Title
ELECTRONIC STRUCTURE AND DISSOCIATION CURVES FOR THE GROUND STATES OF TI2 AND TI2+ FROM RELATIVISTIC EFFECTIVE POTENTIAL CALCULATIONS

Permalink
https://escholarship.org/uc/item/5j83d8vx

Authors
Christiansen, P.A.
Pitzer, K.S.

Publication Date
1980-08-01
Submitted to The Journal of Chemical Physics

ELECTRONIC STRUCTURE AND DISSOCIATION CURVES FOR THE GROUND STATES OF Ti_2 AND Ti_2^+ FROM RELATIVISTIC EFFECTIVE POTENTIAL CALCULATIONS

Phillip A. Christiansen and Kenneth S. Pitzer

August 1980

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Electronic Structure and Dissociation Curves for the Ground States of Tl$_2$ and Tl$_2^+$ from Relativistic Effective Potential Calculations

Phillip A. Christiansen and Kenneth S. Pitzer

Department of Chemistry and Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

Abstract

The dissociation curves for the ground states of Tl$_2$ and Tl$_2^+$ were computed using a generalization of the molecular relativistic $\omega-\omega$ coupling formalism of Lee, Ermler and Pitzer. Relativistic effects, as represented by the Dirac equation, were introduced using effective potentials generated from atomic Dirac-Fock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee and Pitzer. Our calculations show that the ground state of Tl$_2^+$ is 1/2 with computed D_e^g and R_e^g values of 0.58 eV and 3.84 Å. For Tl$_2$ we find that the ground state is Ω_u^- but the Ω_u^+ and Ω_g^- states are only slightly higher in energy; the potential curves for these states are repulsive to about 3.5 Å and then essentially flat beyond that radius. While corrections for correlation will increase D_e^g somewhat, Tl$_2$ is only weakly bound in any of these states which dissociate to normal atoms. The cause is undoubtedly related to the large spin-orbit splitting between the 6p$_{1/2}$ and 6p$_{3/2}$ thallium spinors.
Introduction

Although dissociation energies and other spectroscopic parameters for the ground states of most of the group III homonuclear diatomic molecules have been determined experimentally,\(^1\) to our knowledge this is not the case for \(\text{Tl}_2\). Drowart and Honig,\(^2\) suggest an upper limit to the bond energy of \(\text{Tl}_2\) of 0.9 eV. This is based on the failure to observe any \(\text{Tl}_2\) signal in Tl vapor at approximately 900 °K,\(^3\) and therefore implies no lower limit. Considering this upper limit and the bond energies of \(\text{Hg}_2\) and \(\text{Pb}_2\) they estimated the \(\text{Tl}_2\) bond energy to be about 0.6 eV. This value has been reported in some subsequent reviews as if it were an experimental result. The only positive experimental data concerning \(\text{Tl}_2\) appear to be the spectra of Ginter et al.,\(^4\) which include emission bands in the range 15,300 to 16,000 cm\(^{-1}\) and adsorption bands in the range 23,000 to 23,500 cm\(^{-1}\) for Tl vapor at about 1600 °K. Unfortunately a detailed interpretation of the spectra appears unfeasible for the present; indeed, it is not absolutely certain that these bands arise from \(\text{Tl}_2\). There is considerable interest in the properties of \(\text{Tl}_2\) in relation to recent experiments on parity nonconservation in transitions in atomic thallium.\(^5\) In an effort to explore this situation we have computed dissociation curves for the three states, \(\Omega^+_g\), \(\Omega^-_u\) and \(\Omega_u\), of \(\text{Tl}_2\) which dissociate to neutral atoms in their ground states. In addition we have computed dissociation curves for the lowest \(1/2_g\) and \(1/2_u\) states of \(\text{Tl}_2^+\). Although this ion has been detected experimentally,\(^6\) its molecular parameters have not been reported.

Since for many purposes it can be considered to have only a single valence electron (due to the relativistic contraction, the 6s shell is substantially lower in energy), and because of the large spin-orbit splitting, almost 1 eV between the \(6p_{1/2}\) and \(6p_{3/2}\) spinors, Tl is a
particularly interesting subject for heavy element bonding studies. Unlike light atom bonding which is usually described in terms of sigma, pi, etc. spin-orbitals, bonding between heavy atoms must be described in terms of spinors which are usually combinations of spin-orbitals of differing angular symmetry. This mixing of sigma, pi, etc. spin-orbitals is the result of the spin-orbit coupling as given by the Dirac equation. The $6p_{1/2}$ spinor is composed essentially of $6p$ sigma and pi type spin-orbitals with coefficients of $\sqrt{1/3}$ and $\sqrt{2/3}$ respectively. Therefore a bonding spinor formed as a sum or difference of two such atomic spinors on different centers, retaining the overall g or u symmetry, must be either sigma-bonding and pi-antibonding or else sigma-antibonding and pi-bonding. For this reason one would not expect the $p_{1/2}$ spinors, alone, to form substantial molecular bonds in Tl_2. In our previous TlH calculations we found that the bonding spinor, though predominantly $p_{1/2}$ near the thallium nucleus, became progressively sigma-like towards the hydrogen, forming a reasonably strong sigma bond with the hydrogen ls orbital. For Tl_2 one would expect the pi-antibonding component to play a more important role. Furthermore, in contrast to simple molecular orbital theory, this mixture of bonding and antibonding character in our molecular spinor model for $p_{1/2}$ bonds makes a prediction of the relative stabilities of the bonds in the corresponding ions difficult. Thus it is not obvious whether Tl_2^+ should be more or less strongly bonded than Tl_2.

Method

All of our present molecular calculations were done using the same molecular spinor formalism as was used for TlH. In this formalism the molecular calculations are carried out in terms of $\omega-\omega$ coupling, the
spin-orbit effects being included explicitly in the SCF optimizations. The important relativistic effects (those implied by the Dirac equation), were introduced using effective potentials (EP) derived from full Dirac-Fock atomic wavefunctions. The important differences between our present calculations and those of Lee et al.9 include the redefinition of the EPs, using the formulation of Christiansen et al.10 which greatly improves the accuracy relative to all-electron calculations, and the inclusion of correlating configurations8 which allows us to obtain a reasonable representation of molecular dissociation curves. Since the important mathematical details were given in references 8, 9 and 10, they will not be repeated here.

As in our previous calculations on TlH, we treat explicitly only the outer 13 electrons of atomic thallium (the ten 5d electrons, two 6s electrons and the single 6p\textsubscript{1/2} electron. The atomic spinors from which we derived our pseudospinors and EP were obtained from atomic calculations using a version of the numerical Dirac-Fock program written by Desclaux.11 The double-zeta Tl basis set employed in these calculations is identical to that used in our calculations on TlH.8 The exponents were optimized for the ground state atom after averaging the spin-orbit effects out of the relativistic EP. The excess d and s basis functions will allow some polarization for the p\textsubscript{1/2} bonding spinor. Also, as for TlH, the maximum n quantum number allowed by our molecular integral program was four. Because of this, and because the p and d basis functions were optimized for spin-orbitals rather than for spinors, we expect that the overall quality of the basis is somewhat less than double-zeta.

Calculations and Results

Using the above relativistic EPs and basis set, potential energy curves were computed for the lowest 0_g, 0_u and 1_u states of Tl\textsubscript{2} which
dissociate to ground state atoms. For the O_u^- and l_u states these were single configuration calculations. For the O_g^+ state this requires two configurations, the difference being a double excitation from a $1/2$ to a $1/2_u$ spinor. For this case the coupling is the same as in reference 8, $K^+_{gu} + K^-_{gu}$, where the K^+ and K^- refer to the exchange of electrons with angular momentum of the same and opposite signs, respectively.

Plots of the dissociation curves for these three states are shown in Figure 1. As can be seen these curves show very little bonding character, and in fact the l_u curve shows no minimum in this approximation.

Though there is no clear experimental evidence that the T_{12} ground state is substantially bound, there is evidence that T_{12}^+ is stable. 6 For further comparison we have computed curves for the lowest $1/2_g$ and $1/2_u$ states of T_{12}^+ using single configuration wavefunctions. It should be noted that, although the single configuration functions dissociate to neutral and positively charged atoms, the core spinors on both are forced to be equivalent. However, calculations on Ar_2^+ where this problem should be more severe 12 suggest that the resulting error is probably very small. Also, since no electron pairs are formed during bonding, we expect that correlation corrections will be relatively small. Plots of these two curves are given in Figure 2. The D_e and R_e values are 0.58 eV and 3.84 Å for $1/2_g$, and 0.06 eV and 3.50 Å for $1/2_u$, respectively. In Table I we list the energies at various distances for the O_g^+, O_u^- and l_u states of T_{12} as well as for the $1/2_g$ and $1/2_u$ states of T_{12}^+.

Discussion

Although further correlation corrections will certainly increase the well depths for the O_g^+, O_u^-, and l_u states of T_{12}, because of the relatively large bond lengths, and because the molecular spinors are
distorted only slightly from primitive combinations of atomic spinors, we expect the corrections will be fairly small. (Indeed, further calculations on the \(\Omega^+_g \) state using an eight configuration MCSCF wavefunction lowered the potential minimum by only about 0.01 eV.) Nevertheless, the shallowness of the wells and the minimal separation between the three curves make detailed conclusions regarding the dissociation energies, the locations of the minima and even the relative order of these three states impossible for the present. But we can conclude that the bonding in \(\text{Tl}_2 \) is very weak.

This conclusion that the bond in \(\text{Tl}_2 \) is weak comes as no surprise considering our earlier discussion of bonding between \(\text{p}_{1/2} \) spinors. The underlying cause is illustrated in figure 3 where we have plotted the potential curves for \(\Omega^+_g \), \(\Omega^-_u \) and \(\Omega^+_u \) states of \(\text{Tl}_2 \) along with curves for the corresponding \(\Sigma^+_g \), \(\Sigma^-_g \) and \(\Pi^+_u \) terms without spin-orbit coupling. These latter curves were computed using the same EPs as before but with the individual \(\text{p}_{1/2} \) and \(\text{p}_{3/2} \), etc. components averaged to eliminate the spin-orbit effect; thus other relativistic effects were retained. The \(\Sigma^+_g \), \(\Sigma^-_g \) and \(\Pi^+_u \) curves dissociate to spin-averaged \(\text{p}_\Sigma \) atoms. They have been placed at the proper energies with reference to the true \(\text{p}_{1/2} \) and \(\text{p}_{3/2} \) atoms and our calculated curves for the \(\Omega^-_u \), \(\Omega^+_g \) and \(\Omega^+_u \) molecular states. It is evident that in the absence of the spin-orbit effect, \(\text{Tl}_2 \) is a well-bound molecule in any of the \(\Sigma^+_g \), \(\Sigma^-_g \) or \(\Pi^+_u \) states. However the potential minima for these states are well above the energy for a pair of \(\text{p}_{1/2} \) atoms. Hence the absence of strong bonding in \(\text{Tl}_2 \) appears to arise from the spin-orbit term and is a purely relativistic effect.

Although the inclusion of the spin-orbit term also lowers the energy of the \(\text{Tl}_2 \) molecule, this is the result of the transition from molecular
spin-orbitals with considerable bonding nature to molecular spinors which closely approximate simple combinations of atomic \(p_{1/2} \) spinors.

In the \(^1\Sigma^+ \) state the two valence electrons are sigma bonding, in the \(^3\Sigma^- \) term both are pi bonding, while in the \(^3\Pi_u \) term one is sigma and the other pi bonding. Correction for electron correlation will probably lower the singlet state more than the triplets; hence sigma and pi bonding strengths appear to be about equal for the two-electron system. For \(\text{Tl}_2^+ \), however, sigma bonding is stronger as indicated by the lower energy of the \(^1\Sigma_g^+ \) state as compared to \(^1\Pi_u \). With the introduction of the spin-orbit term, both the \(^3\Sigma^-_g \) and \(^1\Sigma^+_g \) terms yield \(^0\Sigma^+_g \) states. The actual (lowest) \(^0\Sigma^+_g \) state shows very little departure from the \(p_{1/2} \) atomic spinors. The \(^3\Sigma^-_g \) term also includes a \(^1\Sigma_g \) state which dissociates to one \(^2\Pi_{1/2} \) and one \(^2\Pi_{3/2} \) atom. We did not calculate a full potential curve for the \(^1\Sigma_g \) state but a few single-configuration calculations at bonding distances indicated that its energy was well above that for \(^0\Sigma^+_g \).

Similarly the \(^3\Pi_u \) term includes \(^0\Pi_u \) and \(^2\Pi_u \) states (dissociating to one \(^2\Pi_{1/2} \) and one \(^2\Pi_{3/2} \) atom) as well as the \(^0\Pi_u \) and \(^1\Pi_u \) states. Exploratory calculations indicated that the \(^0\Pi_u \) and \(^2\Pi_u \) states also had energies substantially above those for the \(^0\Sigma_u^- \) and \(^1\Pi_u \) states. In view of the higher energies for their dissociated atoms, the \(^1\Sigma_g \), \(^0\Pi_u \) and \(^2\Pi_u \) states may be more strongly bound with smaller \(R_e \) and larger \(\Delta_e \) and \(\omega_e \) values than for the lower energy states. The tentative \(R_e \) values are 3.02, 3.26, and 3.30 Å for the \(^1\Sigma_g \), \(^0\Pi_u \), and \(^2\Pi_u \) states, respectively.

It is known that for the alkali metals the \(M^+_2 \) ions are more strongly bound than the neutral \(M_2 \) molecules. Thus it is not too surprising that \(\text{Tl}_2^+ \) is more strongly bonded than \(\text{Tl}_2 \). This phenomenon has not been fully explained for the alkali metals, to the best of our knowledge, and the situation is more complex for thallium. We are investigating further
this and other aspects of these states of \(\text{Tl}_2 \) and \(\text{Tl}_2^+ \); also we hope to treat various excited states of \(\text{Tl}_2 \).

While we see possible assignments and therefore no conflict with the experimental spectra attributed to \(\text{Tl}_2 \), it is not worthwhile to suggest definite assignments until our calculations for excited states are completed. At that time we expect to discuss both the spectral interpretation and various aspects of the bonding in these species.

Acknowledgements

This research was supported by the Division of Chemical Sciences, Office of Basic Energy Science, U. S. Department of Energy under Contract No. W-7405-ENG-48.
References

Table I. Dissociation Curves for the Lowest O_{g}^{+}, O_{u}^{-} and l_{u} States of \(T_{12} \) and for the $1/2_{g}$ and $1/2_{u}$ States of T_{12}^{+}

<table>
<thead>
<tr>
<th>R(bohr)</th>
<th>(O_{g}^{+})</th>
<th>(O_{u}^{-})</th>
<th>(l_{u})</th>
<th>(1/2_{g})</th>
<th>(1/2_{u})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>.0349</td>
<td>.0405</td>
<td>.0478</td>
<td>.2576</td>
<td>.2420</td>
</tr>
<tr>
<td>5.5</td>
<td>.0162</td>
<td>.0132</td>
<td>.0196</td>
<td>.2186</td>
<td>.2186</td>
</tr>
<tr>
<td>6.0</td>
<td>.0081</td>
<td>.0028</td>
<td>.0079</td>
<td>.2002</td>
<td>.2102</td>
</tr>
<tr>
<td>6.5</td>
<td>.0036</td>
<td>.0007</td>
<td>.0031</td>
<td>.1921</td>
<td>.2080</td>
</tr>
<tr>
<td>7.0</td>
<td>.0012</td>
<td>-.0015</td>
<td>.0011</td>
<td>.1892</td>
<td>.2083</td>
</tr>
<tr>
<td>7.5</td>
<td>.0001</td>
<td>-.0014</td>
<td>.0004</td>
<td>.1892</td>
<td>.2095</td>
</tr>
<tr>
<td>8.0</td>
<td>-.0003</td>
<td>-.0011</td>
<td>.0002</td>
<td>.1907</td>
<td>.2106</td>
</tr>
<tr>
<td>8.5</td>
<td>-.0004</td>
<td>-.0007</td>
<td>.0000</td>
<td>.1928</td>
<td>.2116</td>
</tr>
<tr>
<td>10.0</td>
<td>-.0001</td>
<td>-.0001</td>
<td>.0001</td>
<td>.2000</td>
<td>.2126</td>
</tr>
<tr>
<td>15.0</td>
<td>(0.0)(^a)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>.2097</td>
<td>.2109</td>
</tr>
</tbody>
</table>

\(^a\) All energies are in atomic units relative to the O_{g}^{+} energy at $R = 15.0$.
Figure Captions:

Figure 1: Dissociation curves for the 0^+_g, 0^-_u and 1^-_u states of Tl$_2$ which dissociate to ground-state atoms.

Figure 2: Dissociation curves for the lowest $1/2^-_g$ and $1/2^-_u$ states of Tl$_2^+$.

Figure 3: Potential curves for the 0^+_g, 0^-_u and 1^-_u states of Tl$_2$ with 3^-_g, 3^-_u and 1^-_g curves (computed without spin-orbit coupling), for comparison.
ENERGY (miliHartrees)

BOND LENGTH (bohr)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.