Title
Autoantibodies to IgG/HLA class II complexes are associated with rheumatoid arthritis susceptibility

Permalink
https://escholarship.org/uc/item/5j71c5m8

Journal
Proceedings of the National Academy of Sciences of the United States of America, 111(10)

ISSN
0027-8424

Authors
Jin, H
Arase, N
Hirayasu, K
et al.

Publication Date
2014-03-11

DOI
10.1073/pnas.1401105111

Peer reviewed
Autoantibodies to IgG/HLA class II complexes are associated with rheumatoid arthritis susceptibility

Hui Jin, Noriko Arase, Kouyuki Hirayasu, Masako Kohyama, Dr. Tadahiro Suenaga, Fumiji Saito, Kenji Tanimura, Sumiko Matsuoka, Kosuke Ebina, Kenrin Shi, Noriko Toyama-Sorimachi, Shinsuke Yasuda, Tetsuya Horita, Ryosuke Hiwa, Kiyoshi Takasugi, Koichiro Ohmura, Hideki Yoshikawa, Takashi Saito, Tatsuya Atsumi, Takehiho Sasaki, Ichiro Katayama, Lewis L. Lanier, and Hisashi Arase

Laboratory of Immunochemistry, World Premier International (WPI) Immunology Frontier Research Center, Department of Immunocommunity, Research Institute for Microbial Diseases, Department of Dermatology, Graduate School of Medicine, and Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan; Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8507, Japan; Department of Internal Medicine, Center for Rheumatic Diseases, Dohgo Spa Hospital, Matsuyama, Ehime 790-0058, Japan; Laboratory of Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan; Laboratory of Cell Signaling, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Advanced Study, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan; Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA 94143; and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho Kawaguchi, Saitama 352-0012, Japan

Contributed by Lewis L. Lanier, January 23, 2014 (sent for review December 12, 2013)

Specific HLA class II alleles are strongly associated with susceptibility to rheumatoid arthritis (RA); however, how HLA class II regulates susceptibility to RA has remained unclear. Recently, we found a unique function of HLA class II molecules: their ability to aberrantly transport cellular misfolded proteins to the cell surface without processing to peptides. Rheumatoid factor (RF) is an autoantibody that binds to denatured IgG or Fc fragments of IgG and is detected in 70–80% of RA patients but also in patients with other autoimmune diseases. Here, we report that intact IgG heavy chain (IgGH) is transported to the cell surface by HLA class II via association with the peptide-binding groove and that IgGH/HLA class II complexes are specifically recognized by autoantibodies in RF-positive sera from RA patients. In contrast, autoantibodies in RF-positive sera from non-RA individuals did not bind to IgGH/HLA class II complexes. Of note, a strong correlation between autoantibody binding to IgG complexed with certain HLA-DR alleles and the odds ratio for that allele’s association with RA was observed (r = 0.81; P = 4.6 × 10^-7). Our findings suggest that IgGH complexed with certain HLA class II alleles is a target for autoantibodies in RA, which might explain why these HLA class II alleles confer susceptibility to RA.

autoimmune disease | major histocompatibility complex

Autoantibodies are produced in most autoimmune diseases and are frequently used in their diagnosis. Rheumatoid factor (RF) is an IgM autoantibody that binds to denatured IgG or Fc fragments of IgG and is detected in about 80% of RA patients but also in 5–10% of healthy individuals, as well as in other autoimmune diseases (1). However, the natural antigens that are recognized by RF are unknown, partly because such denatured IgG does not exist in physiological situations. Specific HLA class II alleles are strongly associated with susceptibility to many autoimmune diseases (2). Because peptide repertoire presented on different HLA class II alleles differ (3, 4), it has been proposed that specific peptide–HLA class II combinations affect T-cell development and/or tolerance, which may confer susceptibility or resistance to autoimmune diseases (5). A recent report of a large-scale genetic study indicates that several amino acid residues within the HLA-DR peptide-binding groove determine susceptibility to rheumatoid arthritis (RA) (6). However, it has remained enigmatic for decades how specific HLA class II molecules control the immune response in autoimmune diseases (7).

We recently found that misfolded HLA class I molecules are present on the cell surface of HLA class II-expressing cells. Unexpectedly, we discovered that these misfolded HLA class I molecules were transported to the cell surface by association with the peptide-binding groove of HLA class II molecules (8). Indeed, direct association between HLA class II molecules and misfolded HLA class I molecules was detected in HLA class II-expressing B-cell lines. Furthermore, the intact misfolded proteins transported to the cell surface by HLA class II molecules efficiently stimulated antigen-specific B cells (8). Accordingly, we hypothesized that misfolded proteins aberrantly transported to the cell surface by HLA class II molecules might be targets for autoantibodies detected in autoimmune diseases.

Results

IgG Heavy Chain Alone Is Expressed on the Cell Surface in Association with MHC Class II Molecules. Because denatured IgG is a target for RF, we addressed whether intracellular misfolded IgG heavy chains (IgGHCs) are transported to the cell surface by the RA-susceptible HLA-DR4 (HLA-DR4*01:01/DRB1*04:04) molecule. Five different secreted forms of IgG1 heavy chains cloned from human peripheral blood mononuclear cells (PBMCs) transfected into 293T cells were not detected on the cell surface (Fig. 1A) but were detected intracellularly in similar amounts (Fig. 1B).

Significance

Cellular misfolded proteins are transported to the cell surface by MHC class II molecules via association with the peptide-binding groove without processing to peptides. We found that IgG heavy chain is transported to the cell surface by MHC class II molecules. Furthermore, IgG heavy chain associated with MHC class II molecules is recognized by autoantibodies in rheumatoid arthritis patients. Autoantibody binding to IgG heavy chain complexed with different MHC class II alleles was strongly associated with rheumatoid arthritis susceptibility conferred by certain MHC class II alleles. These findings suggest that misfolded proteins complexed with MHC class II molecules could be targets for autoantibodies in autoimmune diseases, which might be involved in autoimmune disease susceptibility.

The authors declare no conflict of interest.

1To whom correspondence may be addressed. E-mail: lewis.lanier@ucsf.edu or arase@biken.osaka-u.ac.jp.
IgGH is transported to the cell surface by HLA-DR. (Fig. 1C). Furthermore, full-length IgGH (50 kDa) was coprecipitated with HLA-DR4 but not with HLA-DR4 containing a covalently attached peptide (Fig. 1D). When IgGH with a His tag at the C terminus or a Flag tag at the N terminus was transfected with HLA-DR, cell surface IgGH was detected using anti-Flag or anti-His mAb (Fig. 1E). These data indicate that full-length IgGH, rather than degraded IgGH, is expressed on the cell surface in association with the peptide-binding groove of HLA-DR and that the V region of IgG influences the association with HLA-DR. To determine where HLA-DR associates with IgGH, we analyzed the association using pulse-chase experiments (Fig. 2). Endoglycosidase H (Endo H)-sensitive HLA-DR was coimmunoprecipitated with IgGH just after pulsing cells for 15 min with [35S]methionine and cysteine (0 h). Association of IgGH with HLA-DR was also detected after 2 and 4 h. These data indicate that IgGH associates with nascent HLA-DR molecules in the endoplasmic reticulum (ER).

Autoantibodies from RA Patients Bind to IgGH Complexed with MHC Class II Molecules. We analyzed binding of IgM autoantibodies in a RF standard serum to IgGH bound to HLA-DR4 molecules (Fig. 3A). Autoantibodies in the RF standard serum bound strongly to the secreted form of IgGH complexed with HLA-DR molecules but only weakly to the membrane-bound form of IgGH expressed on the cell surface by cotransfection with light chain, IgG, and IgG. The level of expression of the membrane-bound form of IgGH compared with the secreted form of IgGH bound to HLA-DR was almost the same. The presence of light chain did not affect IgGH cell surface transportation by HLA-DR and autoantibody binding to IgGH complexed with HLA-DR. Autoantibodies in the RF standard serum did not bind to the membrane-bound form of IgGH even in the presence of HLA-DR molecules. To confirm that autoantibodies bind to the IgGH/HLA class II complexes, we used a human monoclonal RF antibody derived from an RA patient, RF61, which shows similar specificity to RF (10, 11). RF61 bound to the secreted form of IgGH complexed with HLA-DR molecules but not to the membrane-bound form of IgGH.

In contrast, the secreted form of IgGH were detectable on the cell surface in the presence of HLA-DR molecules, with the amount of IgG detected being different for each of the five different heavy chains (Fig. 1A). This suggests that the variable (V) region of IgG influences the association with HLA-DR molecules. Because the antibody light chain was not required for expression, the structure of the IgGH complexed with the HLA-DR molecule seems to be different from that of IgGH in normal antibody that is associated with light chain.

Next, we analyzed involvement of the peptide-binding groove of HLA class II molecules in the transport of IgGH to the cell surface. We generated HLA-DR4 covalently attached with an HLA-Cw3 peptide, one of the most common naturally bound peptides in the peptide-binding groove of HLA-DR4 (9). Wild-type HLA-DR4 transported IgGH to the cell surface but HLA-DR4 covalently attached with HLA-Cw3 peptide failed to induce cell surface expression of IgGH (Fig. 1C). Furthermore, full-length IgGH (50 kDa) was coprecipitated with HLA-DR4 but not with HLA-DR4 containing a covalently attached peptide (Fig. 1D).

Fig. 1. IgGH is transported to the cell surface by HLA-DR. (A) The secreted forms of IgGHs cloned from human PBMCs that have different V regions were cotransfected with HLA-DR, DRB1*04:04 (HLA-DR4), and GFP. Cell surface IgG on GFP-expressing cells was detected with anti-human IgG Fc-specific Ab (red lines). Cells transfected with IgGH alone were stained as control (shaded histograms). (B) The secreted form of IgGH clones was cotransfected with GFP, and intracellular IgGH was detected by intracellular staining with anti-human IgG Fc-specific Ab (red lines). Cells transfected with GFP alone were stained as control (shaded histograms). MFIs of IgG complexed with HLA-DR or intracellular IgG are shown in the figure (B). (D) N-terminal Flag-tagged or C-terminal His-tagged IgGH was transfected with GFP in the presence (red lines) or absence (shaded histograms) of HLA-DR4. Cell surface IgG on GFP-positive cells was detected with anti-Flag or anti-His mAb, respectively. Data are representative of at least three independent experiments.

Fig. 2. Association of IgGH with HLA-DR in the ER. IgGH and HLA-DR were transfected into 293T cells and were labeled with [35S]methionine and cysteine for 15 min and chased for the indicated times in the absence of radioactivity. IgGH was precipitated with protein A (Upper) and both IgGH and HLA-DR were precipitated with protein A plus anti–HLA-DR mAb (Lower). The precipitates were boiled, treated with Endo H or mock, and resolved by SDS/PAGE. HLA-DRβ1 and IgGH are indicated. Data are representative of three independent experiments.
indicated that IgGH bound to HLA-DR is a target for autoantibodies in RA patients.

We analyzed serum samples from RA patients and healthy donors for binding to IgGH/HLA class II complexes. RF-positive sera (defined as sera that bind to IgG Fc fragments) from RA patients contained IgM autoantibodies against IgGH complexed with HLA-DR molecules (Fig. 3B). On the other hand, sera from healthy donors, including some RF-positive sera from healthy donors, did not contain autoantibodies against IgGH/HLA-DR complexes. When sera from 151 RA patients were analyzed, autoantibody titers against IgGH complexed with HLA-DR molecules were well correlated with their RF titers as determined by binding to human IgG Fc fragments \((r = 0.85, P = 5.9 \times 10^{-14}) \) (Fig. 3C). On the other hand, autoantibody titers against IgGH complexed with HLA-DR molecules were low in sera from systemic lupus erythematosus (SLE) patients, anti-phospholipid syndrome (APS) patients, and healthy donors, including individuals with high RF titers. These data suggest that RA patients possess autoantibodies to both Fc fragments of IgG and IgGH/HLA-DR complexes. IgGH/HLA-DR complexes, but not Fc fragments of IgG, seem to represent a specific target for autoantibodies in RA patients.

A Strong Correlation Between Autoantibody Binding to IgG Complexed with Each HLA-DR Allele and the Odds Ratio for That Allele’s Association with RA. We compared the efficiency of IgGH transport by different HLA-DR molecules. Although RA-susceptible HLA-DR4 efficiently induced cell surface IgGH expression, cell surface IgGH transport by RA-resistant HLA-DR3 \((\text{HLA}-\text{DR}^4*01:01/\text{HLA}-\text{DR}^4*03:01) \) was quite inefficient, although there was no difference in the expression of these HLA-DR molecules on the cell surface (Fig. 4A). Moreover, IgGH was coprecipitated with HLA-DR4 but not HLA-DR3 (Fig. 1D). Invariant chain (Ii), which blocks the peptide-binding groove of nascent MHC class II molecules and transports MHC class II to the endosomal components, partially inhibited transport of IgGH to the cell surface by these HLA-DR molecules. However, HLA-DR4, not HLA-DR3, still efficiently transported IgGH to the cell surface (Fig. 4A). Autoantibodies from an RF-positive RA patient bound to the IgGH complexed with HLA-DR4 but less efficiently with IgGH complexed with HLA-DR3. A more pronounced difference was observed in the autoantibody binding to IgGH between HLA-DR4 and HLA-DR3 in the presence of Ii. A cysteine-mutant misfolded Hen egg lysozyme (HEL) protein (8) was transported to the cell surface by HLA-DR3 better than HLA-DR4, indicating that the failure of HLA-DR3 to transport IgGH did not reflect a general inability to associate with all misfolded proteins (Fig. 4B). In addition, Ii blocked mutated HEL (mutHEL) transport by HLA-DR4 more efficiently than HLA-DR3, suggesting that the ability of Ii to block the
transport of misfolded proteins by HLA-DR is allele-specific (Fig. 4B). On the other hand, HLA-DM destabilizes the association of Ii-derived peptides with HLA class II molecules in endosomal compartments, which promotes HLA class II molecules to associate with peptides derived from endosomes (12). Therefore, there is a possibility that HLA-DM also destabilizes the association of IgGH with HLA-DR. However, HLA-DM did not affect the IgGH transported by HLA-DR4, although HLA-DM blocked cell surface expression of IgGH transported by HLA-DR3 (Fig. 4C). This suggests that HLA-DM affects the association of IgGH with the RA-susceptible HLA-DR protein in the ER less than Ii.

We further tested whether there is a correlation between binding of IgM autoantibodies from RA patients to IgGH complexed with different HLA-DRB1 alleles and the RA susceptibility conferred by certain HLA-DRB1 alleles in the presence of Ii and light chain to represent physiological situations (Fig. 5A). Strikingly, a strong correlation was observed between the binding of autoantibodies from RA patients to IgGH complexed with each HLA-DR allele and the odds ratio for that allele’s association with RA ($r = 0.81; P = 4.6 \times 10^{-5}$). There was no correlation between misfolded HEL transport and the odds ratio for each of these HLA-DR alleles (Fig. 5B). These data suggest that autoantibody binding to IgGH complexed with certain HLA-DR molecules is involved in susceptibility to RA.

In Situ Association of IgGH with HLA-DR in Synovial Membrane from RA Patients. The presence of specific autoantibodies against IgGH complexed with HLA-DR suggests that HLA-DR/IgGH complexes exist in tissues of RA patients as a target antigen for the autoantibodies. To test this possibility, we analyzed the association of IgGH and HLA-DR using a proximity ligation assay (PLA) that detects protein–protein interactions closer than 40 nm (13). PLA signals between HLA-DR and IgGH were observed in synovial membrane from RA patients but not from osteoarthritis patients (Fig. 6). These data suggested that IgGH and HLA-DR complexes are present in synovial membrane in RA patients as a target for autoantibodies.

Discussion

Ii binds newly synthesized HLA class II molecules and prevents associations with other proteins (3, 14). However, the affinity of Ii-derived peptide (CLIP peptide) binding to HLA class II proteins is not always higher than other peptide antigens (15). Therefore, linear epitopes exposed in IgGH might associate with HLA class II molecules in the ER in place of Ii if they have a high affinity or high abundance. Indeed, in our study, the efficiency of the blockade of the binding of IgGH to HLA class II molecules by Ii varied according to the allele examined. Ii efficiently blocked transportation of IgGH by HLA-DR3, whereas a significant amount of IgGH was still transported to the cell surface by RA-susceptible HLA-DR4 and was recognized by autoantibodies from RA patients even in the presence of Ii and light chain. These are compatible with a prior report that an Ii-derived CLIP peptide has a higher affinity for HLA-DR3 than HLA-DR4 (16). However, Ii blocked the transport of misfolded HEL by HLA-DR4 more efficiently than that by HLA-DR3. Because several epitopes in Ii are involved in the association with MHC class II molecules (4), affinity of a single CLIP peptide to MHC class II molecules alone seems not to be correlated with the efficiency of Ii to block the misfolded protein binding to MHC class II molecules. On the other hand, the HLA class II molecules that associate with IgGH will not be transported to the endosomal compartments because, unlike invariant chain, IgGH does not have an endosomal-sorting signal. Therefore, IgGH associated with HLA class II molecules might be directly transported to the cell surface in an intact form by HLA class II molecules.

Binding of IgGH to the peptide-binding groove of HLA-DR suggested that linear epitopes revealed on unfolded IgGH are involved in the association with HLA-DR. Indeed, peptide fragments of IgGH, including V regions, are often eluted from HLA-DR (4, 17, 18). On the other hand, when extracellular protein antigens are endocytosed and unfolded in endosomes, these proteins form a large molecular complex with MHC class II molecules via the peptide-binding groove, followed by cleavage and/or trimming of the bound protein by endosomal proteinases (19, 20). Therefore, it is possible that misfolded IgGH transported to the cell surface by MHC class II molecules are also cleaved and/or trimmed to peptide fragments after endocytosis of IgGH/MHC class II complex. The MHC class II molecules that appear on the cell surface with the IgGH-derived peptides after endosomal processing might elicit antigen-specific T-cell responses to enhance autoantibody production. Indeed, IgG RF is produced in some RA patients, although most RF is IgM (1).

RF is frequently used in the diagnosis of RA, and a recent large-scale prospective cohort study indicated that healthy individuals with high RF have a 26-fold greater long-term risk of RA than RF-negative individuals (21). However, RF is not thought to be directly involved in pathogenicity of RA, partly because RF
is detected in other diseases that lack symptoms of arthritis (1). Most RFs from RA patients and non-RA individuals bind to the Fc portions of IgG1, IgG2, and IgG4. In contrast, RFs from non-RA individuals rarely bind to the Fc portion of IgG3 (less than 5%), whereas RFs from some RA patients bind to IgG3 (about 30%) (22–24). These observations suggested that epitopes recognized by RFs from RA patients are different from RFs of non-RA individuals (22–24). In our study, we found that autoantibodies against IgG1 complexed with HLA-DR are specifically detected in most RA patients but not in non-RA individuals. Therefore, RF epitopes on IgG1 complexed with HLA-DR seem to be different from those on the Fc portion of IgGs not complexed with HLA-DR.

At present, it is unclear whether autoantibodies against IgG(H)/HLA-DR complexes are directly involved in pathogenesis of RA. However, a strong correlation between autoantibody binding to IgG(H)/HLA-DR complex and RA susceptibility was observed. In addition, it is well recognized that autoantibodies against ubiquitously expressed self-antigens (for example, glucose-6-phosphate isomerase or type II collagen) can induce arthritis in mouse model systems (25, 26). Considering these observations, autoantibodies to IgG(H)/HLA-DR complexes might also play a role in the pathogenesis of RA.

IgG-positive B cells in PBMCs, including those from RA patients, are not recognized by autoantibodies from RA patients, suggesting that normal peripheral IgG-positive B cells expressing HLA class II molecules do not display IgG(H)/HLA-DR complexes. We have shown that IgG(H)/HLA-DR complexes are detectable in synovial membrane from RA patients by using a PLA assay. Furthermore, an unfolded protein response is detected in plasma cells in the synovial membrane of RA patients (27). These observations suggested that abnormal B cells producing unusual IgG(H)/HLA-DR complexes specifically differentiate in the synovial membrane of RA patients. The distribution of PLA signals in synovial membranes from RA patients suggests that abnormal B cells producing these IgG(H)/HLA-DR complexes might have secreted these complexes. MHC class II molecules can be secreted from B cells or antigen-presenting cells as exosomes (28). Therefore, abnormal B cells might have secreted these IgG(H)/HLA-DR complexes in synovial membranes as exosomes, which could be a target for autoantibodies in RA patients. Autoantibodies against citrullinated proteins are also detected in RA patients (29, 30). Because citrullination is known to cause protein misfolding (31), such proteins might be effectively transported to the cell surface by HLA class II molecules and might induce autoantibody production. Therefore, it is important to characterize abnormal B cell immunity against IgG(H)/HLA-DR complexes and to investigate in vivo situations in which misfolded or structurally altered proteins are complexed with HLA class II molecules. Further analyses of misfolded or structurally altered proteins complexed with HLA class II molecules might help us to better understand HLA class II-related autoimmune diseases.

Materials and Methods

Human Samples. The collection and use of human sera and synovial tissues were approved by the institutional reviewer board (IRB) of Hokkaido University, Dohoff Spa Hospital, and Osaka University. Written informed consent was obtained from all participants according to the relevant guidelines of the IRB. Diagnoses of RA and SLE were based on the 1987 American University of Rheumatology classification revised criteria for RA (32) and the 1982 American College of Rheumatology revised criteria for classification of SLE (33), respectively. The diagnosis of APS was based on the preliminary classification criteria for definite APS (34). Some sera were purchased from George King Bio-Medical. RF standard serum (1,060 U/mL) was purchased from GenWay Biotech.

Plasmids. cDNA for different HLA class II alleles, HLA-Dm4 (DMA+01:02), HLA-Dm1 (DMA+01:01), li (accession no. NM_004355.2) were cloned from cDNA prepared from pooled human PBMCs (3H Biomedical) or human cell lines. IgG (accession No. NM_007655.3) and IgI (accession No. NM_008339.2) were cloned from cDNA prepared from mouse spleen. Some HLA-DR alleles were generated using QuiChange mutagenesis kits (Agilent Technologies) from HLA genes with similar sequences. All cDNA sequences for HLA were based on information contained in the Immunogenetics/HLA Database (www.ebi.ac.uk/imgt/hla/index.html).

HLA-Cw3-pep-DRB1*04:04 containing a covalently attached peptide was generated by adding the peptide sequence (Cw3: GSH5MRYYTVATSRPRG) and linker (GSSGGG) between the signal sequence and extracellular domain of these MHC class II cDNA as previously described (35). A cDNA for the mHLE in which two cysteine residues at positions 30 and 64 were replaced with alanine was generated as described (8). V regions of RF61 RF mAb were synthesized according to the published sequence (accession numbers: for heavy chain, X54437; for light chain, X54438). These V regions were cloned into pmET18S expression vectors containing mouse secreted form of IgG1 constant region (accession no. L27437.1) or human constant region (accession no. X068767). Plasmids containing heavy and light chain genes for the Abs were transfected into 293T cells. The culture supernatants were collected 3 d later and were used for staining. Nucleotide sequences of all of the constructs were confirmed by DNA sequencing (ABI3130xl). IgGs were amplified from human PBMCs (3H Biomedical) using sense primers for V regions (5′-GGCTTGTCGG-CAGGTACCTGGAAGGAC-3′ for clone 1 and 3′-GCCCCTCCGGAGTCGATG-5′ for clone 2). IgG(H)/HLA-DR complexes might also play a role in the pathogenesis of RA. Further analyses of misfolded or structurally altered proteins complexed with HLA class II molecules might help us to better understand HLA class II-related autoimmune diseases.
Endo H resistance, the immunoprecipitates were eluted from the beads in 20 μL of Endo H digestion buffer (40 mM DTT, 0.5% SDS) by heating at 100 °C for 10 min. The eluted proteins were then incubated for 1 h at 37 °C in the absence or presence of 250 U of Endo H (NEB). The reaction mixtures were then analyzed by SDS/PAGE on a separated on 5–20% polyacrylamide gels and autoradiography was analyzed by using FLA-7000 (Fujifilm).

Autoantibody-Binding Analysis to IgGH/HLA-DR Complex. Human secreted IgGH (clone 1) or membrane IgGH containing the same V region as clone 1 was cotransfected together with HLA-DRβ1, Igκ, Igλ, IgG, and GFP. The transfectedants were mixed with 1/300-diluted RD standard serum (1,060 U/mL) or sera from RF-positive and -negative patients, followed by biotin-conjugated anti-human IgM Ab (Jackson Immunoresearch) and then APC-labeled streptavidin (eBioscience). RF61 mAb was premixed with APC-labeled anti-mouse IgG Fc Ab and used directly for the staining. Cell surface IgG was detected by APC-labeled anti-human IgG Fc Ab (Jackson Immunoresearch). IgG bound on the GFP-expressing cells were detected by APC-labeled anti-mouse IgG Fc Ab. Mean fluorescence intensities (MFIs) of autoantibody binding to HLA-DR and IgGH-transfected cells were calculated by subtracting MFI of autoantibody binding to GFP-negative transfected. Anti-IgGH/HLA-DR complex Ab titers were calculated based on IgM autoantibody binding to IgGH bound to HLA-DRα by a standard RF serum of which the RF titer is known (1,060 U/mL).

Measuring RF Titers. RF titers were measured by a sandwich ELISA. Human IgG Fc fragment (Jackson Immunoresearch) was coated onto 96-well microplates (Costar), and IgM bound to the plates was detected by peroxidase-conjugated rabbit anti-human IgM Ab (Jackson Immunoresearch). Peroxidase activities were detected using OpTia (BD Bioscience). RF titers were calculated using the standard RF serum of which the RF titer is known (1,060 U/mL; GenWay Biotech).

Proximity Ligation Assay. A Duolink in situ PLA kit was used according to the manufacturer’s instructions (Olink Bioscience) for in situ proximity-ligation assay. Paraffin-embedded tissue sections from RA patients and osteoarthritis patients were treated with target retrieval solution (S170; Dako) according to the manufacturer’s instructions to retrieve epitopes for Abs and were incubated with goat anti-human IgG Fc-specific Ab (Jackson Immunoresearch) together with anti–HLA-DR mAb (TAL; 185; Dako), and Cy3 PLA signals were developed using anti-mouse MINUS and anti-goat PLUS PLA probes. Nuclei were stained with DAPI fluorescence dye. The assayed tissue sections were analyzed by Axioplan 2 fluorescence microscopy.

Statistics. To assess the significance of the correlation, Pearson’s product-moment correlation coefficient was used, and the correlation coefficient (r) and P value of the linear regression line were calculated. Odds ratios for the association between different HLA-DRB1 alleles and RA, which were obtained from a recently reported large-scale genetic study (6), were log-transformed to normalize the distribution. Values of <0.05 were regarded as statistically significant.

ACKNOWLEDGMENTS. We thank S. Sakaguchi for critical reading of the manuscript; H. Kikutani, M. Murakami, N. Sakaguchi, and J. Wang for helpful comments; M. Matsumoto and K. Shida for technical assistance; and members of the Department of Dermatology, Osaka University Graduate School of Medicine, for collection of clinical samples. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (HLA Disease and Evolution) from the Ministry of Education, Culture, Sports, Science and Technology Japan (to T. Sasaoku and H.A.); Grants-in-Aid for Scientific Research (B) (to H.A.), (C) (to M.K., T. Suenaga), and Young Scientists (B) (to K.H.) from the Japan Society for the Promotion of Science; and National Center for Global Health and Medicine Grant 21A106 (to H.A. and N. T.-S.). L.L.L. is an American Cancer Society Professor and is supported by National Institutes of Health Grant AI088129.