Title
RF ion source development for neutron generation and for material modification

Permalink
https://escholarship.org/uc/item/5j13p0wp

Authors
Reijonen, J.
Leung, K.N.
Jones, G.

Publication Date
2001-05-29
RF Ion Source Development for Neutron Generation and for Material Modification*

J. Reijonen, K-L. Leung, G. Jones
Lawrence Berkeley National Laboratory, Berkeley 94720, USA

RF driven multicusp ion sources have been successfully used in various different applications. Lately the Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has been developing a compact RF-ion source for neutron production and a high current density cw-operated ion source for SIMOX-application.

A small, portable, neutron generator incorporating a source and an accelerator is very useful in many applications. Low power consumption is also desirable. The group has developed a small ion source, which consists of a quartz plasma chamber, an external RF-antenna, an extraction electrode and a target assembly, all in a tube that is approximately 25 cm in length and 5 cm in diameter. The neutron generator that is currently in use operates at 1% duty cycle, 80kV and 15 mA of deuterium beam. The neutron yield measured from the generator are $2 - 3 \times 10^6$ n/s.

For oxygen implantation the group has been developing a source which could provide high percentage of O^+ and at the same time high current density at cw-operation. Specifications for the source were 100 mA/cm2 current density and beam purity of more than 90% O^+. These specifications required that the source would have to be used at 4 – 5 kW of RF-power. A dual antenna set-up was developed for the source to ensure a reliable long life-time operation. A pair of coaxial titanium / quartz antennas was used.

The development and the measurements of these two sources will be discussed in this presentation.

* This work is supported by LDRD, Sandia National Laboratories and IBIS Corp.