned a zero weight, and progressively differ for the period 1988-2010 as the emerging countries’ market capitalization increases. The Equally weighted index includes all the 55 countries in the World index and assigns equal weight to each country. The data are monthly Jan 1970-Mar 2010.
Figure 3.6: Ex Post Covariance $\tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1})$: World Index

The ex post covariance is the product of the residuals of the zero stage regressions: $\tilde{\text{Cov}}(r_{t+1}, \Delta e_{t+1}) = \hat{\epsilon}_{r_{t+1}} \hat{\epsilon}_{e_{t+1}}$, where $\{\hat{\epsilon}_{r_{t+1}}, \hat{\epsilon}_{e_{t+1}}\}$ are the residuals of the regressions in equations (3.8-3.9). The zero stage regressions point estimates are obtained by OLS. The resulting time series, the ex-post covariance, is monthly January 1975-March 2010: 423 observations. The World indices for equity and currency returns are used in the zero stage regression to estimate the residuals, and consequently the ex post covariance.
The ex post covariance is the product of the residuals of the zero stage regressions:
\[\tilde{Cov}(\tilde{r}_{t+1}, \Delta \tilde{e}_{t+1}) = \tilde{\epsilon}_{t+1} \tilde{\epsilon}_{e_{t+1}}, \]
where \{\tilde{\epsilon}_{r_{t+1}}, \tilde{\epsilon}_{e_{t+1}}\} are the residuals of the regressions in equations (3.8-3.9). The zero stage regressions point estimates are obtained by OLS. The resulting time series, the ex-post covariance, is monthly January 1975-March 2010: 423 observations. The Developed indices for equity and currency returns are used in the zero stage regression to estimate the residuals, and consequently the ex post covariance.
The conditional covariance is the fitted value of the first stage regression in equation (3.10). The first stage regresses the ex post covariance obtained from the zero stage regressions on a set of instruments. The set of instruments includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The regression uses the OLS estimator for the World equity and currency indices for the period April 1975-March 2010: 420 observations.
The conditional covariance is the fitted value of the first stage regression in equation (3.10). The first stage regresses the ex post covariance obtained from the zero stage regressions on a set of instruments. The set of instruments includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The regression uses the OLS estimator for the Developed equity and currency indices for the period April 1975-March 2010: 420 observations.
The conditional covariance is the fitted value of the first stage regression in equation (3.10). The first stage regresses the ex post covariance obtained from the zero stage regressions on a set of instruments. The set of instruments includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The regression uses the OLS estimator for the World equity and currency indices for the period April 1975-March 2010: 420 observations. The confidence band for the estimate is based on the two sided 95% t-statistic with Newey-West estimates of the standard errors. The Newey-West lag length is set at the square root of the sample length (20 month).
Figure 3.11: 95% Confidence Band for Conditional Covariance: Developed Index

The conditional covariance is the fitted value of the first stage regression in equation (3.10). The first stage regresses the ex post covariance obtained from the zero stage regressions on a set of instruments. The set of instruments includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The regression uses the OLS estimator for the Developed equity and currency indices for the period April 1975-March 2010: 420 observations. The confidence band for the estimate is based on the two sided 95% t-statistic with Newey-West estimates of the standard errors. The Newey-West lag length is set at the square root of the sample length (20 month).
The US dollar safety premium is the fitted value of the second stage regression in equation (3.12) for the case of no time variation in the price of risk. The LHS variable is the US dollar safety premium: the monthly logarithmic return of investing in the currency index while funding in US dollars plus the Jensen’s inequality term. The RHS regressors are a constant and the estimated, in the first stage, conditional covariance between the equity and currency indices returns. The set of instruments for the first stage regression includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The estimates are obtained by iterated GMM and details are in Appendix B. The standard errors are computed using GMM to jointly estimate the zero, and second stage regressions. The standard errors are based on the Newey-West estimate of the spectral density matrix in GMM, with lag set to the square root of the sample size (20 lags here), and are corrected for the uncertainty deriving from using estimated regressors from the zero and first stage. The estimated spectral density matrix is used as the weighting matrix in iterations of GMM. The estimates employ the World equity and currency indices for the period April 1975-March 2010: 420 observations.
The US dollar safety premium is the fitted value of the second stage regression in equation (3.12) for the case of no time variation in the price of risk. The LHS variable is the US dollar safety premium: the monthly logarithmic return of investing in the currency index while funding in US dollars plus the Jensen's inequality term. The RHS regressors are a constant and the estimated, in the first stage, conditional covariance between the equity and currency indices returns. The set of instruments for the first stage regression includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The estimates are obtained by iterated GMM and details are in Appendix B. The standard errors are computed using GMM to jointly estimate the zero, and second stage regressions. The standard errors are based on the Newey-West estimate of the spectral density matrix in GMM, with lag set to the square root of the sample size (20 lags here), and are corrected for the uncertainty deriving from using estimated regressors from the zero and first stage. The estimated spectral density matrix is used as the weighting matrix in iterations of GMM. The estimates employ the Developed equity and currency indices for the period April 1975-March 2010: 420 observations.
The US dollar safety premium is the fitted value of the second stage regression in equation (3.12) for the case of no time variation in the price of risk. The LHS variable is the US dollar safety premium: the monthly logarithmic return of investing in the currency index while funding in US dollars plus the Jensen’s inequality term. The RHS regressors are a constant and the estimated, in the first stage, conditional covariance between the equity and currency indices returns. The set of instruments for the first stage regression includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The estimates are obtained by iterated GMM and details are in Appendix B. The standard errors are computed using GMM to jointly estimate the zero, and second stage regressions. The standard errors are based on the Newey-West estimate of the spectral density matrix in GMM, with lag set to the square root of the sample size (20 lags here), and are corrected for the uncertainty deriving from using estimated regressors from the zero and first stage. The estimated spectral density matrix is used as the weighting matrix in iterations of GMM. The estimates employ the World equity and currency indices for the period January 1971-March 2010: 471 observations.
Figure 3.15: US Dollar Safety Premium (\$SP_t): Developed Index January 1971 - March 2010

The US dollar safety premium is the fitted value of the second stage regression in equation (3.12) for the case of no time variation in the price of risk. The LHS variable is the US dollar safety premium: the monthly logarithmic return of investing in the currency index while funding in US dollars plus the Jensen’s inequality term. The RHS regressors are a constant and the estimated, in the first stage, conditional covariance between the equity and currency indices returns. The set of instruments for the first stage regression includes: a constant, the dividend-price ratio for the equity index, the lagged one-month return for the equity index, the lagged one-month exchange rate change for the currency index, the lagged two-month variances for the equity and currency indices, and the lagged three-month covariance of the equity and currency indices. The estimates are obtained by iterated GMM and details are in Appendix B. The standard errors are computed using GMM to jointly estimate the zero, and second stage regressions. The standard errors are based on the Newey-West estimate of the spectral density matrix in GMM, with lag set to the square root of the sample size (20 lags here), and are corrected for the uncertainty deriving from using estimated regressors from the zero and first stage. The estimated spectral density matrix is used as the weighting matrix in iterations of GMM. The estimates employ the Developed equity and currency indices for the period January 1971-March 2010: 471 observations.