Title
Total Synthesis of (±) and (+)-Lyconadin A and Mechanistic Studies of Oxidative C-N Bond Formation

Permalink
https://escholarship.org/uc/item/5kc8r4pt

Author
West, Scott P.

Publication Date
2010

Peer reviewed|Thesis/dissertation
Total Synthesis of (±) and (+)-Lyconadin A
and
Mechanistic Studies of Oxidative C-N Bond Formation

By

Scott P. West

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Chemistry
in the
Graduate Division
of the
University of California, Berkeley

Committee in Charge:
Professor Richmond Sarpong, Chair
Professor Jonathan A. Ellman
Professor Isao Kubo

Spring 2010
Abstract

Total Synthesis of (±) and (+)-Lyconadin A
and
Mechanistic Studies of Oxidative C-N Bond Formation

by

Scott P. West

Doctor of Philosophy in Chemistry
University of California, Berkeley
Professor Richmond Sarpong, Chair

An overview of the *Lycopodium* alkaloids is presented covering their isolation, structural classification and biosynthesis. The isolation, biological activity and biosynthesis of the miscellaneous group of the *Lycopodium* alkaloids are discussed in detail. Synthetic studies on the miscellaneous *Lycopodium* alkaloids are summarized and an overview of a previous total synthesis of (+)-lyconadin A and an approach to lyconadin A is presented.

The development of a unified strategy to access several miscellaneous *Lycopodium* alkaloids has been achieved. Utilizing this approach, the racemic and enantioselective syntheses of lyconadin A were achieved in 17 steps. Key strategic bond formations in the synthesis include olefin cross-metathesis, intramolecular Heck reaction, Curtius rearrangement, and intramolecular reductive amination. The lyconadin pentacycle was assembled by an unprecedented oxidative C-N bond-forming reaction from a dianion intermediate. The enantioselective route utilizes a Corey-Bakshi-Shibata reduction and a diastereoselective hydrogenation to set three key stereocenters.

An overview of oxidative bond-forming reactions from dianion intermediates is presented. The mechanism of the oxidative C-N bond formation was examined. NMR studies and DFT calculations were conducted to investigate the structure of the dianion intermediate. Several oxidants were found to promote C-N bond formation by oxidation of the dianion intermediate. The reactivity studies revealed that the C-N bond formation may proceed by polar or SET mechanisms and that the mechanistic pathway is dependent on the type of oxidant utilized.
To Sarah.
For all of her support.
Table of Contents

Chapter 1. Total Synthesis of (±) and (+)-Lyconadin A

1.1 *Lycopodium* Alkaloids Background .. 1

1.2 Isolation of Miscellaneous *Lycopodium* Alkaloids 2

1.3 Biological Activity of *Lycopodium* Alkaloids 3

1.4 Biosynthesis of *Lycopodium* Alkaloids ... 4

1.5 Previous Synthetic Approaches to Miscellaneous *Lycopodium* Alkaloids 7

1.6 Unified Approach to Miscellaneous *Lycopodium* Alkaloids 12

1.7 Synthesis of Cycloheptadiene Intermediates 14

1.8 Second Generation Cycloheptadiene Route 22

1.9 Model Tetracycle Synthesis .. 28

1.10 Tetracycle Synthesis .. 31

1.11 Completion of Lyconadin A ... 32

1.12 Enantioselective Synthesis of Lyconadin A 37

1.13 Conclusion ... 41

1.14 Experimental Contributions ... 42

1.15 Experimental Methods ... 43

1.16 References ... 81

Appendix 1: Spectra Relevant to Chapter 1 ... 84
Chapter 2. Mechanistic Studies of Oxidative C-N Bond Formation

2.1 Introduction ... 167
2.2 Proposed Mechanism of Oxidative C-N Bond Formation 170
2.3 NMR Studies of Dianion 172
2.4 DFT Calculations of Proposed Dianion Structures 176
2.5 Dianion Reactivity Studies ... 176
2.6 Conclusion ... 182
2.7 Experimental Contributions 183
2.8 Experimental Methods 184
2.9 References ... 207

Appendix 2: Spectra Relevant to Chapter 2 208
Acknowledgments

I would like to thank my advisor, Professor Richmond Sarpong, for the opportunity to work in his research group during my time at Berkeley. Most importantly, Richmond cultivated a research group that was an exciting and fun place to work and encouraged all of us to develop as chemists. I am grateful to Richmond for all his efforts that pushed me to develop the skills that have helped me succeed at Berkeley and hopefully for the rest of my career.

For a significant amount of my time at Berkeley, Dr. Alakesh Bisai and I worked collaboratively on the lyconadin project. I would like to thank Alakesh for all his hard work that helped propel the project forward and contributed significantly to the overall success of the project.

During my third year, Andrew D. Lim, an undergraduate from my Chem 3B lab section, started working with me in lab. Working with Andy for two and a half years has been a great experience. I would like to thank Andy for all of his hard work in lab. Andy’s contributions in lab were extremely helpful in enabling me to push forward on the mechanistic studies of the oxidative C-N bond formation. It has been a pleasure to serve as a mentor for Andy as he learned his way around the lab and eventually started working on an independent project. He made significant contributions on projects, brought enthusiasm to lab, and always asked lots of questions which made Andy a great partner in research.

Laura Miller, my fellow classmate, accompanied me on countless Strada runs to decompress from lab. Our daily strada runs made each day of graduate school a little bit easier. It was great to have a friend like Laura in lab that I could always turn to for support, to vent and to talk with about anything on my mind. During the many high and low points during the 5 years of graduate school that Laura and I have shared, I was always glad to have her as a supportive friend and labmate.

When I first joined the Sarpong group, it was a pleasure to work with the first class of graduate students: Kimberly Larson, Andrew Marcus, Eric Bunnelle, and Eric Simmons. They helped make the Sarpong group a great place to work hard, have fun, and develop as a chemist during my time at Berkeley. Kimberly was a great labmate for my first four years at Berkeley and always made our side of the lab an amusing place to work. She was also a helpful labmate to talk about chemistry and bounce ideas off, which was especially helpful during my early years. Jesse Cortez and Jess Wood were also excellent labmates during my time at Berkeley and always ensured that 847 was a fun place to work, which made the endless hours we spent there a little bit easier. Alison Hardin Narayan has been an excellent friend and labmate during graduate school. She always brought excitement and intensity to discussions in lab as well as entertainment with countless instances of good idea/bad idea. Steve Heller joined the Sarpong lab during my final year and has been an extremely helpful labmate. He helped proofread my thesis as well as answer many random questions during my last year especially while I was writing my thesis. He has continued the tradition of making 847 an entertaining and enjoyable place to work.

Sarah C. Bell has been my partner through the many years of graduate school. Her unconditional support has made my time in graduate school so much better. She has always been there to talk about chemistry and lab or to go on adventures to take a break from lab. I am grateful to have a supportive partner in Sarah that has helped me make it through graduate school and more importantly, to have a great time going through it.

Finally, I want to thank all of my friends and family for their support.
Chapter 1. Total Synthesis of (±) and (+)-Lyconadin A

1.1 Lycopodium Alkaloids Background

The Lycopodium alkaloids are a group of over 250 natural products that possess diverse architectures and interesting bioactivity ranging from neurotrophic activity to anticancer properties. Initial investigations of Lycopodium alkaloids began in the 19th century with the isolation of lycopodine (1.1, Figure 1.1) by Bödeker in 1881.1 The isolation of thirty-five alkaloids from Lycopodium club mosses by Manske and Marion in the late 1940s initiated extensive investigations to determine the structures of these Lycopodium alkaloids.2 Following the isolation work by Manske and Marion, several Canadian research groups, including the groups of Ayer, Burnell, MacLean, and Wiesner, pioneered the isolation, structural elucidation, and biogenesis of numerous other Lycopodium alkaloids.3 The complex structures of the Lycopodium alkaloids have inspired a plethora of synthetic endeavors.2,4,5 In the late 1980s, the discovery that several Lycopodium alkaloids were potent inhibitors of acetylcholinesterase stimulated further research in this area.6-9 Due to the unique architectures and interesting biological activity of this family of alkaloids, the isolation, structure elucidation, and synthesis of Lycopodium alkaloids have continued to attract extensive interest from the scientific community.

The Lycopodium alkaloids are divided into four structural classes: lycopodine, lycodine, fawcettimine, and the miscellaneous group (Figure 1.1).2 The lycopodine family is characterized by a tetracyclic core composed of four connected 6-membered rings (e.g., lycopodine (1.1)) and is the largest class comprising seventy-nine alkaloids. Members of the lycodine family (e.g., lycodine (1.2)) contain a tetracyclic core possessing an annulated pyridine or pyridone moiety. Several notable members of the lycodine family, including huperzines A (1.6), C, and D, are the products of cleavage of the βN-C9 bond of the lycodine tetracycle. The fawcettimine group (see 1.3 and 1.7) is classified by a tetracyclic ring system composed of two 6-membered rings, a 5-membered ring and a 7-membered ring. The remainder of the Lycopodium alkaloids belong to the miscellaneous group which does not possess unifying structural elements, but instead contains a multitude of different structural motifs. Members of the miscellaneous group are connected via the proposed biogenesis of its members from a common tricyclic intermediate, phlegmarine (1.4). Recently, phlegmarine (1.4) has been proposed to be a key intermediate in the biosynthesis of the tetracyclic cores of the three other classes via formation of the C4-C12 or C4-C13 bond. Members of the miscellaneous group are distinct from the other three structural classes since they do not possess the C4-C12 or C4-C13 bond.
1.2 Isolation of Miscellaneous Lycopodium Alkaloids

The miscellaneous group of Lycopodium alkaloids comprises sixty of the 250 Lycopodium alkaloids. Due to the unique architectures and interesting biological activity of its members, the miscellaneous group continues to attract interest as evidenced by the isolation and structure elucidation of twenty congeners of the family since 2004. The first examples of alkaloids belonging to the miscellaneous group were isolated from the club moss Lycopodium lucidulum by Ayer and co-workers in 1963. Five years after its initial isolation, luciduline (1.10, Figure 1.2) was the first miscellaneous group alkaloid to have its structure determined. In addition to luciduline (1.10), several alkaloids possessing a C_{27}N_3 architecture were isolated from Lycopodium lucidulum. Of these alkaloids, the structures of lucidine B (1.18), oxolucidine B (1.19), lycolucine (1.12) and dihydrolycolucine (1.13) were the first to be elucidated in 1979. Next, the unique structure of spirolucidine (1.16) was determined by X-ray crystallographic analysis of a reduced derivative in 1984. The structure of the remaining alkaloids with C_{27}N_3 scaffolds from L. lucidulum, lucidine A (1.14) and oxolucidine A (1.15), were reported in 2000. Huperzine V (1.17), an additional member possessing a C_{27}N_3 architecture, was isolated from Huperzia serrata in 2004. The structural diversity of the miscellaneous group continued to increase with the isolation of the unique pentacyclic alkaloids lyconadins A (1.8) and B (1.11) from Lycopodium complanatum in 2001 and 2006, respectively. In addition to lyconadins A and B, lycopladines A-H were recently isolated from Lycopodium complanatum. Spirocyclic alkaloids nankakurines A (1.20) and B (1.21), which possess a similar tetracyclic core to spirolucidine, were isolated from Lycopodium hamiltonii in 2004 and 2006, respectively.
1.3 Biological Activity of *Lycopodium* Alkaloids

The most prominent biological activity attributed to *Lycopodium* alkaloid congeners is the potent and selective inhibition of acetylcholinesterase exhibited by members of the lycodine class, specifically huperzine A (1.6). Inhibition of acetylcholinesterase has been shown to improve the symptoms of patients with Alzheimer’s disease and result in the enhancement of learning and memory. Several drugs that are approved for the treatment of Alzheimer’s disease in the US, such as Aricept and Exelon, are acetylcholinesterase inhibitors. The discovery that huperzine A is a potent, selective, and reversible acetylcholinesterase inhibitor has led to numerous studies on its biological activity as well as the activity of synthetic analogs. Huperzine A is currently approved for the treatment of Alzheimer’s disease in China and is marketed in the US as a dietary supplement that enhances learning and memory.

In addition to acetylcholinesterase inhibition, numerous *Lycopodium* alkaloids have been shown to be modest cytotoxic agents against several cancer cell lines and have also exhibited...
neurotrophic activity. Lyconadin A (1.8) displayed cytotoxicity against murine lymphoma L1210 cells (IC₅₀ = 0.46 µg/mL) and against human epidermoid carcinoma KB cells (IC₅₀ = 1.7 µg/mL). Additionally, lyconadins A (1.8) and B (1.11) were shown to increase the nerve growth factor (NGF) mRNA expression in 1321N1 human astrocytoma cells, which could result in enhanced NGF biosynthesis and promotion of the growth of neural networks. Compounds that amplify the growth of neural networks have potential utility in the treatment of several neurodegenerative diseases including Alzheimer’s and Parkinson’s disease. Despite the interesting biological activity of lyconadins A and B, extensive investigation of the pharmacological properties of the majority of miscellaneous Lycopodium alkaloids has not been undertaken.

1.4 Biosynthesis of Lycopodium Alkaloids

The unique structures and biological activity of the Lycopodium alkaloids have sparked interest in their biogenesis. Despite this interest, only a few studies have been performed to elucidate their biosynthesis due to the difficulty in cultivating Lycopodium club mosses. Even the growth of plant tissue culture of Lycopodium club mosses has been difficult to achieve.

Through extensive feeding studies of Lycopodium species in their natural habitat by Spenser and co-workers, the entry point for the biosynthesis of Lycopodium alkaloids was determined to be L-lysine (1.22, Scheme 1.1). Decarboxylation of lysine (1.22) provides symmetrical diamine 1.23 which undergoes oxidation followed by condensation to afford Δ¹-piperideine (1.24). Union of acetone dicarboxylic acid or its bis-coenzyme A ester (1.25) with imine 1.24 and subsequent decarboxylation furnishes pelletierine (1.26), a key intermediate in the biosynthesis of all Lycopodium alkaloids. Intermolecular aldol addition between two equivalents of pelletierine (1.26) provides enamine 1.27 which cyclizes to form the phlegmarine skeleton (1.28). Recent evidence suggests that phlegmarine (1.4) or a closely related derivative (1.28) is a central intermediate and the key point of divergence for the different structural classes of Lycopodium alkaloids. Oxidation of 1.28 to imine 1.29 followed by intramolecular cyclization provides tetracyclic amine 1.30. Oxidation of 1.30 to a pyridine moiety provides lycodine (1.2) which can undergo further oxidation and cleavage of the piperidine ring to furnish huperzine A (1.6). Alternatively, hydrolysis of imine 1.30 can provide diamine 1.31, which can undergo cyclization to afford lycopodine (1.1). Subsequent skeletal rearrangement of lycopodine via migration of the C4-C12 bond to form the C4-C13 bond provides access to fawcettimine (1.3).
Scheme 1.1. Biosynthesis of Lycodine, Lycopodine and Fawcettimine Classes

The biosynthesis of the miscellaneous group diverges from the other classes by functionalization of the piperidine ring of amine 1.28 to provide tricycle 1.32 (Scheme 1.2). Attack of the enamine moiety of 1.32 to displace nucleofuge Y can furnish tetracycle 1.33, a key biosynthetic intermediate for several miscellaneous Lycopodium alkaloids. Intramolecular hydroamination of olefin 1.33 affords the pentacyclic core of the lyconadins (1.34), which can undergo oxidation to provide lyconadins A (1.8) and B (1.11). Several members of the
miscellaneous group possess an additional bicyclic moiety that can arise biosynthetically from pelletierine (1.26, Scheme 1.3). Addition of acetonedicarboxylic acid or its bis-CoA ester (1.25) to pelletierine (1.26) provides access to ketone 1.35. Cyclization of 1.35 furnishes bicyclic amine 1.36. Coupling tetracycle 1.33 with bicycle 1.36 affords lycolucine (1.12, Scheme 1.4), which upon reduction gives dihydrolycolucine (1.13). Additionally, the union of tetracycle 1.33 with alkene 1.36 furnishes lucidine A (1.14), which undergoes oxidation to give oxolucidine A (1.15). The biosynthesis of amine 1.36 can provide two diastereomers of the bicycle as evidenced by the diastereomeric bicyclic moieties incorporated in dihydrolycolucine (1.13) and lucidine A (1.14). Ring-contractive rearrangement of the α-hydroxyimine moiety of 1.15 forms the spirocenter and completes construction of spirolucidine (1.16). Oxidation of tetracycle 1.33 to α-hydroxyimine 1.37 followed by a similar rearrangement constructs the spirocyclic core of the nankakurines (1.38). Reduction of ketone 1.38 provides nankakurine A (1.20), which upon methylation affords nankakurine B (1.21).

Scheme 1.2. Biosynthesis of Lyconadins A and B

![Scheme 1.2](image)

Scheme 1.3. Biosynthesis of Bicycle 1.36

![Scheme 1.3](image)
1.5 Previous Synthetic Approaches to Miscellaneous Lycopodium Alkaloids

The biological activity and complex structures of the Lycopodium alkaloids have attracted extensive synthetic interest over the years. Recently, the diverse architectures of the miscellaneous group of Lycopodium alkaloids have provided inspiration for numerous synthetic endeavors. The first total syntheses of nankakurines A (1.20) and B (1.21) were achieved by Overman and co-workers by employing an intramolecular dipolar cycloaddition and aza-Prins cyclization.\(^{30}\) Additionally, Waters and Cheng reported concise syntheses of nankakurines A (1.20) and B (1.21) via the Lycopodium alkaloid luciduline (1.10)\(^{31}\), which had previously been synthesized by Evans and Scott.\(^{32}\) Approaches to spirolucidine (1.16) and dihydrolycolucine (1.13) have been presented by Comins and co-workers.\(^{33-35}\) To date, the total synthesis of any Lycopodium alkaloid possessing a C\(_{27}\)N\(_3\) architecture, (i.e., lucidines A/B (1.14, 1.18) or
spirolucidine (1.16)) has not been achieved. The unique pentacyclic core of lyconadins A (1.8) and B (1.11) has sparked interest in their synthesis from our research group in addition to many others. Smith and Beshore reported the first total synthesis of (+)-lyconadin A (1.8) and (-)-lyconadin B (1.11) in 2007.36,37 In addition, synthetic approaches to the lyconadins were reported by the groups of Castle38 and Hsung.39

1.5.1 Smith and Beshore’s Synthesis of Lyconadins A and B

In 2007, Smith and Beshore reported the first total synthesis of lyconadins A (1.8) and B (1.11). Their synthetic effort commenced with the synthesis of two fragments, 1.40 and 1.43 (Scheme 1.5). Elaboration of (-)-methyl-(R)-3-methylglutarate (1.39) by a seven step sequence provided hydrazone 1.40. (R)-glutamic acid (1.41) was transformed to known acid 1.42 via a six step route. Formation of trans-substituted piperidine 1.43 from 1.42 was achieved by a sequence that employed an Evans aldol reaction to furnish the desired trans stereochemistry and a reduction-cyclization cascade to provide the piperidine ring.

Scheme 1.5. Smith and Beshore’s synthesis of hydrazone 1.40 and piperidine 1.43

Alkylation of the anion of hydrazone 1.40 with iodide 1.43 afforded piperidine 1.44 (Scheme 1.6). Cleavage of both silyl ethers of 1.44 followed by oxidation with PCC provided the substrate for an acid-catalyzed aldol condensation/conjugate addition cascade, which furnished tricyclic diketone 1.45. Tricycle 1.45 possesses the incorrect stereochemistry at C12 and prevents the proximal orientation necessary for formation of the key C13-N bond of tetracycle 1.49. Cleavage of the Cbz group and epimerization under acidic conditions with concomitant hemiaminal formation furnished tetracycle 1.46 bearing the desired stereochemistry at C12. Due to the difficulties encountered in the reduction of hemiaminal 1.46, an alternate method of forming the tetracycle was explored. Hemiaminal hydrochloride salt 1.46 was elaborated to alcohol 1.47 via a four step sequence. Deprotection of the secondary amine of 1.47 and subsequent dehydration promoted by Martin’s sulfurane (Ph$_2$S(OCPPh(CF$_3$)$_2$)$_2$)41 afforded key tricyclic alkene 1.48. Aminoidination of 1.48 proceeded smoothly to provide the key tetracyclic core, which was elaborated to ketone 1.49.
Scheme 1.6. Synthesis of Lyconadin Tetracycle

![Scheme Image]

Formation of the β-keto ester from 1.49 utilizing Mander’s reagent42 (MeOC(O)CN) followed by reduction of the carbon-iodine bond with PdCl\textsubscript{2} and Et\textsubscript{3}SiH afforded the desired tetracycle (Scheme 1.7). Conjugate addition of the resultant ketoester to propiolamide furnished amide 1.50. Treatment of 1.50 with Me\textsubscript{4}NOAc triggered an annulation cascade involving decarboxylation, olefin isomerization and condensation to provide (+)-lyconadin A (1.8). Alternatively, reduction of unsaturated amide 1.50 and subsequent treatment with LiCl promoted cyclization to generate (-)-lyconadin B (1.11). Overall, the syntheses of (+)-lyconadin A (1.8) and (-)-lyconadin B (1.11) were achieved in 28 and 29 steps, respectively, from acid 1.42 and (-)-methyl-(R)-3-methylglutarate (1.39).
Scheme 1.7. Completion of (+)-Lyconadin A and (-)-Lyconadin B

1.5.2 Castle’s Approach to the Lyconadins

In 2006, Castle and co-workers reported a radical cascade cyclization approach to form the [6-7-6] tricycle which is embedded in the lyconadin core. 1-Isochromanone (1.51) was elaborated over an extensive 18 step sequence to provide selenoester 1.52 (Scheme 1.8). Radical initiation utilizing Et₃B and air followed by homolytic cleavage of the selenoester provided acyl radical 1.53. Subsequent cyclization of acyl radical 1.53 onto the proximal alkene gave primary radical 1.54. Attack of radical 1.54 on the pendant alkene formed another primary radical, which upon hydrogen atom abstraction from (TMS)₃SiH afforded tricycle 1.55 as a single diastereomer. Although the cyclization cascade proceeded with excellent diastereoselectivity, the stereocenter generated at C7 in tricycle 1.55 is epimeric with respect to the [6-7-6] tricycle present in lyconadin A. Importantly, model tricycle 1.55 bears a substituted benzene ring which does not address the installation of the α-pyridone moiety necessary for the synthesis of the lyconadins.
Scheme 1.8. Castle’s Radical Cyclization Approach

1.51 → 1.52

18 steps

TBSO

SePh

ethyl, air

(TMS)3SiH

benzene, rt

1.55

1.53

1.54
1.6 Unified Approach to Miscellaneous *Lycopodium* Alkaloids

Inspired by the common structural elements and biosynthetic connections among a subset of the miscellaneous *Lycopodium* alkaloids, we envisioned the development of a unified approach to synthesize several of these natural products. The central element of this strategy was the concise synthesis of tetracyclic amine 1.57, which could be transformed into multiple *Lycopodium* alkaloids (Scheme 1.9). Oxolucidine B (1.19) could be obtained via the oxidation of lucidine B (1.18), which can be accessed by the reduction of the pyridine moiety of dihydrolycolucine (1.13). Construction of dihydrolycolucine (1.13) could be achieved by a Horner-Wadsworth-Emmons coupling involving phosphonate 1.56. Additionally, spirolucidine (1.16) could arise from an α-hydroxy imine rearrangement of oxolucidine A (1.15), which can be produced by oxidation of lucidine A (1.14). Analogously to dihydrolycolucine, lucidine A (1.14) may be synthesized from phosphonate 1.56 via a Horner-Wadsworth-Emmons reaction. Formation of phosphonate 1.56 may be achieved from tetracycle 1.57. Nankakurines A and B (1.20 and 1.21) could be constructed via an α-hydroxy imine rearrangement of tetracycle 1.58, which could be derived from amine 1.57. Lyconadin A (1.8) could also be accessed from key tetracyclic amine 1.57 via oxidative C-N bond formation.
Scheme 1.9. Retrosynthesis of Several Miscellaneous *Lycopodium* Alkaloids

The initial target of our unified strategy was lyconadin A (1.8). Retrosynthetically (Scheme 1.10), we anticipated that late-stage C6-N bond formation to construct the lyconadin pentacycle could be achieved from tetracycle 1.57. Secondary amine 1.57 could be accessed from cycloheptane 1.59 via an intramolecular reductive amination process. Tricycle 1.59 could derive from cycloheptadiene 1.60 or 1.61, which could in turn arise from the union of vinylogous ester 1.62 and bromomethoxypicoline 1.63.
1.7 Synthesis of Cycloheptadiene Intermediates

Our synthetic efforts began with the investigation of the union of picoline 1.63 and vinylogous ester 1.62. Synthesis of bromomethoxypicoline 1.63 (Scheme 1.11) was accomplished by bromination of 2-methoxy-6-methylpyridine (1.64) with 1,3-dibromo-5,5-dimethylhydantion (DBDMH).44 Langlois and co-workers investigated the reactivity of pyridine 1.63 during their synthetic studies toward huperzine A (1.6).45 They found that treatment of 1.63 with excess LDA (2.3 equiv) effected deprotonation at the pseudo-benzylic (“picolinic”) position and the resultant anion (1.66) reacted with vinylogous ester 1.67, which following treatment with dilute acid provided enone 1.69. Alternatively, treatment of 1.63 with n-BuLi results in lithium-halogen exchange to provide 3-lithiated pyridine 1.65, which upon reaction with DMF gave formylpyridine 1.68. Our synthetic plan utilizes the reactivity of picoline 1.63 to construct two key bonds of the central 7-membered ring of cycloheptadiene 1.60. Synthesis of the vinylogous ester coupling partner 1.6246 (Scheme 1.12) was achieved by allylation of 1,3-cyclohexanedione (1.70) followed by reaction with trimethylorthoformate to form 1.62.
Scheme 1.11. Synthesis and Reactivity of Pyridine 1.63

Scheme 1.12. Synthesis of Vinylogous Ester 1.62
Table 1.1. Synthesis of Enone 1.71

Following the procedure for the synthesis of enone 1.69 described by Langlois and co-workers, picoline 1.63 was treated with 2.3 equivalents of LDA to generate the picolinic anion (1.66), which was subsequently reacted with 2.3 equivalents of vinylogous ester 1.62 and then subjected to 1 M HCl to furnish enone 1.71 in 38% yield (entry 1, Table 1.1). Increasing the amount of picoline anion (entry 2) or decreasing the equivalents of vinylogous ester (entry 3) did not improve the yield. However, a smaller excess of LDA (1.5 equiv, entry 4) could be used to effectively generate the picolinic anion and provided enone 1.71 in 54% yield. In addition to using 1.5 equivalents of LDA, employing an excess of vinylogous ester 1.62 (1.5 equiv) improved the yield of enone 1.71 to 64% yield (entry 5) and proved to be the optimal conditions for the union of 1.62 and 1.63.

Our initial attempts to synthesize cycloheptadiene 1.72 focused on the intramolecular Heck reaction of olefin 1.71. Exposure of 1.71 to PdCl₂(PPh₃)₂ unexpectedly provided tricycle 1.73 in a modest 44% yield (Scheme 1.13). Under the reaction conditions, the intramolecular Heck reaction occurs to initially form tricycle 1.72, which undergoes isomerization to afford cross-conjugated enone 1.73. Screening a variety of Pd sources, bases, ligands and solvents did not lead to any improvement in the efficiency of the cycloheptadiene formation.
Scheme 1.13. Initial Intramolecular Heck Approach

Due to the isomerization to cross-conjugated cycloheptadiene 1.73, the conversion to 1.61 from 1.73 requires allylic oxidation of the methyl group (Scheme 1.14). Under a variety of conditions utilizing selenium dioxide to promote allylic oxidation, only decomposition of diene 1.73 was observed. Allylic oxidation using excess chromium trioxide and 3,5-dimethylpyrazole resulted in oxidation of diene 1.73 to multiple products. Alternatively, initial Luche reduction of enone 1.73 provided alcohol 1.74, which could be utilized to direct the selective reduction of the tetrasubstituted alkene. However, allylic alcohol 1.74 proved unreactive under directed hydrogenation conditions with Crabtree’s or Wilkinson’s catalyst.

Scheme 1.14. Functionalization of Cycloheptadiene 1.73

Due to the poor yield of the intramolecular Heck reaction and the difficulty associated with selectively functionalizing tricycle 1.73, other approaches to form the cycloheptadiene bearing an exo-methylene were explored. To investigate the use of a Stille-Kelly coupling or intramolecular Suzuki coupling to form the 7-membered ring, dibromo-eneone 1.77 was synthesized from 1,3-cyclohexanedione (1.70) and picoline 1.63 (Scheme 1.15). Alkylation of 1.70 with 2,3-dibromopropene followed by reaction with trimethyl orthoformate provided
vinyllogous ester 1.76. Addition of picolinic anion 1.66 to 1.76 and subsequent acid hydrolysis provided dibromoehenone 1.77.

Scheme 1.15. Synthesis of Dibromide 1.77

Treatment of dibromide 1.77 with Pd(PPh₃)₄ and (Bu₃Sn)₂ to effect a Stille-Kelly coupling⁴⁹,⁵₀ resulted in decomposition of the starting material. Alternatively, *in situ* formation of the boronic ester of 1.77 followed by intramolecular Suzuki coupling was attempted utilizing Pd(dppf)Cl₂ and (Bpin)₂ and also resulted in decomposition of 1.77. Attempts utilizing other precedent conditions for Stille-Kelly or intramolecular Suzuki coupling did not result in productive formation of the desired tricycle 1.78. Other reductive coupling conditions (Pd/C, In, LiCl⁵¹ or Pd(OAc)₂/Bu₄NBr/IPA/DMF⁵²) were attempted, but similarly failed to provide the desired cycloheptadiene. Next, our attention shifted to utilizing copper to promote an Ullman coupling of dibromoehenone 1.77 to form the key bond (Scheme 1.16). Reaction of dibromide 1.77 with excess copper(I) thiophenecarboxylate (CuTC)⁵³ in NMP or DMF at 80 °C resulted in oxidation of the picolinic position to provide ketone 1.79 in low yield. Additionally, treatment of 1.77 with copper powder in DMF also provided ketone 1.79 in low yield. The ketone oxygen in 1.79 presumably arises from adventitious oxygen dissolved in DMF or NMP.

Scheme 1.16. Alternative Cyclization Approach
Considering the difficulty in functionalizing cycloheptadiene 1.73 and forming the 7-membered ring bearing an exo-methylene (1.72), functionalizing the exocyclic position prior to formation of the 7-membered ring proved necessary. Oxidative cleavage of the allyl group of 1.71 to obtain aldehyde 1.80 could provide a pathway to functionalize the exocyclic position of the tricycle in a variety of ways. Reaction of alkene 1.71 with OsO₄ and NaIO₄ resulted in formation of aldehyde 1.80 in low yield (Scheme 1.17). A variety of oxidative cleavage conditions were attempted but did not lead to any improvement in the yield of 1.80. Under Wittig and Horner-Wadsworth-Emmons olefination conditions, only decomposition of aldehyde 1.80 was observed. Henry reaction of 1.80 with KF and CH₃NO₂ followed by elimination with Ms₂O furnished nitroalkene 1.81 in low yield. Subsequent attempted intramolecular Heck reactions of 1.83 resulted in decomposition of the nitroalkene.

Scheme 1.17. Henry and Wittig Approaches

![Scheme 1.17](image)

Due to the challenges in functionalizing aldehyde 1.80, direct conversion of the pendant allyl group of 1.71 to the α,β-unsaturated ester directly via olefin cross-metathesis was investigated (Scheme 1.18). Reaction of alkene 1.71 with excess ethyl acrylate (1.85) and Grubbs second generation catalyst (1.84, Figure 1.3) produced desired enoate 1.86 in moderate yield. Gratifyingly, subjection of 1.86 to intramolecular Heck conditions furnished cycloheptadiene 1.60 in excellent yield.
Considering the success of the intramolecular Heck reaction to afford key intermediate 1.60, optimization of the cross-metathesis reaction55 was undertaken to improve the efficiency of the synthetic route to cycloheptadiene 1.60 (Table 1.2). Changing the reaction solvent from dichloromethane to benzene (entries 1-2) improved the yield of enoate 1.86. Under the initial cross-metathesis conditions, formation of the dimer of 1.71 was a significant competing reaction pathway. Increasing the equivalents of ethyl acrylate, decreasing the catalyst loading and increasing the temperature dampened the formation of the dimer and resulted in increased yields of enoate 1.86 (entries 3-5). Importantly, the concentration of alkene 1.71 proved vital to the efficient transformation to the enoate. At a concentration of 0.1 M, the reaction proceeds to completion in 48 h and dimer formation is minimized. Switching to the more active Grubbs-Hoveyda II catalyst (1.87, Figure 1.3), cross-metathesis proceeded at room temperature to furnish enoate 1.86 in 88% yield. Grubbs-Hoveyda II (o-tolyl) catalyst (1.88) required elevated temperatures and larger excesses of ethyl acrylate to provide 1.86 in comparable yield. Fast-initiating catalysts, Grubbs II-bromopyridine catalyst (1.89) and Grubbs II-pyridine catalyst (1.90), afforded enoate 1.86 in 48% and 51%, respectively. The optimized conditions with Grubbs-Hoveyda II catalyst (1.87, entry 6) achieved excellent yields of 1.86 on multigram scale.
Table 1.2. Cross-metathesis Optimization

![Diagram of the reaction](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>catalyst loading (mol%)</th>
<th>ethyl acrylate (equiv)</th>
<th>temperature (°C)</th>
<th>solvent</th>
<th>molarity of 1.71 (M)</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grubbs II (1.84)</td>
<td>10</td>
<td>3</td>
<td>23</td>
<td>CH₂Cl₂</td>
<td>0.2</td>
<td>52%</td>
</tr>
<tr>
<td>2</td>
<td>Grubbs II (1.84)</td>
<td>10</td>
<td>3</td>
<td>23</td>
<td>PhH</td>
<td>0.2</td>
<td>63%</td>
</tr>
<tr>
<td>3</td>
<td>Grubbs II (1.84)</td>
<td>5</td>
<td>5</td>
<td>60</td>
<td>PhH</td>
<td>0.2</td>
<td>62%</td>
</tr>
<tr>
<td>4</td>
<td>Grubbs II (1.84)</td>
<td>5</td>
<td>5</td>
<td>60</td>
<td>PhH</td>
<td>0.04</td>
<td>48%</td>
</tr>
<tr>
<td>5</td>
<td>Grubbs II (1.84)</td>
<td>3</td>
<td>5</td>
<td>60</td>
<td>PhH</td>
<td>0.1</td>
<td>79%</td>
</tr>
<tr>
<td>6</td>
<td>Grubbs-Hoveyda II (1.87)</td>
<td>3</td>
<td>5</td>
<td>23</td>
<td>PhH</td>
<td>0.1</td>
<td>88%</td>
</tr>
<tr>
<td>7</td>
<td>Grubbs-Hoveyda II (1.87)</td>
<td>3</td>
<td>10</td>
<td>23</td>
<td>PhH</td>
<td>0.1</td>
<td>84%</td>
</tr>
<tr>
<td>8</td>
<td>Grubbs-Hoveyda II (o-tolyl) (1.88)</td>
<td>3</td>
<td>10</td>
<td>40</td>
<td>CH₂Cl₂</td>
<td>0.1</td>
<td>83%</td>
</tr>
<tr>
<td>9</td>
<td>Grubbs-Hoveyda II (o-tolyl) (1.88)</td>
<td>3</td>
<td>10</td>
<td>60</td>
<td>PhH</td>
<td>0.1</td>
<td>87%</td>
</tr>
<tr>
<td>10</td>
<td>Grubbs II-bromopyridine (1.89)</td>
<td>3</td>
<td>10</td>
<td>23</td>
<td>PhH</td>
<td>0.1</td>
<td>48%</td>
</tr>
<tr>
<td>11</td>
<td>Grubbs II-pyridine (1.90)</td>
<td>3</td>
<td>10</td>
<td>23</td>
<td>PhH</td>
<td>0.1</td>
<td>51%</td>
</tr>
</tbody>
</table>
With an efficient route to cycloheptadiene **1.60** defined, elaboration of the tricycle to install the requisite stereochemistry at C7, C10, C12 was the next synthetic challenge. Luche reduction of enone **1.60** (Scheme 1.19) proceeded smoothly to furnish **1.91** in 91% yield. Hydrogenation of allylic alcohol **1.91** provided cycloheptane **1.92** with good diastereoselectivity. Hydrogenation of both alkenes presumably occurs from the same face to place the three hydrogens at the newly-created stereocenters *syn* to each other. The stereochemistry of the hydrogen at C13 was presumed to be set *syn* relative to the hydrogens introduced in the hydrogenation. The C13 stereocenter will be ablated later in the synthesis; therefore the C13 hydroxyl group’s stereochemistry is not vital to its utility as a synthetic intermediate.

Scheme 1.19. Reduction of Cycloheptadiene 1.60

Considering the observed high diastereoselectivity for the hydrogenation of cycloheptadiene **1.91**, synthesis of cycloheptadiene **1.98** bearing a methyl group at C15 was pursued. This synthetic plan would rely on utilizing the C15 stereocenter to govern the diastereoselectivity of the reduction of the carbonyl and diene moieties of **1.98**. Synthesis of **1.98** began with formation of 5-methyl-1,3-cyclohexanedione (**1.95**, Scheme 1.20) from *tert*-butyl...
acetoacetate and ethyl crotonate via initial Michael addition followed by Claisen reaction and subsequent decarboxylation to furnish 1.95. Allylation of 1.95 followed by treatment with trimethyl orthoformate afforded vinylogous ester 1.96 in 64% yield.

Scheme 1.20. Synthesis of Vinylogous Ester 1.96

Addition of the picolinic anion of 1.63 to vinylogous ester 1.96 and subsequent acid treatment provided enone 1.97 in 63% yield (Scheme 1.21). Cross-metathesis of 1.97 with ethyl acrylate followed by intramolecular Heck reaction afforded cycloheptadiene 1.98. Luche reduction of enone 1.98 proceeds diastereoselectively (>14:1 dr) with hydride delivery occurring from the z-face, opposite the methyl group, to give allylic alcohol 1.99 in 92% yield. Cycloheptadiene 1.99 was subjected to hydrogenation over Pd/C, which resulted in the formation of a single diastereomer of cycloheptane 1.100. Alcohol 1.100 was treated with m-nitrobenzoyl chloride to give m-nitrobenzoate 1.101, which provided X-ray quality crystals. X-ray crystallographic analysis of 1.101 revealed that reduction of the diene installed the hydrogens at C7, C10, and C12 syn to each other, but anti relative to the methyl group at C15, which is opposite to the relative stereochemistry necessary to access the natural product.
In an attempt to reverse the diastereoselectivity of the hydrogenation of diene 1.99, directed hydrogenation utilizing homogeneous rhodium and iridium catalysts was investigated (Scheme 1.22). Treatment of 1.99 with Crabtree’s ([Ir(cod)(py)PCy₃]PF₆), Wilkinson’s (RhCl(PPh₃)₃), or Brown’s ([Rh(nbd)dppe]BF₄) catalysts at low (1 atm, balloon) or high (1000 psi) hydrogen pressure did not promote the diastereoselective reduction of the diene. Formation of the alkoxide of 1.99 with NaH prior to treatment with Crabtree’s or Brown’s catalyst and hydrogen did not result in reduction of the diene. Molecular modeling reveals that the C13 hydroxyl group of 1.99 preferentially resides in a pseudoequatorial orientation and could prevent productive metal-hydride orientation. Additionally, coordination of the methoxypyridine moiety of 1.99 to the metal center could lead to reduced catalyst activity.

Inversion of the alcohol stereocenter at C13 in alcohol 1.99 and functionalization with a sterically demanding group could promote hydrogenation with the desired diastereoselectivity. To obtain the anti diastereomer of alcohol 1.99, large reducing agents such as L-selectride were utilized, but resulted in poor diastereoselectivity (3:2 anti:syn). Mitsunobu reaction of allylic alcohol 1.99 with p-nitrobenzoic acid or chloroacetic acid resulted in the formation of ester 1.103, but with low diastereoselectivity (2.5:1 anti:syn). Competing ionization to form the allylic cation followed by attack of the nucleophile on the planar cation could be the cause of the poor
diastereoselectivity observed. Due to the difficulty in obtaining the anti diastereomer of 1.99 selectively, investigation of the subsequent hydrogenation was not pursued.

Scheme 1.22. Directed Hydrogenation and Mitsunobu Routes

Turning to other substrate-directed transformations, investigation of the hydroxyl group of 1.99 as a directing group for epoxidation was pursued (Scheme 1.23). Diastereoselective formation of epoxide 1.104 could change the concavity of the tricycle and enable reduction to set the stereocenters of the cycloheptane ring syn to the methyl group. Additionally, the epoxide intermediate could enable functionalization of the picolinic position, which could be utilized in the late-stage C-N bond formation to provide the lyconadin pentacycle (1.57) or in the formation of the tetracyclic core of lycolucine (1.12). Treatment of alcohol 1.99 with m-CPBA at 0 °C led to the formation of epoxide 1.104 with modest diastereoselectivity (4:1 dr, Scheme 1.23). Lowering the reaction temperature to -10 °C increased the diastereoselectivity of the epoxidation to >20:1 in favor of the syn diastereomer. Inspired by the endgame of our group’s salviasperanol total synthesis,\(^5\) isomerization of vinyl epoxide 1.104 to dihydrofuran 1.105 and subsequent reduction could appropriately install the C12 stereocenter. Treatment of epoxide 1.104 with trifluoroacetic acid provided dihydrofuran 1.105 in low yield. In addition to dihydrofuran 1.105, cycloheptadiene 1.98 is generated from epoxide 1.104 by a competing acid-catalyzed pathway involving a 1,2 hydride shift followed by elimination of the resultant tertiary alcohol. Alternatively, addition of Yb(OTf)_3, a Lewis acid catalyst, to vinyl epoxide 1.104 efficiently afforded dihydrofuran 1.105 (Scheme 1.24). Hydrogenation of 1.105 proceeded diastereoselectively from the β-face, syn to the ether bridge, and subsequent protection of the tetrahydrofuran intermediate with TBSCI provided TBS ether 1.106 in 60% yield. Base-induced fragmentation of tetrahydrofuran 1.106 was investigated with a variety of bases including LDA, NaHMDS, and DBU. None of the basic conditions resulted in productive fragmentation of the tetrahydrofuran ring. Alternatively, reductive cleavage of the THF ring was attempted with SmI\(_2\),
but only resulted in cleavage of the methyl ether of 1.106. Complexation of the THF oxygen with Lewis acids in the presence of DIPEA similarly failed to promote fragmentation of the THF ring.

Scheme 1.23. Rearrangement of Epoxide 1.104

Scheme 1.24. Synthesis of Tetrahydrofuran 1.106
After the difficulty in cleaving the THF ring and functionalizing tricycle 1.106, fragmentation of vinyl epoxide 1.108 and subsequent reduction of the resultant tricycle was investigated (Scheme 1.25). Alcohol 1.104 was protected as the methoxymethyl ether and subjected to a variety of conditions to open the vinyl epoxide. Treatment of epoxide 1.108 with bases such as LDA or DBU induced fragmentation of the epoxide to the tertiary alkoxide followed by oxy-Michael addition to the newly-formed enoate to generate dihydrofuran 1.109. Subjecting epoxide 1.108 to TMSCl in addition to DBU enabled epoxide rupture to the tertiary alkoxide which reacted with TMSCl to provide diene 1.110 in 60% yield. Hydrogenation of diene 1.110 over Pd/C proceeded with concomitant cleavage of the silyl ether to provide tertiary alcohol 1.111 as a single diastereomer in 62% yield. On the basis of simple molecular modeling, the concave structure of diene 1.110 appeared similar to dihydrofuran 1.105. Therefore, similar reduction of diene 1.110 from the β-face, syn to the methyl and tertiary hydroxyl groups was expected. Additionally, hydrogenation of vinyl epoxide 1.108 effected reduction of the alkene and opening of the epoxide to afford tertiary alcohol 1.111. The hydrogenation of vinyl epoxide 1.108 more efficiently provided the same diastereomer of alcohol 1.111 as the 2 step fragmentation/reduction sequence.

Scheme 1.25. Synthesis of Tertiary Alcohol 1.111

Elaboration of alcohol 1.111 to key tricyclic intermediate 1.112 by deoxygenation or elimination and reduction was investigated (Scheme 1.26). Formation of the xanthate of tertiary alcohol 1.111 under multiple conditions (NaH, CS₂, MeI; NaH, PhOC(S)Cl; or Et₃N, PhOC(S)Cl) were unsuccessful and resulted in recovery of starting material. Formation of the trifluoroacetate of alcohol 1.111 could be achieved, but subsequent attempts to effect
deoxygenation with diphenylsilane and *tert*-butyl peroxide60 led to decomposition. Attempted elimination of alcohol 1.111 under a variety of conditions (TFAA, MS\textsubscript{2}O, POCl\textsubscript{3}, SOCl\textsubscript{2}, Martin’s sulfurane,41 or Burgess reagent) led to complex mixtures of products and decomposition of the starting material. Cleavage of the methoxymethyl ether of 1.111 with PPTS followed by transformation of alcohol 1.113 to *m*-nitrobenzoate 1.114 enabled crystallization of tricycle 1.114. X-ray crystallographic analysis of 1.114 revealed that reduction of the diene and vinyl epoxide proceeds from the \(\alpha\)-face to place the newly-introduced hydrogens *anti* relative to the methyl and hydroxyl groups. Alcohol 1.111 obtained from reduction of vinyl epoxide 1.108 or diene 1.110 does not provide the correct relative stereochemistry at C15 necessary to achieve the synthesis of the lyconadins.

Scheme 1.26. Synthesis of *m*-Nitrobenzoate 1.114

![Scheme 1.26](image)

1.9 Model Tetracycle Synthesis

Despite the incorrect relative stereochemistry of cycloheptane 1.100, it served as a valuable model system to investigate the synthesis of the key tetracyclic amine 1.123 (Scheme 1.27). Application of the Curtius rearrangement was examined to install the amino nitrogen of key tricyclic aminoketone 1.122. Saponification of ester 1.100 bearing a free hydroxyl proved challenging and dictated protection of the hydroxyl group prior to acid formation. Protection of alcohol 1.100 as the silyl ether and subsequent hydrolysis of ester 1.115 proceeded without event.
to provide acid 1.116. Treatment of acid 1.116 with triethylamine and diphenylphosphoryl azide (DPPA)61 effected formation of the intermediate isocyanate which was trapped \textit{in situ} by addition of an alcohol to form carbamate 1.117. Allyl alcohol and \textit{tert}-butanol provided allyl and \textit{tert}-butyl carbamates of 1.117 in 32\% and 40\% yields, respectively. Addition of benzyl alcohol afforded the Cbz-protected amine of 1.117 in 52\% yield. In addition to formation of carbamate 1.117, extensive desilylation of both acid 1.116 and carbamate 1.117 was observed.

\textbf{Scheme 1.27. Curtius Rearrangement Optimization}

![Scheme 1.27. Curtius Rearrangement Optimization](image)

To circumvent desilylation of the hydroxyl group, oxidation of alcohol 1.100 and subsequent protection as the ketal group was pursued (Scheme 1.28). Ketal protection would enable retention of the ketone oxidation level necessary for the reductive amination sequence to form the tetracyclic core and reduce the number of redox steps in the synthetic sequence. Swern oxidation of alcohol 1.100 followed by treatment with ethylene glycol and tosic acid furnished ketal 1.118 in 81\% yield. Saponification of ester 1.118 and subsequent Curtius rearrangement provided Cbz-protected amine 1.119 in low yield.

\textbf{Scheme 1.28. Synthesis of protected aminoketone 1.119}

![Scheme 1.28. Synthesis of protected aminoketone 1.119](image)

Due to the instability of ketal and silyl protecting groups to the reaction conditions for the Curtius rearrangement, a more robust protecting group for the hydroxyl group, methoxymethyl ether (MOM), was examined (Scheme 1.29). Protection of the hydroxyl group with
methoxymethyl chloride (MOMCl) provided MOM ether 1.120 in 97% yield. Saponification of ester 1.120 followed by Curtius rearrangement afforded Cbz-protected amine 1.121 in an improved 65% yield over the two steps. Cleavage of the methoxymethyl ether and Swern oxidation of the resultant alcohol furnished ketone 1.122. Hydrogenolysis of benzyl carbamate 1.122 over Pd/C proceeded to provide a mixture of the intermediate hemiaminal and tetracyclic amine 1.123. Initial hydrogenolysis attempts in methanol unexpectedly afforded significant amounts of the N-methylated analog of amine 1.123. Changing the reaction solvent to ethyl acetate obviated the formation of the N-methylated amine. Prolonged reaction times (24-48 h) for the hydrogenolysis in ethyl acetate would frequently accomplish the reductive amination to give exclusively tetracyclic amine 1.123. If a mixture of the intermediate hemiaminal and tetracyclic amine 1.123 was obtained from the hydrogenolysis, the mixture was subjected to reduction with NaBH₄ to provide tetracyclic amine 1.123. Both reductive amination procedures furnished amine 1.123 in excellent yield. Treatment of 1.123 with Boc₂O and Et₃N afforded Boc-protected tetracycle 1.124, which provided X-ray quality crystals. X-ray crystallographic analysis of 1.124 confirmed the connectivity and relative stereochemistry of tetracycle 1.123.

Scheme 1.29. Synthesis of Tetracycle 1.123
Due to the difficulty in obtaining the correct diastereomer of tricycle 1.100 from cycloheptadiene 1.99, installation of the C15 methyl group at a later stage in the synthesis proved necessary. After diastereoselective installation of the three stereocenters on the central cycloheptane via hydrogenation, tricycle 1.92 adopts a concave structure that would favor the addition of nucleophiles from the z-face. Simple molecular modeling of enone 1.127 indicated that the concave nature of the tricycle is maintained and supported the prediction that conjugate addition of the Gilman reagent would proceed from the convex face to afford the desired stereochemistry at C15. To test this hypothesis, oxidation of tricyclic alcohol 1.92 to enone 1.127 was investigated. Swern oxidation of 1.92 provided ketone 1.125 in 90% yield (Scheme 1.30). Treatment of 1.125 with LDA and PhSeCl afforded z-selenoketone 1.126 in good yield, but subsequent oxidation with hydrogen peroxide gave enone 1.127 in only 40% yield. Direct oxidation of 1.125 to enone 1.127 with hypervalent iodine reagents such as IBX or iodic acid fared poorly.

Scheme 1.30. Oxidation to Enone 1.127

Initial formation of silyl enol ether 1.128 proved challenging, but using large excesses of LDA and TMSCl resulted in efficient formation of silyl enol ether 1.128 (Scheme 1.31). Saegusa-Ito oxidation of 1.128 with stoichiometric Pd(OAc)_2 and 2,6-di-tert-butyl-4-methylpyridine (DTBMP) furnished the desired enone (1.127) in 90% yield. Catalytic loadings of 25 and 50 mol% of palladium(II) acetate provided enone 1.127 in 38% and 72% yield, respectively. For scale-up of the Saegusa-Ito oxidation, 50 mol% of Pd(OAc)_2 was used. Conjugate addition of the Gilman reagent to 1.127 proceeded diastereoselectively from the convex face to afford tricyclic ketone 1.129 bearing the desired stereochemistry at C15. Reduction of 1.129 formed an inconsequential mixture of diastereomeric alcohols (1:1 dr), which was treated with MOMCl to provide protected alcohol 1.130. Saponification of 1.130 followed...
by Curtius rearrangement gave Cbz-protected amine 1.131. Cleavage of the MOM ether of 1.131 followed by Swern oxidation provided protected aminoketone 1.59 in excellent yield. Hydrogenolysis of the benzyl carbamate of 1.59 and concomitant reductive amination efficiently afforded tetracyclic amine 1.57.

Scheme 1.31. Tetracycle Synthesis

Completion of Lyconadin A

After developing a concise synthetic route to key tetracyclic intermediate 1.57, investigation of its conversion to the initial Lycopodium alkaloid target, lyconadin A (1.8), was pursued. The final synthetic challenge was the formation of the key C6-N bond to forge the lyconadin pentacycle from amine 1.57. The first approach to forming 1.137 was inspired by Shibanuma’s examples of constructing caged alkaloids utilizing the Hofmann-Löffler-Freytag (HLF) reaction. Formation of HLF substrate 1.132 (Scheme 1.32) was achieved by treatment of amine 1.131 with N-chlorosuccinimide. Photolysis of chloroamine 1.132 should initiate homolysis of the N-Cl bond of ammonium 1.133, followed by 1,5-hydrogen atom abstraction by amidyl radical 1.134 to form secondary radical 1.135. Picolinic radical 1.135 can recombine with the chlorine radical to form chloride 1.136. Subsequent displacement under the reaction
conditions or upon treatment with base should effect formation of pentacycle 1.137. Under a variety of conditions (TFA, Et₃N, H₂SO₄) with precedent to promote the HLF reaction, photolysis of 1.132 led to a complex mixture of products. Under several conditions, cleavage of the N-Cl bond of 1.132 to provide amine 1.57 and elimination of HCl to give imine byproducts were observed.

Scheme 1.32. Proposed HLF Mechanism

Alternatively, N-nitrosoamine 1.138 was synthesized by nitrosylation of amine 1.57 with NOCl to investigate a variant of the Barton nitrite ester oxidation (Scheme 1.33). Photolysis of 1.138 could lead to homolysis of the N-N bond and 1,5-hydrogen atom abstraction similar to the HLF reaction followed by recombination with nitrosyl radical and tautomerization to provide oxime 1.139. Installation of the oxime functionality at C6 in 1.139 would enable multiple approaches to form pentacycle 1.137. Irradiation of N-nitrosoamine 1.138 resulted in the nonspecific decomposition of the substrate.
Scheme 1.33. Photolysis of N-Nitrosoamine

Additionally, in an attempt to form pentacycle 1.137 or functionalize the picolinic position of 1.57, the reactivity of pyridine N-oxide 1.142 was explored (Scheme 1.34). Boc-protection of 1.57 and subsequent treatment with m-CPBA generated pyridine N-oxide 1.142 in good yield. To directly effect the C-N bond formation, pyridine N-oxide 1.142 could be activated by sulfonation that could enable more facile isomerization to enamine 1.143. Thermal cleavage of the Boc group of 1.143 and intramolecular addition to the alkene with ejection of the sulfate could afford pentacycle 1.137. Treatment of pyridine-N-oxide 1.142 with DBU and TsCl or MsCl followed by heating at elevated temperatures did not promote the desired reactivity, but instead resulted in decomposition of 1.142. Next, the Boekelheide variant of the Polonovski rearrangement of N-oxide 1.142 was investigated to functionalize the picolinic position. Reaction of pyridine N-oxide 1.142 with TFAA or Ac₂O could acylate 1.142 and induce isomerization to enamine 1.144. Subsequent [3,3] sigmatropic rearrangement of 1.144 could furnish tetracycle 1.145 bearing functionality at C6, which could be utilized for formation of pentacycle 1.137. Upon treatment of 1.142 with TFAA or Ac₂O and heating at elevated temperatures, non-specific decomposition of the substrate was observed.
Scheme 1.34. Alternative C-N Bond Formation Strategies

Alternatively, inspired by the key C-N bond formation in Rabe’s synthesis of quinine70 recently revisited by Williams,71 lateral deprotonation of 1.132 followed by intramolecular nucleophilic attack on the chloroamine nitrogen with loss of chloride could provide the desired pentacycle 1.137 (Scheme 1.35). However, attempted deprotonation of 1.132 with a variety of bases (LDA, LiTMP, NaHMDS, NaH, NaNH\textsubscript{2}, KO\textsubscript{t}-Bu) led to complex mixtures of products. Treatment of chloroamine 1.132 with KOH in refluxing methanol effected the desired transformation to afford pentacycle 1.137, albeit in low yield.
Scheme 1.35. Pentacycle Synthesis

Attempts to utilize the acidity of the picolinic position, deprotonation of protected amine 1.146 could afford anion 1.147 which could be treated with an electrophile to provide a functional handle at C6 (see 1.148) to enable subsequent formation of the pentacycle (Scheme 1.36). Attempts to deprotonate the picolinic position of protected amine 1.146 (R= allyl, Boc, or Cbz) with a variety of strong bases (n-BuLi, LDA, or LiTMP) was not effective and led exclusively to recovery of starting material. However, reaction of secondary amine 1.57 with an excess of n-BuLi (3 equiv) efficiently generated dianion 1.149 (Scheme 1.37). Addition of metal salts such as Pd(OAc)2, FeCl3, Cu(OAc)2, and Cu(OTf)2 to dianion 1.149 did not promote formation of pentacycle 1.137. Addition of I2 (2 equiv) to dianion 1.149 forged the pentacycle in 90% yield. Cleavage of the methyl ether of 1.137 with NaSEt furnished lyconadin A (1.8) in 76% yield.72

Scheme 1.36. Deprotonation and Functionalization at C6
Scheme 1.37. Completion of (±)-Lyconadin A Synthesis

1.12 Enantioselective Synthesis of Lyconadin A

After the completion of the racemic synthesis of (±)-lyconadin A (1.8), the enantioselective reduction of enone 1.60 was investigated to provide a synthetic route to enantoienriched tetracycle 1.57 and (+)-lyconadin A (1.8). A stereodefined hydroxyl group at C13 in 1.91 should be able to govern the installation of the three stereocenters generated in the diastereoselective hydrogenation. Subsequent Swern oxidation would complete the sequence to afford ketone 1.125 in high enantiomeric purity. Chiral reducing agents derived from α-pinene (Table 1.3, entries 1-3), S-Alpine-Borane® (1.150) and (+)-B-chlorodiisopinocampherylborane (1.151, (+)-DIP-Cl), were screened for the enantioselective reduction of ketone 1.60. Reduction with S-Alpine-Borane® provided a complex mixture of products (entry 1), however, (+)-DIP-Cl provided allylic alcohol 1.91 in 40% yield and -59% ee (entry 2). Prolonged reaction of 1.60 with (+)-DIP-Cl (entry 3) afforded modest asymmetric induction to give alcohol 1.91 with -65% ee. Although not a synthetically viable enantiometric ratio, the results of (+)-DIP-Cl reduction demonstrated that differentiation of the enantiomeric faces of enone 1.60 could be achieved. Utilizing (R)-CBS-Me catalyst (1.152)73-75 with borane-tetrahydrofurane complex as the stoichiometric reductant (entries 4-5), only modest conversion of 1.60 to alcohol 1.91 was achieved. Employing catecholborane as the stoichiometric reductant with (R)-CBS catalyst 1.152 in CH₂Cl₂ (entry 6) provided the desired alcohol in modest yield and good enantioselectivity. Examining other solvents (entries 7-8) revealed that CBS reduction of enone 1.60 in toluene (entry 8) proceeded with excellent enantioselectivity and afforded alcohol 1.91 in 85% yield.
Table 1.3. Enantioselective Reduction Optimization

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst/reagent</th>
<th>temperature (°C)</th>
<th>solvent</th>
<th>time (h)</th>
<th>result</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S)-Alpine Borane</td>
<td>0 to rt</td>
<td>THF</td>
<td>72</td>
<td>multiple products</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>(+)-DIP-Cl</td>
<td>0 to rt</td>
<td>THF</td>
<td>48</td>
<td>40%</td>
<td>-59%</td>
</tr>
<tr>
<td>3</td>
<td>(+)-DIP-Cl</td>
<td>0</td>
<td>THF</td>
<td>48</td>
<td>63%</td>
<td>-65%</td>
</tr>
<tr>
<td>4</td>
<td>(R)-CBS-MeBH$_2$-THF</td>
<td>0 to rt</td>
<td>THF</td>
<td>24</td>
<td>4:1 (sm:pddt)</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>(R)-CBS-MeBH$_2$-THF</td>
<td>-78</td>
<td>PhMe</td>
<td>8</td>
<td>1:1 (sm:pddt)</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>(R)-CBS-Me/ catecholborane</td>
<td>-78</td>
<td>CH$_2$Cl$_2$</td>
<td>8</td>
<td>63%</td>
<td>83%</td>
</tr>
<tr>
<td>7</td>
<td>(R)-CBS-Me/ catecholborane</td>
<td>-78</td>
<td>THF</td>
<td>8</td>
<td>1:1 (sm:pddt)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>(R)-CBS-Me/ catecholborane</td>
<td>-78</td>
<td>PhMe</td>
<td>5</td>
<td>85%</td>
<td>98%</td>
</tr>
</tbody>
</table>

Hydrogenation of enantioenriched alcohol 1.91 and subsequent Swern oxidation provided tricyclic ketone 1.125 in an eroded 77% ee (Scheme 1.38). Thorough analysis of the HPLC data revealed that hydrogenation of alcohol 1.91 proceeds with only modest diastereoselectively to provide alcohols 1.92 and 1.153 in an 89:11 ratio. Swern oxidation of the diastereomeric alcohols 1.92 and 1.153 affords enantiomers of ketone 1.125 and results in the decrease in the observed enantiomeric excess. Since diastereomeric alcohols 1.92 and 1.153 were not separable by column chromatography, improving the diastereoselectivity of hydrogenation was necessary to achieve the synthesis of ketone 1.125 in high ee. A screen of heterogeneous hydrogenation catalysts (Pt/C, Rh/C, PtO$_2$) and solvents (MeOH, EtOH, EtOAc, THF) for the formation of cycloheptane 1.92 showed that the best diastereoselectivity was achieved under the original conditions, which utilized Pd/C in MeOH. Protection of alcohol 1.91 with a sterically large group (TBS or TBDPS) and hydrogenation of the protected alcohol provided the cycloheptane in a similar diastereomeric ratio.
Scheme 1.38. Oxidation of Diastereomeric Alcohols

Recrystallization of the diastereomeric mixture of alcohols afforded tricyclic alcohol 1.92 in 60% yield as a single diastereomer with 99% ee (Scheme 1.39). The absolute and relative stereochemistry of 1.92 was confirmed by X-ray crystallographic analysis.\(^{76,77}\) Swern oxidation of 1.92 proceeded without event to provide ketone 1.125. The synthesis of (+)-lyconadin A (1.8, Scheme 1.40) was achieved from 1.125 in a sequence analogous to that described in Schemes 1.31 and 1.37.\(^{78}\) Spectral data for synthetic (+)-lyconadin A (1.8) were in agreement with spectroscopic (\(^1\)H, \(^{13}\)C, IR, MS) and chiroptical data obtained for natural (+)-lyconadin A\(^{15}\) and synthetic (+)-lyconadin A prepared by Smith and Beshore.\(^{36,37}\)
Scheme 1.39. Synthesis of Enantioenriched Ketone 1.125

Scheme 1.40. Completion of (+)-Lyconadin A

In addition to synthesizing lyconadin A, analogs of lyconadin A that differ at C15 (1.154 and 1.156, Scheme 1.41) were prepared. Oxidative C-N bond formation of epimeric tetracycle 1.123 followed by cleavage of the methyl ether with NaSEt provided C15-epi-lyconadin A (1.154) in 60% yield. Alcohol 1.92 was advanced to tetracycle 1.155 via a sequence analogous to the conversion of 1.100 to 1.123 in 46% yield over 6 steps. Tetracycle 1.155 was subjected to n-BuLi and I\textsubscript{2} to provide the pentacyclic core, which was subsequently deprotected to afford C15-nor-Me-lyconadin A (1.156). Lyconadin A (1.8) and analogs 1.154 and 1.156 will be evaluated in a comprehensive screen for neurotrophic activity, which will hopefully lead to a further elucidation of the biological activity of these compounds.
Scheme 1.41. Synthesis of Lyconadin Analogs

1.13 Conclusion

The enantioselective total synthesis of (+)-lyconadin A (1.8) has been achieved in 17 steps and 6% overall yield. Key cycloheptadiene 1.60 was assembled by a sequence of three consecutive C-C bond formations, which includes an olefin cross-metathesis and intramolecular Heck reaction. The synthetic route to enantioenriched cycloheptane 1.92 employs a CBS reduction and diastereoselective hydrogenation to set three key stereocenters in a single operation. The development of an oxidative C-N bond-forming reaction to efficiently construct the pentacyclic core of the lyconadins proved to be a vital component of our strategy. This unified approach lays the foundation for the enantioselective total synthesis of several miscellaneous *Lycopodium* alkaloids including dihydrolycolucine, lucidine A, and the nankakurines.
1.14 Experimental Contributions

Dr. Alakesh Bisai, a postdoctoral researcher in our group, made significant contributions to the development of the lyconadin synthesis presented in this chapter. Dr. Bisai designed and conducted the experiments that resulted in the synthesis of the model tetracycle (Schemes 1.27-1.29), and the synthesis of the lyconadin tetracycle (Schemes 1.30 and 1.31). Dr. Bisai designed and conducted the initial studies to form the lyconadin pentacycle and also completed the racemic total synthesis of (±)-lyconadin A (Schemes 1.32-1.36). Andrew D. Lim, an undergraduate in our group, synthesized material that was used to pursue the enantioselective synthesis of (+)-lyconadin A. Raja R. Narayan, an undergraduate in our group, synthesized material in support of Dr. Bisai’s synthetic efforts and completed the synthesis of C15-epi-lyconadin A. The remainder of the work presented in this chapter was designed and conducted by Scott P. West including the synthesis of the cycloheptadiene intermediates, investigation of the epoxide intermediates, and the enantioselective total synthesis of (+)-lyconadin A.
1.15 Experimental Methods

Materials and Methods

Unless otherwise stated, reactions were performed in oven-dried glassware fitted with rubber septa under a nitrogen atmosphere and were stirred with Teflon-coated magnetic stirring bars. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled over sodium/benzophenone ketyl. Dichloromethane (CH₂Cl₂), toluene, and benzene were distilled over calcium hydride. Acetonitrile was distilled over potassium carbonate. N,N-Diisopropylethylamine (DIPEA) was distilled over calcium hydride prior to use. All other solvents and reagents were used as received unless otherwise noted. Reaction temperatures above 23 °C refer to oil bath temperature, which was controlled by an OptiCHEM temperature modulator. Thin layer chromatography was performed using SiliCycle silica gel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation and anisaldehyde stain. SiliCycle Silica-P silica gel (particle size 40-63 µm) was used for flash chromatography. Melting points were recorded on a Laboratory Devices Mel-Temp 3.0 and are uncorrected. ¹H and ¹³C NMR spectra were recorded on Bruker AVB-400, DRX-500, AV-500 and AV-600 MHz spectrometers with ¹³C operating frequencies of 100, 125, 125 and 150 MHz, respectively. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a Nicolet MAGNA-IR 850 spectrometer and are reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. High resolution mass spectral data were obtained from the Mass Spectral Facility at the University of California, Berkeley. Enantiomeric excesses (ee’s) were determined on a Shimadzu VP Series Chiral HPLC. A Perkin-Elmer 241 polarimeter with a sodium lamp was used to determine specific rotations and concentrations are reported in g/dL.
Experimental Procedures

Enone (1.71): To a stirred solution of diisopropylamine (4.20 mL, 29.7 mmol) in THF (100 mL) at -78 °C was added n-butyllithium (2.5 M in hexanes, 11.9 mL, 29.7 mmol) dropwise over 5 min. After 30 min, a solution of picoline 1.63\(^{44}\) (4.00 g, 17.8 mmol) in THF (40 mL) at -78 °C was added by cannula over 5 minutes. After stirring for 40 min at -78 °C, a solution of vinylogous ester 1.62\(^{46}\) (4.93 g, 29.7 mmol) in THF (40 mL) at -78 °C was added by cannula over 5 minutes. After stirring for 3.5 h at -78 °C, the reaction mixture was quenched by the addition of 1N HCl (40 mL) at -78 °C. The reaction mixture was stirred for 3 h while it was allowed to warm to room temperature and then neutralized by the addition of saturated NaHCO\(_3\) (75 mL). The resulting mixture was extracted with EtOAc (4 x 80 mL). The combined organic layers were dried over MgSO\(_4\) and concentrated under vacuum. The crude product was purified by flash chromatography (8:1 hexanes/EtOAc) to give 3.80 g (64% yield) of 1.71 as a yellow viscous oil. \(R_f\) 0.68 (8:1 hexanes/EtOAc); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.64 (d, \(J = 8.7\) Hz, 1H), 6.52 (d, \(J = 7.2\) Hz, 1H), 5.76 (tdd, \(J = 16.2, 10.1, 6.1\) Hz, 1H), 4.96 (qd, \(J = 17.2, 1.8\) Hz, 1H), 4.90 (qd, \(J = 10.1, 1.6\) Hz, 1H), 3.83 (s, 2H), 3.82 (s, 3H), 3.16 (d, \(J = 6.1\) Hz, 2H), 2.46-2.35 (m, 4H), 1.95 (td, \(J = 12.4, 6.2\) Hz, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 198.85, 162.66, 157.12, 153.96, 142.60, 136.03, 134.76, 114.73, 112.29, 110.84, 53.84, 41.62, 38.17, 31.58, 29.67, 22.65; IR (film) \(\nu_{\text{max}}\) 3072, 2946, 2360, 2332, 1668, 1576, 1415 cm\(^{-1}\); HRMS (FAB) m/z 336.0602 [(M+H)+; calculated for [C\(_{16}\)H\(_{19}\)NO\(_2\)Br]+: 336.0599].

Vinylogous Ester (1.96): A two-necked round-bottom flask fitted with a reflux condenser was charged with 2-allyl-5-methyl-1,3-cyclohexanedione\(^{79}\) (7.38 g, 44.4 mmol) and MeOH (150 mL). Trimethyl orthoformate (14.6 mL, 133 mmol) and \(p\)-toluenesulfonic acid monohydrate (845 mg, 4.44 mmol) were added and the reaction mixture was heated at reflux for 36 h. The reaction mixture was allowed to cool to rt and the solvent was removed under vacuum. The crude residue was dissolved in EtOAc (200 mL) and washed with saturated aq. NaHCO\(_3\) (4 X 100 mL), water (1 X 100 mL), and saturated aq. NaCl (1 X 100 mL). The combined organic layers were dried over MgSO\(_4\) and concentrated under vacuum to provide 6.94 g of 1.96 (87% yield) as a yellow viscous oil. This material was used in the next step without purification. \(R_f\) 0.54 (4:1 hexanes/EtOAc); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 5.75 (m, 1H), 4.94 (qd, \(J = 17.2, 2.0\) Hz, 1H), 4.82 (qd, \(J = 10.0, 1.6\) Hz, 1H), 3.77 (s, 3H), 2.96 (d, \(J = 6.0\) Hz, 2H), 2.67-2.61 (m, 1H), 2.41-2.34 (m, 1H), 2.19-2.09 (m, 2H), 2.03-1.96 (m, 1H), 1.05 (d, \(J = 6.0\) Hz, 3H); \(^{13}\)C
NMR (100 MHz, CDCl₃) δ 197.72, 171.91, 136.50, 116.77, 113.83, 55.27, 44.67, 33.06, 28.51, 26.26, 21.26; **IR** (film) νmax 2957, 2360, 1734, 1609, 1458, 1378, 1235, 1081, 910 cm⁻¹; **HRMS** (EI+) m/z 180.1154 [(M⁺); calculated for [C₁₁H₁₀O₂]⁺: 180.1150].

Enone (1.97): The title compound was obtained according to the procedure described for 1.71, as a clear yellow viscous oil (65% yield). Rf 0.72 (8:1 hexanes/EtOAc); **¹H NMR** (500 MHz, CDCl₃) δ 7.65 (d, J = 8.5 Hz, 1H), 6.52 (d, J = 8.5 Hz, 1H), 5.81-5.72 (m, 1H), 4.97 (dd, J = 17.0, 2.0 Hz, 1H), 4.90 (dd, J = 12.0, 2.0 Hz, 1H), 3.95-3.77 (m, 2H), 3.85 (s, 3H), 3.16 (m, 2H), 2.52 (m, 1H), 2.39 (m, 1H), 2.16 (m, 1H), 2.08 (m, 2H), 1.00 (d, J = 6.5 Hz, 3H); **¹³C NMR** (125 MHz, CDCl₃) δ 198.93, 162.75, 156.07, 153.68, 142.38, 135.77, 134.15, 114.49, 112.07, 110.62, 53.59, 46.02, 41.29, 39.60, 29.69, 29.35, 21.20; **IR** (film) νmax 2950, 1667, 1636, 1576, 1460, 1415, 1371, 1328, 1288, 1014, 909, 822 cm⁻¹; **HRMS** (EI+) m/z 349.0669 [(M⁺); calculated for [C₁₇H₂₀BrNO₂]⁺: 349.0739].

Cycloheptadiene (1.73): To a Schlenk flask containing Pd(PPh₃)₄ (35 mg, 0.030 mmol) was added 1.71 (100 mg, 0.30 mmol) in acetonitrile (6 mL) and diisopropylethylamine (160 µL, 0.90 mmol). The reaction mixture was degassed by bubbling nitrogen through the mixture for 10 minutes. The flask was then sealed and heated at reflux for 7 h. The reaction mixture was allowed to cool to room temperature and filtered through Celite. The solids were washed with EtOAc (3 x 20 mL), and the combined organic layers were concentrated under vacuum. The crude product was purified by flash chromatography (8:1 hexanes/EtOAc) to give 34 mg (44%) of 1.61 as a pale yellow solid. **¹H NMR** (400 MHz) 7.67 (d, 1H, J = 8.6 Hz), 6.97 (s, 1H), 6.68 (d, 1H, J = 8.6 Hz), 3.95 (s, 3H), 3.22 (s, 2H), 2.72 (t, 2H, J = 6.0 Hz), 2.44-2.37 (m, 2H), 2.34 (s, 3H), 1.92 (m, 2H); **¹³C NMR** (100 MHz) δ 198.2, 164.0, 152.1, 149.1, 136.7, 136.4, 131.1, 125.9, 122.1, 108.2, 53.6, 43.9, 37.4, 31.9, 23.9, 22.0; **IR** (film) νmax 2944, 2359, 1670, 1583, 1480, 1318 cm⁻¹; **MS** (EI): m/z 255(M⁺), 240, 226, 212, 198, 184; **HRMS** (EI) calculated for [C₁₆H₁₇NO₂]⁺: m/z 255.1264, found 255.1259; mp 112 °C.
Alcohol (1.74): To a stirred solution of 1.73 (40 mg, 0.15 mmol) in CH$_2$OH (5 mL) was added CeCl$_3$$\cdot$7 H$_2$O (170 mg, 0.47 mmol). The reaction mixture was cooled to 0°C, stirred for 30 min and then NaBH$_4$ (7.0 mg, 0.18 mmol) was added. After stirring for 2 h at 0°C, the reaction mixture was quenched by the addition of 1M NaOH (15 mL). The resulting mixture was extracted with EtOAc (4 x 25 mL) and the combined organic layers were dried over MgSO$_4$ and concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc) to give 23 mg (58%) of 1.74 as a clear oil. 1H NMR (400 MHz) δ 7.65 (d, 1H, J = 8.6 Hz), 6.63 (d, 1H, J = 8.6 Hz), 6.43 (s, 1H), 4.21 (br s, 1H), 3.93 (s, 3H), 3.92 (br s, 1H), 3.16 (d, 1H, J = 11.9 Hz), 2.84 (d, 1H, J = 11.8 Hz), 2.36 (s, 2H), 2.30 (s, 3H), 1.66 (m, 4H); 13C NMR (100 MHz) 163.8, 151.1, 136.4, 135.5, 134.0, 130.7, 128.0, 125.6, 107.2, 68.1, 53.4, 43.0, 31.3, 31.2, 23.7, 17.7; IR (film) $\nu$$_{max}$ 2924, 2854, 1462, 1437, 1119, 721 cm$^{-1}$; MS (EI) m/z 257 (M$^+$), 228, 201, 186; HRMS (EI) calculated for [C$_{16}$H$_{19}$NO$_2$]$^+$: m/z 257.1416, found 257.1422.

Enoate (1.86): To a solution of enone 1.71 (5.62 g, 16.7 mmol) in benzene (170 mL) was added ethyl acrylate (9.06 mL, 83.6 mmol). The reaction mixture was degassed by bubbling nitrogen through it for 5 minutes. To this reaction mixture, Grubbs-Hoveyda Second Generation catalyst (1.84, 207 mg, 0.33 mmol) was added. The reaction mixture was stirred at rt until TLC showed complete consumption of starting material (48 h). The solvent was removed under vacuum and the crude product was purified by flash chromatography (4:1 hexanes/EtOAc) to afford 6.73 g (88% yield) of 1.86 as a yellow viscous oil. R$_f$ 0.34 (6:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl$_3$) δ 7.64 (d, J = 8.7 Hz, 1H), 6.87 (td, J = 15.6, 6.3 Hz, 1H), 6.51 (d, J = 8.7 Hz, 1H), 5.71 (td, J = 15.6, 1.7 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 3.80 (s, 2H), 3.32 (d, J = 5.9 Hz, 2H), 2.48-2.38 (m, 4H), 2.02-1.93 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 198.18, 166.50, 162.53, 158.30, 153.21, 146.21, 142.44, 133.02, 121.30, 112.03, 110.87, 60.09, 53.64, 41.55, 37.75, 31.49, 28.01, 22.29, 14.22; IR (film) $\nu$$_{max}$ 2979, 2947, 2360, 1717, 1666, 1577, 1462, 1415, 1328, 1288, 1266, 1161, 1036, 975, 824 cm$^{-1}$; HRMS (EI+) m/z 407.0733 [(M$^+$); calculated for [C$_{19}$H$_{22}$BrNO$_4$]$^+$: 407.0681].
Enoate (1.157): The title compound was obtained, according to the procedure described for 1.71, as a yellow viscous oil (80% yield). \(R_f \) 0.42 (6:1 hexanes/EtOAc); \(^1H \) NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 7.60 (d, \(J = 8.7 \) Hz, 1H), 6.83 (td, \(J = 15.6, 6.2 \) Hz, 1H), 6.47 (d, \(J = 8.6 \) Hz, 1H), 5.67 (td, \(J = 15.6, 1.7 \) Hz, 1H), 4.07 (q, \(J = 7.1 \) Hz, 2H), 3.77 (s, 3H), 3.73 (m, 2H), 3.33-3.23 (m, 2H), 2.51-2.38 (m, 2H), 2.17-1.99 (m, 3H), 1.20 (t, \(J = 7.1 \) Hz, 3H), 0.97 (d, \(J = 6.1 \) Hz, 3H); \(^{13}C \) NMR (100 MHz, CDCl\(_3 \)) \(\delta \) 198.36, 166.40, 162.48, 157.44, 153.12, 146.16, 142.41, 132.62, 121.25, 112.00, 110.85, 60.01, 53.59, 45.79, 41.41, 39.70, 29.61, 27.92, 21.17, 14.18; IR (film) \(\nu_{max} \) 2952, 2823, 1717, 1669, 1609, 1576, 1492, 1415, 1371, 1321, 1207, 1176, 1016 cm\(^{-1}\); HRMS (FAB) m/z 424.0959 [(M+2H)\(^+\)]; calculated for [C\(_{20}\)H\(_{28}\)BrNO\(_4\)]\(^+\): 424.0960).

Tricyclic Cycloheptadiene (1.60): An oven-dried Schlenk flask was charged with enoate 1.86 (7.16 g, 17.5 mmol) and acetonitrile (175 mL). To this reaction mixture was added N,N-diisopropylethylamine (DIPEA) (9.2 mL, 52.6 mmol) followed by triphenylphosphine (1.84 g, 7.02 mmol) and Pd(OAc)\(_2\) (788 mg, 3.51 mmol). The flask was then sealed and heated at 85 °C for 12 h. The reaction mixture was allowed to cool to rt and filtered through Celite. The solids were washed with EtOAc (3 x 60 mL), and the combined organic layers were concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc) to give 5.23 g (91% yield) of 1.60 as a pale yellow oil. \(R_f \) 0.40 (6:1 hexanes/EtOAc); \(^1H \) NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 7.64 (d, \(J = 8.6 \) Hz, 1H), 7.04 (s, 1H), 6.66 (d, \(J = 8.6 \) Hz, 1H), 4.03 (q, \(J = 7.1 \) Hz, 2H), 3.93 (s, 3H), 3.71 (s, 2H), 3.27 (s, 2H), 2.72 (t, \(J = 5.8 \) Hz, 1H), 2.44-2.35 (m, 2H), 1.93 (dd, \(J = 12.48, 6.1 \) Hz, 2H), 1.13 (t, \(J = 7.1 \) Hz, 3H); \(^{13}C \) NMR (100 MHz, CDCl\(_3 \)) \(\delta \) 197.90, 171.26, 164.26, 154.34, 149.99, 136.29, 133.80, 130.69, 125.29, 124.38, 108.38, 60.83, 53.62, 43.82, 43.20, 37.36, 32.02, 21.93, 14.08; IR (film) \(\nu_{max} \) 2951, 2868, 1735, 1672, 1585, 1482, 1391, 1319, 1272, 1187, 1032 cm\(^{-1}\); HRMS (EI+) m/z 327.1470 [(M\(^+\)); calculated for [C\(_{19}\)H\(_{21}\)NO\(_4\)]\(^+\): 327.1470].
Tricyclic cycloheptadiene (1.98): The title compound was obtained, according to the procedure described for 1.60, as a yellow solid (88% yield). Rf 0.44 (6:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) 6 7.64 (d, J = 8.6 Hz, 1H), 7.02 (s, 1H), 6.66 (d, J = 8.6 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 3.94 (s, 3H), 3.78 (d, J = 16.2 Hz, 1H), 3.64 (d, J = 16.2 Hz, 1H), 3.41 (d, J = 11.5 Hz, 1H), 3.15 (d, J = 11.3 Hz, 1H), 2.72 (dd, J = 18.9, 2.8 Hz, 1H), 2.45 (m, 2H), 2.11 (q, J = 12.3 Hz, 2H), 1.13 (t, J = 7.1 Hz, 3H), 1.03 (d, J = 6.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) 6 198.07, 171.21, 164.15, 153.81, 149.97, 136.26, 133.75, 130.27, 125.14, 124.34, 108.27, 60.78, 53.61, 45.46, 43.72, 43.14, 40.39, 29.41, 21.02, 14.03; IR (film) v max 2954, 2360, 1733, 1671, 1604, 1585, 1482, 1392, 1319, 1272, 1163, 1033, 832 cm⁻¹; HRMS (EI+) m/z 341.1626 [(M⁺); calculated for [C20H23NO4]⁺: 341.1627; MP 104-105 °C.

Tricyclic alcohol (1.91): In a round-bottom flask, tricyclic cycloheptadiene 1.60 (2.40 g, 7.33 mmol) was dissolved in MeOH (73 mL). To this solution was added CeCl3•7H2O (5.50 g, 14.66 mmol). The reaction mixture was stirred at rt for 15 min and then was cooled to 0 °C. NaBH4 (555 mg, 14.66 mmol) was added to the reaction mixture in three portions (3 X 185 mg) over 15 mins. The reaction mixture was slowly allowed to warm to rt while stirring was continued. After completion of the reaction (TLC, 5 h), it was quenched with saturated aq. NH4Cl (10 mL) and aq. NaHCO3 (10 mL). After stirring vigorously for 30 mins, the solvent was removed under reduced pressure. Water (50 mL) was added to the crude reaction mixture and it was extracted with EtOAc (3 X 70 mL). The combined organic extracts were washed with saturated aq. NaCl (70 mL), dried over MgSO4, and concentrated under vacuum. The crude product was purified by flash chromatography (2:1 hexanes/EtOAc) to provide 2.20 g (91% yield) of 1.91 as a light yellow viscous oil. Rf 0.40 (2:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) 6 7.60 (d, J = 8.5 Hz, 1H), 6.59 (d, J = 9.0 Hz, 1H), 6.52 (br, s, 1H), 4.21 (br, s, 1H), 4.02 (q, J = 7.0 Hz, 2H), 3.90 (s, 3H), 3.72 (d, J = 15.8 Hz, 1H), 3.54 (d, J = 15.8 Hz, 1H), 3.17 (d, J = 11.5 Hz, 1H), 2.89 (d, J = 11.0 Hz, 1H), 2.35 (br, s, 2H), 1.74-1.59 (m, 5H), 1.12 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) 6 171.54, 163.90, 151.70, 136.08, 136.03, 132.61, 131.13, 130.31, 124.06, 107.36, 67.81, 60.74, 53.43, 43.08, 42.87, 31.33, 31.27, 17.69, 14.01; IR (film) v max 3414, 2939, 1731, 1584, 1555, 1480, 1430, 1394, 1316, 1273, 1161, 1029, 994 830 cm⁻¹; HRMS (EI+) m/z 329.1622 [(M⁺); calculated for [C19H23NO4]⁺: 329.1627].

48
Tricyclic alcohol (1.91): To a solution of tricyclic enone 1.60 (3.52 g, 10.8 mmol) in toluene (85 mL) was added R-CBS-Me catalyst 1.152 (1M in toluene, 4.30 mL, 4.30 mmol) and the solution was cooled to -78 °C. A solution of catecholborane (3.44 mL, 32.3 mmol) in toluene (20 mL) was added dropwise over 30 minutes. After stirring for 6 hours at -78 °C, water (40 mL) was added and the reaction was allowed to warm to rt. The reaction mixture was poured on water (150 mL) and extracted with Et₂O (3 x 125 mL). The combined organic layers were washed with 1N NaOH (2 x 100 mL), saturated NaCl (100 mL), dried over MgSO₄, and concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc) to provide 3.00 g (85% yield) of 1.91 as a clear oil. Enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H column, 92:8 hexanes/ethanol, 1 mL/min) t½ 9.8 min(minor), 13.5 min (major): 98% ee.

See previous procedure for full characterization data.

Tricyclic allylic alcohol (1.99): The title compound was obtained according to the procedure described for racemic 1.91 as a light yellow viscous oil (92% yield) and as a single diastereomer. Rf 0.66 (2:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 8.6 Hz, 1H), 6.74 (s, 1H), 6.60 (d, J = 8.6 Hz, 1H), 4.29 (br, s, 1H), 4.03 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 3.64 (br, s, 2H), 3.10 (d, J = 11.6 Hz, 1H), 3.01 (br, 1H), 2.35 (dd, J = 18.2, 4.5 Hz, 1H), 2.07 (dd, J = 17.9, 10.6 Hz, 1H), 2.02 (ddd, J = 10.0, 8.3, 5.9 Hz, 1H), 1.72 (br, s, 2H), 1.13 (t, J = 7.1 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.64, 163.78, 152.09, 135.98, 131.99, 131.45, 129.21, 129.16, 124.10, 107.28, 69.65, 60.73, 53.44, 43.17, 42.78, 41.57, 40.30, 27.98, 21.59, 14.02; IR (film) νmax 3417, 2949, 2773, 2820, 1732, 1585, 1480, 1396, 1316, 1274, 1159, 1021, 982, 830 cm⁻¹; HRMS (EI⁺) m/z 343.1778 [(M⁺); calculated for [C₂₀H₂₅NO₄]⁺: 343.1783].
Epoxide (1.104): To a solution of alcohol 1.99 (3.06 g, 8.91 mmol) and NaHCO₃ (1.50 g, 17.82 mmol) in CH₂Cl₂ (45 mL) at -10 °C was added meta-chloroperoxybenzoic acid (m-CPBA (~75%), 3.08 g, 13.37 mmol) in portions over 30 minutes. After stirring the reaction mixture at -10 °C for 5h, the reaction mixture was poured on saturated NaHSO₃ (200 mL) and the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with saturated NaHCO₃ (2 x 50 mL), saturated NaHCO₃ (2 x 50 mL) and saturated NaCl (50 mL), dried over MgSO₄, and concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc to 2:1 hexanes/EtOAc) to provide 2.62 g (82% yield) of epoxide 1.104 as a clear oil. Rf 0.45 (1:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 6.47 (br s, 1H), 4.03-3.94 (m, 2H), 3.92 (s, 3H), 3.66 (br s, 1H), 3.55 (d, J = 16.1 Hz, 1H), 3.43-3.30 (m, 1H), 3.17 (d, J = 12.3 Hz, 1H), 2.92 (d, J = 12.0 Hz, 1H), 2.06-1.99 (m, 2H), 1.62-1.50 (m, 2H), 1.07 (t, J = 7.1 Hz, 1H), 0.81 (d, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.67, 162.30, 154.62, 137.09, 132.70, 128.37, 125.32, 107.93, 72.23, 63.79, 60.75, 53.51, 45.45, 43.24, 36.84, 35.74, 27.74, 21.27, 13.95.

MOM ether (1.108): To a solution of epoxide 1.104 (2.45 g, 6.82 mmol) in CH₂Cl₂ (70 mL) at 0 °C was added N,N-diisopropylethylamine (DIPEA, 2.38 mL, 13.6 mmol) and chloromethyl methyl ether (MOMCl, 5M in MeOAc, 2.73 mL, 13.6 mmol). The reaction was allowed to warm to rt and stirred for 12 h. The reaction mixture was poured on water (200 mL) and the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with water (100 mL) and saturated NaCl (100 mL), dried over MgSO₄, and concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc to 2:1 hexanes/EtOAc) to provide 2.37 g (86% yield) of MOM ether 1.108 as a white solid. Rf 0.60 (2:1 hexanes/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 6.41 (br s, 1H), 4.73 (d, J = 6.9 Hz, 1H), 4.65 (d, J = 6.9 Hz, 1H), 4.05-3.96 (m, 2H), 3.92 (s, 3H), 3.65 (br s, 1H), 3.51 (d, J = 15.9 Hz, 1H), 3.38 (s, 3H), 3.35-3.27 (m, 1H), 3.13 (d, J = 12.4 Hz, 1H), 2.89 (d, J = 12.3 Hz, 1H), 2.02 (dd, J = 15.2, 6.0 Hz, 1H), 1.64-1.48 (m, 2H), 1.23 (q, J = 12.1 Hz, 1H), 1.09 (t, J = 7.1 Hz, 3H), 0.81 (d, J = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.57, 162.26, 154.87, 137.21, 132.23, 128.60, 125.45, 107.96, 95.47, 77.41, 62.27, 60.75, 55.51, 53.47, 45.61, 43.26, 35.50, 33.26, 27.57, 21.39, 13.98.
Alcohol (1.111): Epoxide 1.108 (200 mg, 0.58 mmol) was dissolved in MeOH (20 mL) and sparged under a nitrogen atmosphere for 5 minutes. 10% Pd on activated carbon (20 mg) was added and the flask was evacuated and backfilled with hydrogen 3 times. The reaction mixture was placed under a hydrogen atmosphere (1 atm. balloon) and stirred at rt for 18 h until TLC indicated complete consumption of the starting material and finally sparged with nitrogen for 5 minutes. The reaction mixture was filtered through a pad of celite and washed with MeOH (3 X 15 mL). The filtrate was concentrated under vacuum to provide 194 mg (95 % yield) of alcohol 1.111. Rf 0.65 (1:1 hexanes/EtOAc); \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.27 (d, J = 8.7 Hz, 1H), 6.54-6.51 (d, J = 8.7 Hz, 1H), 4.69-4.66 (d, J = 6.9 Hz, 1H), 4.45 (d, J = 6.9 Hz, 1H), 4.21-4.13 (m, 2H), 3.92 (s, 3H), 3.90-3.87 (m, 2H), 3.59 (br s, 1H), 3.40-3.33 (m, 1H), 3.31 (s, 3H), 3.15-3.11 (m, 1H), 3.06 (d, J = 14.0 Hz, 1H), 2.84 (dd, J = 15.6, 5.9 Hz, 1H), 2.70-2.64 (m, 1H), 2.16-2.08 (m, 1H), 2.03-1.84 (m, 4H), 1.80 (dd, J = 14.2, 6.6 Hz, 1H), 1.72-1.65 (m, 2H), 1.46 (d, J = 13.4 Hz, 1H), 1.26 (m, 6H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 172.47, 161.62, 156.02, 134.01, 130.31, 107.12, 94.54, 79.03, 71.64, 60.56, 55.97, 53.33, 51.36, 50.42, 45.34, 39.39, 36.84, 34.63, 33.67, 26.46, 22.93, 14.21; HRMS (ESI) m/z 408.2391 [(M+H)\(^+\); calculated for [C\(_{25}\)H\(_{34}\)NO\(_6\)]\(^+\): 408.2381].

\(m\)-Nitrobenzoate (1.114): To a solution of alcohol 1.111 (20 mg, 0.05 mmol) in benzene (2 mL) was added pyridinium \(p\)-toluenesulfonate (38 mg, 0.15 mmol). The reaction vial was sealed and heated at 80 °C for 18 hours. The reaction was allowed to cooled to rt, poured on saturated NaHCO\(_3\) (10 mL). The aqueous layer was extracted with CH\(_2\)Cl\(_2\) (2 x 5 mL) and the combined organic layers were dried over MgSO\(_4\) and concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc to 2:1 hexanes/EtOAc) to give 11 mg (60% yield) of diol 1.113.

To a solution of diol 1.113 (11 mg, 0.03 mmol) in CH\(_2\)Cl\(_2\) (1.5 mL) was added triethylamine (25 \(\mu\)L, 0.18 mmol), \(m\)-nitrobenzoyl chloride (17 mg, 0.09 mmol), and 4-dimethylaminopyridine (DMAP; 2 mg, 0.015 mmol). The reaction was stirred for 18 hours at room temperature. The reaction mixture was diluted with CH\(_2\)Cl\(_2\) (8 mL) and then was poured on saturated NaHCO\(_3\) (10 mL). The aqueous layer was extracted with CH\(_2\)Cl\(_2\) (2 x 5 mL) and the combined organic layers were washed with saturated NaHCO\(_3\) (5 mL), dried over MgSO\(_4\), and
concentrated under vacuum. The crude product was purified by flash chromatography (8:1 hexanes/EtOAc to 4:1 hexanes/EtOAc) to afford 13.5 mg (90% yield) of m-nitrobenzoate 1.114. Vapor diffusion crystallization from CH₂Cl₂ and pentane provided X-ray quality crystals of 1.114. Rf 0.80 (1:1 hexanes/EtOAc); ¹H NMR (600 MHz, CDCl₃) δ 8.85-8.80 (m, 1H), 8.35 (ddd, J = 8.2, 2.3, 1.0 Hz, 1H), 8.26-8.23 (m, 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.28-7.26 (m, 1H), 6.56 (d, J = 8.4 Hz, 1H), 5.37 (m, 1H), 4.21-4.11 (m, 2H), 3.93 (s, 3H), 3.42-3.36 (m, 1H), 3.30 (d, J = 14.1 Hz, 1H), 3.05 (d, J = 14.1 Hz, 1H), 2.81 (dd, J = 15.9, 6.0 Hz, 1H), 2.62 (dd, J = 15.9, 9.2 Hz, 1H), 2.20-2.14 (m, 1H), 2.12 (td, J = 12.0, 2.8 Hz, 1H), 2.02-1.98 (m, 2H), 1.93 (d, J = 4.4 Hz, 2H), 1.73-1.65 (m, 1H), 1.64-1.57 (m, 1H), 1.55-1.47 (m, 2H), 1.29 (d, J = 7.59 Hz, 3H), 1.26 (t, J = 7.12 Hz, 3H), 0.87 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 172.25, 164.19, 161.99, 154.96, 148.36, 135.16, 134.28, 132.25, 131.01, 129.65, 127.20, 124.85, 107.59, 76.62, 70.71, 60.75, 53.49, 52.68, 50.66, 45.25, 39.07, 37.00, 35.13, 34.08, 31.58, 26.32, 22.30, 14.23; IR (film) νmax 3435, 2936, 2360, 1720, 1616, 1533, 1351, 1288, 721 cm⁻¹; HRMS (ESI) m/z 513.2239 [(M+H)⁺]; calculated for [C₂₇H₃₃N₂O₈]⁺: 513.2231.

Cycloheptane (1.92): In a round-bottom flask, tricyclic allylic alcohol 1.91 (0.75 g, 2.28 mmol) was dissolved in MeOH (38 mL) and sparged under a nitrogen atmosphere for 5 minutes. 10% Pd on activated carbon (262 mg) was added and the mixture was sparged under a hydrogen atmosphere for 1 minute. The reaction mixture was placed under a hydrogen atmosphere (1 atm. balloon) and stirred at rt for 12 h until TLC indicated complete consumption of the starting material and finally sparged with nitrogen for 5 minutes. The reaction mixture was filtered through a pad of celite and washed with MeOH (3 X 5 mL). The filtrate was concentrated under vacuum to provide tricyclic hydroxyl-ester 1.92 as the major diastereomer (8:1 dr) in 94% yield (712 mg) as a colorless viscous oil which was directly used in the next step without purification. Rf 0.38 (2:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 4.14 (m, 2H), 3.87 (s, 3H), 3.73 (m, 1H), 3.31 (q, J = 8.0 Hz, 1H), 3.24 (d, J = 13.4 Hz, 1H), 2.92 (dd, J = 13.6, 6.7 Hz, 1H), 2.79 (dd, J = 15.6, 6.8 Hz, 1H), 2.66 (dd, J = 15.6, 8.6 Hz, 1H), 2.28 (br, 1H), 2.12 (br, 1H), 1.88 (m, 2H), 1.63-1.53 (m, 2H), 1.31-1.27 (m, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.20 (m, 1H), 0.61-0.50 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.42, 161.32, 156.97, 134.98, 131.29, 106.36, 73.13, 60.56, 53.59, 50.50, 47.92, 42.10, 39.68, 36.14, 35.86, 29.11, 26.78, 24.77, 24.08, 14.18; IR (film) νmax 3403, 2934, 2861, 2359, 1733, 1594, 1475, 1425, 1299, 1159, 1034, 990, 821 cm⁻¹; HRMS (FAB) m/z 334.2017 [(M+H)⁺]; calculated for [C₁₀H₂₆NO₄]⁺: 334.2018.
Cycloheptane (1.92): In a round-bottom flask, tricyclic alcohol 1.91 (3.00 g, 9.06 mmol) was dissolved in MeOH (180 mL) and sparged under a nitrogen atmosphere for 5 minutes. 10% Pd on activated carbon (500 mg) was added and the mixture was sparged under a hydrogen atmosphere for 1 minute. The reaction mixture was placed under a hydrogen atmosphere (1 atm. balloon) and stirred rapidly at rt for 24 h until TLC indicated complete consumption of the starting material. The reaction mixture was filtered through a pad of celite and the solids washed with MeOH (2 x 100 mL). The filtrate was concentrated under vacuum to provide a colorless oil. The crude product was purified by flash chromatography (2:1 hexanes/EtOAc) to provide 2.85 g of 1.92 (major diastereomer, 8:1 dr) as a white solid. Recrystallization of the mixture from hexanes (350 mL) provided 1.80 g (60% yield) of 1.92 as thin white needles. 1H NMR (500 MHz, CDCl$_3$) δ 7.27 (d, $J = 8.5.4$ Hz, 1H), 6.50 (d, $J = 8.5$ Hz, 1H), 4.14 (m, 2H), 3.87 (s, 3H), 3.73 (m, 1H), 3.31 (q, $J = 8.0$ Hz, 1H), 3.24 (d, $J = 13.5$ Hz, 1H), 2.92 (dd, $J = 14.0$, 7.0 Hz, 1H), 2.79 (dd, $J = 15.5$, 6.5 Hz, 1H), 2.66 (dd, $J = 15.5$, 8.5 Hz, 1H), 2.28 (br d, $J = 8.0$ Hz, 1H), 1.88 (m, 2H), 1.63-1.53 (m, 2H), 1.31-1.27 (m, 3H), 1.24 (t, $J = 7.1$ Hz, 3H), 1.20 (m, 1H), 0.61-0.50 (m, 1H); MP 105-106 °C; Enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H column, 92:8 hexanes/ethanol, 1 mL/min) t, 10.3 min (major), 16.9 min (minor); 99% ee. See previous procedure for full characterization data.

Tricyclic hydroxy-ester (1.100): The title compound was obtained according to the procedure described for racemic 1.92 as a white solid (92% yield) and as a single diastereomer. Rf 0.66 (2:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl$_3$) δ 7.26 (d, $J = 8.4$ Hz, 1H), 6.50 (d, $J = 8.4$ Hz, 1H), 4.11 (m, 2H), 3.86 (s, 3H), 3.74 (td, $J = 11.8$, 4.4 Hz, 1H), 3.32-3.19 (m, 2H), 2.91 (m, 1H), 2.77 (dd, $J = 15.6$, 6.9 Hz, 1H), 2.64 (dd, $J = 15.7$, 8.5 Hz, 1H), 2.23 (m, 1H), 1.95-1.86 (m, 1H), 1.83 (d, $J = 13.6$ Hz, 1H), 1.53 (d, $J = 12.3$ Hz, 1H), 1.49-1.39 (m, 1H), 1.28 (d, $J = 13.6$ Hz, 1H), 1.22 (t, $J = 7.0$ Hz, 3H), 1.04-0.77 (m, 1H), 0.93 (m, 1H), 0.78 (d, $J = 6.5$ Hz, 3H), 0.27 (q, $J = 12.5$ Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 172.61, 161.58, 157.12, 134.66, 131.10, 106.64, 72.86, 60.61, 53.42, 50.59, 42.84, 39.80, 37.96, 36.56, 35.42, 33.66, 31.05, 26.80, 22.01, 14.23; IR (film) v_{max} 3421, 2924, 2868, 2360, 1733, 1594, 1476, 1425, 1279, 1160, 1040, 823 cm$^{-1}$; HRMS (FAB) m/z 348.2165 [(M+H)$^+$]; calculated for [C$_{20}$H$_{29}$NO$_4$]$^+$: 348.2161; MP 96-97 °C.
Tricyclic benzoate-ester (1.101): In a round-bottom flask, tricyclic hydroxyl-ester **1.100** (75 mg, 0.23 mmol) was dissolved in CH₂Cl₂ (2.0 mL). To this solution was added triethylamine (96 µL, 0.69 mmol) and DMAP (2.4 mg, 0.023 mmol) at rt. The reaction mixture was cooled to 0 °C and *m*-nitrobenzoyl chloride (63 mg, 0.34 mmol) in CH₂Cl₂ (0.3 mL) was added dropwise. The reaction mixture was allowed to warm to rt and stirred an additional 4 h. At the completion of the reaction as determined by TLC, the solvent was removed under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc) to provide 99 mg (90% yield) of **1.101** as a light yellow solid, which provided crystals suitable for X-ray crystallography. **Rf** 0.62 (4:1 hexanes/EtOAc); **¹H NMR** (500 MHz, CDCl₃) δ 8.83 (s, 1H), 8.42 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.36 (d, *J* = 7.72 Hz, 1H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 1H), 6.54 (d, *J* = 8.4 Hz, 1H), 5.15 (td, *J* = 9.2, 4.4 Hz, 1H), 3.98 (m, 2H), 3.90 (s, 3H), 3.31 (dd, *J* = 14.9, 9.6 Hz, 2H), 2.97 (dd, *J* = 13.8, 6.6 Hz, 1H), 2.80 (dd, *J* = 15.6, 6.1 Hz, 1H), 2.66 (dd, *J* = 15.5, 9.3 Hz, 1H), 2.56 (d, *J* = 10.8 Hz, 1H), 2.10 (br, s, 1H), 1.85 (d, *J* = 13.2 Hz, 1H), 1.76 (d, *J* = 12.0 Hz, 1H), 1.63 (m, 1H), 1.48 (dt, *J* = 12.8, 10.79 Hz, 1H), 1.40 (d, *J* = 13.7 Hz, 1H), 1.21 (m, 1H), 1.13 (t, *J* = 7.1 Hz, 3H), 0.87 (d, *J* = 6.5 Hz, 3H), 0.42 (m, 1H); **¹³C NMR** (125 MHz, CDCl₃) δ 172.13, 163.92, 161.96, 148.30, 135.23, 132.24, 129.54, 127.25, 124.42, 106.90, 60.43, 53.38, 42.12, 42.08, 39.88, 35.96, 35.14, 34.65, 33.38, 30.97, 21.85, 14.08; **IR** (film) *ν*max 2950, 2869, 1725, 1594, 1534, 1476, 1376, 1350, 1294, 1265, 1134, 971, 824, 720 cm⁻¹; **HRMS** (FAB) m/z 497.2286 [(M+H)⁺]; calculated for [C₂₇H₃₂N₂O₇]⁺: 497.2288; **MP** 149-150 °C.

Ketoester (1.125): A flame-dried round-bottom flask was charged with DMSO (1.53 mL, 21.6 mmol), CH₂Cl₂ (30 mL) and cooled to -78 °C. In a separate flask, trifluoroacetic anhydride (1.50 mL, 10.8 mmol) was dissolved in CH₂Cl₂ (5 mL). The trifluoroacetic anhydride solution was added dropwise to the DMSO/CH₂Cl₂ solution at -78 °C via syringe over 5 mins. After stirring for 30 mins at -78 °C, cycloheptane **1.92** (1.80 g, 5.40 mmol) in CH₂Cl₂ (20 mL) was added
dropwise over 10 mins and stirred at -78 °C for an additional 2.5 h. Triethylamine (6.02 mL, 43.2 mmol) was added dropwise and then the reaction mixture was allowed to slowly warm to rt. After stirring at rt for 3 h, the reaction mixture was diluted with CH₂Cl₂ (50 mL), poured into a separatory funnel and washed with water (80 mL). The aqueous layer was extracted with CH₂Cl₂ (2 X 50 mL). The combined organic extracts were washed with water (2 x 50 mL), saturated NaCl (50 mL), dried over MgSO₄ and concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc) to afford 1.62 g (90% yield) of **1.125** as a yellow gel. **Rf** 0.42 (4:1 hexanes/EtOAc); **¹H NMR** (500 MHz, CDCl₃) δ 7.25 (d, J = 8.5 Hz, 1H), 6.51 (d, J = 8.4 Hz, 1H), 4.10 (m, 2H), 3.86 (s, 3H), 3.41 (m, 1H), 3.20 (d, J = 13.4 Hz, 1H), 2.94 (dd, J = 13.9, 7.0 Hz, 1H), 2.73 (dd, J = 15.5, 6.9 Hz, 2H), 2.60 (dd, J = 15.5, 8.3 Hz, 1H), 2.23-2.16 (m, 3H), 1.92 (m, 1H), 1.73-1.51 (m, 4H), 1.21 (t, J = 7.1 Hz, 3H), 1.12 (m, 1H); **¹³C NMR** (125 MHz, CDCl₃) δ 213.28, 171.72, 161.83, 156.15, 135.15, 129.93, 107.15, 60.31, 53.31, 41.35, 39.53, 38.23, 36.96, 36.27, 32.07, 25.79, 25.04, 14.14; **IR** (film) νₘₙₓ 2937, 2865, 2386, 1732, 1707, 1596, 1477, 1301, 1185, 1158, 1031, 824 cm⁻¹.

Ketoester (1.125): Enantioenriched 1.125 was obtained according to the procedure described for racemic 1.125. Enantiomeric excess was determined by HPLC analysis (Chiralpak AS-H column, 90:10 hexanes/ethanol, 1 mL/min) tₘₙₓ 10.1 min (major), 21.0 min (minor): 99% ee.

See previous procedure for full characterization data.

Tricyclic enone (1.127): To a stirred solution of diisopropylamine (5.32 mL, 37.7 mmol) in THF (20 mL) at -78 °C was added n-butyllithium (2.5 M in hexanes, 14.5 mL, 36.2 mmol) dropwise over 5 min. After stirring at -78 °C for 30 mins, TMSCl (9.16 mL, 72.4 mmol) was introduced dropwise to the reaction mixture. After 10 min, ketoester 1.125 (2.40 g, 7.24 mmol) in THF (30 mL) was added to the reaction mixture at -78 °C. After stirring for 30 min, the reaction mixture was quenched with triethylamine (20 mL) at -78 °C followed by saturated aq. NaHCO₃ (50 mL). The reaction mixture was allowed to warm to rt, diluted with water (60 mL) and extracted with
Et₂O (3 X 50 mL). The combined organic extracts were dried over K₂CO₃ and concentrated under vacuum to give an oil. The crude product was used without further purification.

The crude silyl enol ether of 1.125 was dissolved in DMSO (60 mL), treated with 2,6-di-tert-butyl-4-methylpyridine (2.08 g, 10.1 mmol) and Pd(OAc)₂ (813 mg, 3.62 mmol) and placed under an atmosphere of oxygen (1 atm. balloon). The dark suspension was stirred at rt for 16 h (until TLC indicated complete consumption of starting material) and diluted with Et₂O (50 mL) and H₂O (50 mL). The aqueous layer was extracted with Et₂O (2 X 50 mL), and the combined organic layers were washed with saturated NaCl (50 mL), dried over MgSO₄ and concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexane/EtOAc) to provide the desired tricyclic enone 1.127 (1.71 g) in 72% yield as a yellow solid. Rf 0.32 (4:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 8.5 Hz, 1H), 6.86 (m, 1H), 6.54 (d, J = 8.5 Hz, 1H), 5.91 (d, J = 9.0 Hz, 1H), 4.14 (m, 2H), 3.89 (s, 3H), 3.43 (t, J = 8.0 Hz, 1H), 3.32 (m, 1H), 3.02 (m, 1H), 2.85-2.79 (m, 2H), 2.68-2.59 (m, 2H), 2.21 (m, 1H), 1.70-1.61 (m, 2H), 1.42 (m, 1H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 201.92, 171.75, 161.79, 156.20, 150.86, 134.58, 130.56, 128.27, 107.17, 60.72, 54.21, 53.41, 41.03, 39.20, 36.09, 33.21, 32.78, 26.76, 14.16; IR (film) νmax 2927, 1722, 1636, 1595, 1461, 1435, 1461, 1326, 1040, 919, 734 cm⁻¹; HRMS (FAB) m/z 330.1712 [(M+H)+; calculated for [C₁₉H₂₄NO₄]⁺: 330.1705]; MP 118-119 °C.

Tricyclic ketone (1.129): To a suspension of CuI (2.95 g, 15.5 mmol) in THF (30 mL) at 0 °C was added MeLi (1.6M in Et₂O, 19.4 mL, 31.0 mmol) and the reaction mixture turned a yellow color. After stirring the reaction mixture for 30 min at 0 °C followed by an additional 15 min at rt, the solution became colorless. The reaction mixture was cooled to -78 °C and stirred for 10 min. A solution of tricyclic enone 1.127 (1.70 g, 5.16 mmol) in THF (30 mL) was introduced dropwise to the reaction mixture over a period of 30 min at -78 °C and stirred at -78 °C for an additional 3 h (TLC showed complete consumption of the starting material). The reaction was quenched at -78 °C by addition of saturated aq. NH₄Cl (40 mL), removed from the ice bath and allowed to warm to rt. The reaction mixture was diluted with water (40 mL) and extracted with Et₂O (3 X 40 mL). The combined organic extracts were dried over MgSO₄ and concentrated under vacuum to afford 1.129 (1.78 g) in quantitative yield as a yellow oil. Without further purification, this material was taken on to the next step. ¹H-NMR and ¹³C-NMR spectral data of crude product are reported below. Rf 0.45 (4:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 8.4 Hz, 1H), 4.07 (q, J = 6.8 Hz, 2H), 3.83 (s, 3H), 3.37 (dq, J = 8.0, 3.9 Hz, 1H), 3.09 (br, 1H), 2.84 (dd, J = 14.1, 7.6 Hz, 1H), 2.63 (m, 3H), 2.49 (br, s, 1H), 2.35 (dd, J = 14.2, 5.5 Hz, 1H), 2.24 (dt, J = 11.5, 5.6 Hz, 1H), 1.89 (dd, J = 14.2, 6.0 Hz, 2H), 1.67 (d, J = 13.4 Hz, 1H), 1.52-1.46 (m, 1H), 1.17 (t, J = 7.1 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.68, 171.91, 161.82, 156.10, 137.12, 129.75, 107.26, 60.48, 53.25, 52.96, 45.81, 46.08, 41.16, 39.52, 36.23, 31.14, 30.30, 29.18, 20.42, 14.13;
IR (film) \(\nu_{\text{max}} \) 2954, 2360, 1733, 1707, 1595, 1477, 1302, 1036, 824 cm\(^{-1}\); HRMS (FAB) m/z 346.2018 [(M+H)\(^+\)]; calculated for \([C_{20}H_{28}NO_4]^+\): 346.218.

Tricyclic hydroxy-ester (1.158): Tricyclic ketone 1.129 (1.78 g, 5.16 mmol) was dissolved in MeOH (50 mL) and cooled to 0 °C. To this solution NaBH\(_4\) (196 mg, 5.16 mmol) was added portionwise over a period of 15 min and stirred at 0 °C for an additional 30 min. The reaction mixture was quenched with saturated aq. NH\(_4\)Cl (10 mL) and the solvents were removed under reduced pressure. Water (25 mL) was added to the crude mixture which was extracted with EtOAc (3 X 30 mL). The combined organic layers were dried over MgSO\(_4\) and concentrated under vacuum to afford two diastereomers (ca. 1:1) of 1.158 (1.79 g) in quantitative yield as a colorless gel. Without further purification, this material was taken on to the next step. \(^1^H\)-NMR and \(^1^H\)-NMR spectral data of the crude product are reported below. R\(_f\) 0.54 and 0.50 for two diastereomers (2:1 hexanes/EtOAc); \(^1^H\) NMR (500 MHz, CDCl\(_3\), spectrum is of a 1:1 mixture of diastereomers) \(\delta \) 7.27 (d, \(J = 8.6 \) Hz, 1H), 7.23 (d, \(J = 8.6 \) Hz, 1H), 6.47 (d, \(J = 8.4 \) Hz, 1H), 6.44 (d, \(J = 8.4 \) Hz, 1H), 4.10 (m, 4H), 3.97-3.89 (m, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.75 (br, s, 1H), 3.33 (dq, \(J = 7.3, 2.1 \) Hz, 1H), 3.25 (m, 2H), 3.10 (br, 1H), 2.83 (dd, \(J = 13.7, 6.7 \) Hz, 1H), 2.77-2.72 (m, 3H), 2.62 (dd, \(J = 15.7, 8.6 \) Hz, 1H), 2.40-2.21 (m, 5H), 1.93 (br, 2H), 1.82-1.71 (m, 6H), 1.37-1.34 (m, 2H), 1.26 (dd, \(J = 17.7, 7.1 \) Hz, 1H), 1.19 (q, \(J = 7.3 \) Hz, 6H), 1.14 (dd, \(J = 13.5, 6.0 \) Hz, 1H), 1.07 (br, d, \(J = 13.3 \) Hz, 1H), 0.94 (d, \(J = 7.0 \) Hz, 6H), 0.82 (m, 1H); \(^1^C\) NMR (125 MHz, CDCl\(_3\), spectrum is of a 1:1 mixture of diastereomers) \(\delta \) 172.76, 172.50, 161.53, 161.47, 157.99, 157.08, 154.16, 134.16, 134.02, 131.02, 130.25, 106.56, 106.46, 68.44, 60.56, 60.42, 53.30, 53.28, 53.24, 48.12, 47.18, 42.48, 41.52, 41.51, 39.76, 39.71, 36.18, 36.13, 34.64, 30.87, 30.48, 30.47, 30.45, 30.07, 27.47, 26.03, 26.02, 22.17, 19.31, 14.15, 14.14; IR (film) \(\nu_{\text{max}} \) 3423, 2921, 2360, 2346, 1733, 1594, 1476, 1424, 1299, 1188, 1038, 822 cm\(^{-1}\); HRMS (FAB) m/z 348.2178 [(M+H)\(^+\)]; calculated for \([C_{20}H_{30}NO_4]^+\): 348.2175.

MOM-protected hydroxy-ester (1.130): The diastereomeric mixture (ca. 1:1) of tricyclic hydroxy-ester 1.158 (1.79 g, 5.16 mmol) was dissolved in CH\(_2\)Cl\(_2\) (52 mL). To this solution at 0 °C was added N,N-diisopropylethylamine (DIEPA, 5.36 mL, 31.0 mmol) and chloromethyl methyl ether\(^{80}\) (MOMCl, 6M in MeOAc, 2.58 mL, 15.48 mmol). The reaction mixture was
allowed to warm to rt and stirred for 8 h. At the completion of the reaction (as indicated by TLC), water (80 mL) was added to the reaction mixture which was transferred to a separatory funnel. The CH₂Cl₂ layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 40 mL). The combined organic extracts were dried over MgSO₄ and concentrated under vacuum to afford 1.98 g of two diastereomers (ca. 1:1) of 1.130 (98% yield) as a light yellow gel. Without further purification, this material was taken on to the next step. An analytical sample was obtained by flash chromatography (8:1 hexane/EtOAc) to afford a colorless gel. Rf 0.40 and 0.39 for two diastereomers (8:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃, spectrum is of a 1:1 mixture of diastereomers) δ 7.24 (t, J = 9.0, Hz, 2H), 6.47 (t, J = 8.6 Hz, 2H), 4.67 (m, 2H), 4.58 (m, 2H), 4.10 (m, 4H), 3.85 (s, 3H), 3.84 (s, 3H), 3.83-3.75 (m, 2H), 3.45 (br, 1H), 3.35 (m, 1H), 3.34 (s, 6H), 3.31-3.22 (m, 2H), 2.98 (br, s, 2H), 2.84 (dd, J = 13.7, 6.7 Hz, 1H), 2.77 (dt, J = 15.6, 6.9 Hz, 2H), 2.61 (td, J = 15.7, 8.8 Hz, 2H), 2.46 (br, s, 1H), 2.34 (br, 1H), 2.10 (m, 1H), 2.01 (m, 2H), 1.76-1.60 (m, 5H), 1.48-1.25 (m, 4H), 1.21 (t, J = 7.0 Hz, 6H), 1.18-1.04 (m, 2H), 1.00 (d, J = 6.3 Hz, 3H), 0.97 (d, J = 7.3 Hz, 3H), 0.91 (m, 1H); ¹³C NMR (125 MHz, CDCl₃, spectrum is of a 1:1 mixture of diastereomers) δ 172.32, 172.30, 161.47, 161.39, 157.74, 157.02, 140.08, 131.03, 130.15, 106.55, 106.51, 94.82, 94.32, 77.98, 73.56, 60.41, 60.39, 55.32, 55.23, 53.21, 53.18, 46.44, 45.64, 42.52, 41.88, 39.90, 39.74, 36.19, 36.08, 33.84, 32.62, 30.62, 29.94, 27.38, 26.61, 21.64, 19.25, 14.16; IR (film) νmax 2929, 1735, 1595, 1477, 1299, 1150, 1102, 1010, 915, 825 cm⁻¹; HRMS (FAB) m/z 392.2444 [(M+H)⁺; calculated for [C₂₂H₃₄NO₅]⁺: 392.2437].

MOM-protected hydroxy-ester (1.120): The title compound was obtained according to the procedure described for 1.130. The crude material was purified by flash chromatography on silica gel (8:1 hexane/EtOAc) to afford 1.120 as a colorless viscous oil (97% yield). Rf 0.79 (4:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 8.4 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 4.67 (d, J = 6.7 Hz, 1H), 4.63 (d, J = 6.7 Hz, 1H), 4.12 (q, J = 7.1, Hz, 2H), 3.9 (s, 3H), 3.63 (td, J = 12.0, 4.4 Hz, 1H), 3.36 (s, 3H), 3.37-3.22 (m, 2H), 2.90 (dd, J = 13.7, 6.7 Hz, 1H), 2.77 (dd, J = 15.5, 6.7 Hz, 1H), 2.63 (dd, J = 15.5, 8.7 Hz, 1H), 2.33 (d, J = 8.8 Hz, 1H), 1.90 (m, 1H), 1.80 (br, d, J = 13.7 Hz, 1H), 1.58 (br, d, J = 12.38 Hz, 1H), 1.46-1.44 (m, 1H), 1.29 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 0.92 (q, J = 12.2 Hz, 1H), 0.80 (d, J = 6.5 Hz, 3H), 0.31 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.37, 161.49, 156.85, 131.09, 106.39, 94.31, 77.52, 60.47, 60.36, 55.27, 53.35, 42.41, 39.81, 36.28, 35.74, 35.32, 33.98, 31.13, 27.88, 22.02, 14.21; IR (film) νmax 2948, 2882, 1735, 1594, 1476, 1425, 1302, 1149, 1104, 1012, 915, 825 cm⁻¹; HRMS (FAB) m/z 392.2444 [(M+H)⁺; calculated for [C₂₂H₃₄NO₅]⁺: 392.2437].
MOM-protected hydroxy-acid (1.159): To a solution of MOM-protected hydroxy-ester 1.130 (1.00 g, 2.55 mmol) in THF (25 mL) and H₂O (12.5 mL) was added LiOH•H₂O (858 mg, 20.4 mmol). The reaction mixture was heated at reflux for 12 h. The reaction mixture was allowed to cool to rt and the THF layer was separated. The aqueous layer was acidified with 6N HCl at 0 °C to pH = 2.0 and extracted with CH₂Cl₂ (2 X 25 mL). The combined organic extracts were dried over MgSO₄ and concentrated under vacuum to afford a diastereomeric mixture (ca. 1:1) of 1.159 (860 mg, 93% yield) as a colorless gel. Without further purification, this material was carried on to the next step. Rf 0.10 for two diastereomers (2:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃, spectrum is of a 1:1 mixture of diastereomers) δ 10.32 (br, 2H), 7.28 (br, s, 2H), 6.50 (br, s, 2H), 4.70 (br, s, 2H), 4.61 (br, s, 2H), 3.87 (s, 6H), 3.77 (br, s, 2H), 3.47 (br, s, 2H), 3.37 (s, 3H), 3.36 (s, 3H), 3.35-3.19 (m, 2H), 3.11-2.63 (m, 6H), 2.57-2.30 (m, 2H), 2.26-1.90 (m, 5H), 1.88-1.55 (m, 4H), 1.48-1.29 (m, 3H), 1.28-1.09 (m, 4H), 1.02 (d, J = 5.60 Hz, 3H), 0.98 (d, J = 5.60 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃, spectrum is of a 1:1 mixture of diastereomers) δ 161.60, 161.59, 157.88, 157.16, 140.72, 134.28, 130.87, 130.02, 106.48, 94.89, 94.83, 94.37, 94.33, 78.12, 73.83, 67.91, 55.39, 55.26, 53.44, 53.40, 42.51, 42.48, 41.84, 41.76, 36.15, 36.08, 34.52, 34.21, 32.64, 30.61, 30.59, 29.94, 29.68, 27.40, 26.64, 26.62, 25.58, 21.75, 21.71, 19.29; IR (film) νmax 3405, 2928, 1709, 1644, 1594, 1476, 1299, 1278, 1149, 1039, 915, 820 cm⁻¹; HRMS (FAB) m/z 364.2116 [(M+H)⁺; calculated for [C₂₀H₃₀NO₅]⁺: 364.2111].

MOM-protected hydroxy-acid (1.162): The title compound was obtained according to the procedure described for 1.159 as a colorless viscous oil (94% yield). Rf 0.15 (2:1 hexanes/EtOAc); IR (film) νmax 3404, 2926, 2898, 2360, 1723, 1635, 1460, 1326, 1304, 1199, 1040, 921, 829 cm⁻¹; HRMS (FAB) m/z 364.2116 [(M+H)⁺; calculated for [C₂₀H₃₀NO₅]⁺: 364.2111].
Cbz-protected amine (1.131): A flame-dried two-necked round-bottom flask fitted with a reflux condenser was charged with MOM-protected hydroxy-acid 1.159 (860 mg, 2.36 mmol) and toluene (24 mL). To this solution was added diphenyl phosphoryl azide (DPPA, 1.53 mL, 7.09 mmol) followed by triethylamine (1.65 mL, 11.8 mmol) at rt and then the reaction mixture was heated at reflux for 1 h. The reaction mixture was cooled to rt and benzyl alcohol (490 µL, 4.73 mmol) was added. The reaction mixture was heated at reflux with vigorous stirring for 18 h. After allowing the reaction to cool to rt, the solvent was removed under reduced pressure and the residue purified by flash chromatography (4:1 hexanes/EtOAc) to provide 760 mg of a diastereomeric mixture (ca. 1:1) of 1.131 (69% yield) as a yellow oil. Rf 0.39 and 0.36 for the two diastereomers (4:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3, spectrum is of a 1:1 mixture of diastereomers, major rotamer) δ 7.34 (m, 10H), 7.27 (m, 2H), 6.51 (m, 2H), 5.09 (br, s, 4H), 4.91 (br, s, 1H, NH), 4.83 (br, s, 1H, NH), 4.72 (d, J = 6.8 Hz, 1H), 4.62 (d, 1H), 3.88 (s, 6H), 3.84-3.76 (m, 1H), 3.71-3.41 (m, 4H), 3.31 (s, 3H), 3.15 (s, 3H), 3.11 (m, 1H), 2.97 (m, 1H), 2.89 (m, 1H), 2.84 (m, 1H), 2.41 (br, s, 1H), 2.24 (br, 2H), 2.13 (br, 1H), 2.00 (m, 2H), 1.86 (m, 2H), 1.74-1.62 (m, 4H), 1.44 (m, 3H), 1.32-1.22 (m, 4H), 1.12 (m, 2H), 1.00 (d, J = 7.3 Hz, 6H); 13C NMR (125 MHz, CDCl3, spectrum is of a 1:1 mixture of diastereomers, major rotamer) δ 161.69, 161.67, 161.53, 158.35, 158.22, 156.28, 136.41, 128.50, 128.45, 128.13, 128.08, 128.6, 128.04, 128.02, 107.02, 106.86, 94.98, 94.88, 78.09, 74.35, 66.75, 55.48, 55.35, 55.33, 53.29, 44.85, 44.80, 44.78, 44.76, 42.35, 32.73, 30.24, 29.68, 27.38, 26.84, 26.56, 19.24; IR (film) vmax 3346, 2926, 1720, 1594, 1530, 1476, 1300, 1256, 1144, 1039, 915, 737 cm⁻¹; HRMS (FAB) m/z 469.2695 [(M+H)+; calculated for [C27H37N2O3]+: 469.2702].

Cbz-protected amine (1.121): The title compound was obtained according to the procedure described for 1.131. The crude material was purified by flash chromatography on silica gel (4:1 hexane/EtOAc) to afford 1.121 as a yellow viscous oil (69% yield). Rf 0.44 (4:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3, major rotamer) δ 7.30 (m, 6H), 6.53 (d, J = 8.4 Hz, 1H), 5.16-5.04 (m, 2H), 4.82 (s, 1H, NH), 4.65 (br, s, 2H), 3.89 (s, 3H), 3.66-3.54 (m, 2H), 3.54-3.44 (m, 1H), 3.35 (s, 3H), 3.12 (br, d, J = 13.5 Hz, 1H), 2.96-2.78 (m, 2H), 2.22 (br, 1H), 1.90 (br, m, 2H), 1.61 (br, d, J = 11.4 Hz, 2H), 1.45 (br, 1H), 1.28 (m, 1H), 0.94 (m, 1H), 0.82 (d, J = 6.5 Hz, 3H), 0.35 (m, 1H); 13C NMR (125 MHz, CDCl3, major rotamer) δ 161.69, 156.28, 136.41, 129.83, 128.51, 128.49, 128.14, 120.12, 106.76, 94.90, 78.25, 66.74, 55.33, 53.38, 44.81, 44.77, 42.20, 42.15, 40.24, 40.22, 40.12, 35.77, 35.50, 31.04, 22.01; IR (film) vmax 3424, 2948, 1701, 1647, 1594, 1475, 1254, 1143, 1040, 968, 736 cm⁻¹; HRMS (FAB) m/z 469.2695 [(M+H)+; calculated for [C27H37N2O3]+: 469.2702].
Alcohol (1.160): A round-bottom flask fitted with a reflux condenser was charged with MOM-protected alcohol 1.131 (760 mg, 1.62 mmol) in MeOH (20 mL). To this solution was added conc. HCl (760 µL) and the resultant reaction mixture was heated at reflux for 6 h. The reaction mixture was allowed to cool to rt and the solvent was removed under reduced pressure. The residue was neutralized with saturated aq. NaHCO₃ (25 mL) which was extracted with EtOAc (3 X 25 mL). The combined organic layers were dried over MgSO₄ and concentrated under vacuum to afford a diastereomeric mixture (ca. 1:1) of 1.160 (688 mg, >99% yield) as a light yellow oil. Without further purification, this material was taken on to the next step. An analytical sample was obtained by flash chromatography (1:2 hexane/EtOAc) to afford a colorless gel. Rf 0.38 & 0.36 for two diastereomers (1:1 hexanes/EtOAc); H NMR (500 MHz, CDCl₃, spectrum consists of a 1:1 mixture of diastereomers, major rotamer) δ 7.34-7.27 (m, 10H), 7.26 (m, 2H), 6.51 (d, J = 8.3 Hz, 1H), 6.48 (d, J = 8.3 Hz, 1H), 5.09 (m, 4H), 4.92 (t, J = 5.4 Hz, 1H), 4.00-3.92 (m, 1H), 3.88 (s, 6H), 3.68-3.55 (m, 2H), 3.54-3.37 (m, 2H), 3.29-3.02 (m, 3H), 3.01-2.77 (m, 4H), 2.64 (br, 1H), 2.63 (d, J = 9.3 Hz, 1H), 2.31-2.06 (m, 3H), 2.04-1.90 (m, 1H), 1.87 (br, d, J = 13.6 Hz, 2H), 1.80-1.67 (m, 3H), 1.63-1.56 (2H), 1.44-1.35 (m, 2H), 1.35-1.27 (m, 2H), 1.27-1.16 (m, 1H), 1.12 (dd, J = 12.0, 4.5 Hz, 2H), 0.99 (d, J = 7.4 Hz, 3H), 0.97 (d, J = 7.1 Hz, 3H); C NMR (125 MHz, CDCl₃, spectrum consists of a 1:1 mixture of diastereomers, major rotamer) δ 161.74, 161.69, 158.25, 157.30, 156.56, 156.38, 136.64, 136.42, 128.75, 128.74, 128.50, 128.45, 128.31, 128.11, 128.02, 128.00, 127.93, 127.94, 107.00, 106.83, 68.62, 66.84, 66.76, 66.57, 53.41, 53.34, 47.17, 45.58, 44.84, 44.80, 42.30, 41.42, 35.07, 30.82, 30.30, 29.68, 27.50, 26.92, 26.84, 23.89, 23.88, 22.22, 19.28, 19.25; IR (film) νmax 3423, 2924, 1697, 1595, 1540, 1475, 1268, 1140, 1036, 822, 736 cm⁻¹; HRMS (FAB) m/z 425.2449 [(M+H)+; calculated for [C₂₅H₃₃N₂O₄]⁺: 425.2440].

Alcohol (1.162): The title compound was obtained according to the procedure described for 1.160. Without further purification, this material was carried on to the next step. An analytical sample was obtained by flash chromatography (1:1 hexane/EtOAc) to afford a colorless gel. Rf 0.38 and 0.36 for two diastereomers (1:1 hexanes/EtOAc); H NMR (500 MHz, CDCl₃, major rotamer) δ 7.39-7.29 (m, 4H), 7.26 (m, 1H), 7.18 (m, 1H), 6.53 (d, J = 8.3 Hz, 1H), 5.17-5.03 (m, 2H), 4.90 (t, J = 5.1 Hz, 1H, NH), 3.89 (s, 3H), 3.75 (td, J = 11.3, 4.3 Hz, 1H), 3.64 (m, 1H), 3.52 (m, 1H), 3.12 (br, d, J = 13.3 Hz, 1H), 2.98-2.78 (m, 2H), 2.13 (br, d, J = 9.6 Hz, 1H), 1.90 (br, d, J = 13.0 Hz, 2H), 1.59 (m, 1H), 1.49-1.40 (m, 1H), 1.31 (br, d, J = 13.5 Hz, 1H), 1.18 (m, 1H), 0.98-0.85 (m, 1H), 0.81 (d, J = 6.5 Hz, 3H), 0.32 (m, 1H); C NMR (125 MHz, CDCl₃,
major rotamer) δ 161.69, 157.19, 156.36, 150.70, 136.41, 129.73, 128.51, 128.12, 125.14, 120.32, 120.28, 106.73, 72.89, 66.76, 53.41, 53.39, 44.85, 44.84, 42.14, 40.15, 38.27, 35.51, 33.91, 30.96, 21.95; IR (film) ν_{max} 3415, 2948, 2868, 1699, 1594, 1540, 1475, 1272, 1029, 936, 824 cm⁻¹; HRMS (EI) m/z 424.2371 [(M⁺); calculated for [C_{25}H_{32}N_{2}O_{4}]⁺: 424.2362.

Amino ketone (1.59): A flame-dried round-bottom flask was charged with DMSO (74 μL, 1.05 mmol), CH₂Cl₂ (2 mL) and cooled to -78 °C. To this solution, oxalyl chloride (45 μL, 0.52 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise via syringe over 2 min. After stirring for 20 min at -78 °C, alcohol 1.160 (89 mg, 0.21 mmol) in CH₂Cl₂ (2 mL) was added dropwise to the reaction mixture over 2 min and stirred at -78 °C for 2.5 h. Triethylamine (5.02 mL, 36.0 mmol) was added to the reaction mixture dropwise and it was slowly allowed to warm to rt. After stirring at rt for 2.5 h (TLC showed complete consumption of starting material), the reaction mixture was poured into a separatory funnel and washed with water (1 X 8 mL). The aqueous layer was extracted with CH₂Cl₂ (2 X 8 mL). The combined organic extracts were dried over MgSO₄ and concentrated under vacuum. The crude product was purified by flash chromatography (2:1 hexanes/EtOAc) to afford 79 mg (90% yield) of 1.59 as a light yellow foam. Rᵣ 0.48 (2:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃, major rotamer) δ 7.36 (br, 2H), 7.33 (br, 3H), 7.32 (d, J = 8.2 Hz, 1H), 6.52 (d, J = 8.3 Hz, 1H), 5.10 (m, 2H), 3.88 (s, 3H), 3.46 (m, 1H), 3.25 (m, 1H), 3.02 (m, 1H), 2.87 (br, s, 2H), 2.66 (br, s, 1H), 2.44 (dd, J = 14.4, 5.0 Hz, 2H), 2.23 (br, 1H), 1.98 (dd, J = 14.2, 8.7 Hz, 1H), 1.80-1.63 (m, 2H), 1.62-1.50 (br, 1H), 1.27 (m, 1H), 1.00 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃, major rotamer) δ 213.68, 162.07, 156.74, 156.42, 136.57, 128.47, 128.41, 128.11, 128.09, 128.05, 107.54, 66.61, 53.43, 53.37, 44.16, 41.68, 41.64, 41.12, 29.30, 29.01, 21.20, 21.16; IR (film) ν_{max} 3347, 2952, 2862, 1708, 1595, 1535, 1476, 1256, 1024, 824, 736 cm⁻¹; HRMS (FAB) m/z 423.2287 [(M+H)⁺; calculated for [C_{25}H_{32}N_{2}O_{4}]⁺: 423.2284.

Amino ketone (1.122): The title compound was obtained according to the procedure described for 1.59. The crude material was purified by flash chromatography (2:1 hexane/EtOAc) to afford 1.122 as a light yellow foam (86% yield). Rᵣ 0.46 (2:1 hexanes/EtOAc); ¹H NMR (500 MHz,
CDCl$_3$, major rotamer) δ 7.31 (m, 5H), 7.26 (m, 1H), 6.53 (d, $J = 8.3$ Hz, 1H), 5.16 (br, s, 1H, NH), 5.12-5.01 (m, 2H), 3.87 (s, 3H), 3.52 (m, 1H), 3.42 (td, $J = 13.3, 6.7, 6.7$ Hz, 1H), 3.07 (br, d, $J = 13.4$ Hz, 1H), 2.98 (m, 1H), 2.89 (dd, $J = 13.7, 7.4$ Hz, 1H), 2.59 (br, d, $J = 8.4$ Hz, 1H), 2.14 (br, d, $J = 12.5$ Hz, 2H), 1.89 (t, $J = 13.5$ Hz, 1H), 1.76 (m, 3H), 1.56 (m, 1H), 0.90 (d, $J = 6.3$ Hz, 3H), 0.80 (m, 1H); 13C NMR (125 MHz, CDCl$_3$, major rotamer) δ 213.51, 161.95, 156.45, 156.21, 136.36, 129.78, 128.49, 128.13, 128.02, 120.08, 107.30, 66.75, 53.38, 53.34, 46.49, 44.48, 41.00, 40.11, 36.02, 34.22, 32.90, 29.33, 22.22; IR (film) ν_{max} 3338, 2952, 2844, 1708, 1595, 1537, 1476, 1305, 1256, 1042, 824, 736 cm$^{-1}$; HRMS (FAB) m/z 423.2280 [(M+H)$^+$; calculated for [C$_{25}$H$_{31}$N$_2$O$_4$]$^+$: 423.2284].

Tetracyclic amine (1.57): Amino ketone 1.59 (79 mg, 0.19 mmol) was dissolved in EtOAc (8 mL) and sparged with nitrogen for 5 min. 10% Pd on activated carbon (24 mg) was added and the mixture was sparged with hydrogen and placed under a hydrogen atmosphere (1 atm. balloon). The reaction mixture was stirred at rt for 24 h then sparged with nitrogen. The reaction mixture was filtered through a pad of celite, washed with EtOAc (15 mL), and concentrated under vacuum. Complete conversion to tetracycle 1.57 was often achieved under these hydrogenation conditions.

If conversion to tetracycle 1.57 was not complete after hydrogenation conditions based on NMR, the residue was dissolved in MeOH (10 mL), cooled to 0 °C and NaBH$_4$ (21 mg, 0.55 mmol) was added. After stirring for 2 h, saturated aq. NH$_4$Cl (2 mL) was added to the reaction mixture then the solvent was removed under vacuum. 1 N NaOH (5 mL) was added to the crude residue which was extracted with CH$_2$Cl$_2$ (3 X 10 mL). The combined organic extracts were dried over MgSO$_4$ and concentrated under vacuum to provide 47 mg (92% yield) of tetracyclic amine 1.57 as a white solid. This material was used without further purification in the next step. 1H-NMR and 13C-NMR spectral data of the crude product (>95 % pure) are reported here. R$_f$ 0.30 (5 % MeOH in CH$_2$Cl$_2$); 1H NMR (500 MHz, CDCl$_3$) δ 7.22 (d, $J = 8.0$ Hz, 1H), 6.42 (d, $J = 8.0$ Hz, 1H), 4.63 (m, 1H), 3.89 (s, 3H), 3.24-3.17 (m, 2H), 3.03 (br, s, 1H), 2.78 (dd, $J = 15.5, 4.5$ Hz, 1H), 2.66 (br, 1H), 2.13-2.01 (m, 3H), 1.85 (dd, $J = 13.5, 1.5$ Hz, 1H), 1.80 (br, 1H), 1.72 (m, 1H), 1.68 (m, 1H), 1.37-1.23 (m, 2H), 0.88 (d, $J = 6.5$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 161.29, 158.89, 141.20, 134.33, 106.17, 57.13, 54.25, 53.10, 46.31, 43.11, 42.40, 38.82, 37.49, 35.16, 34.39, 22.74, 21.55; IR (film) ν_{max} 3409, 2911, 2886, 1594, 1576, 1475, 1425, 1308, 1257, 1035, 820 cm$^{-1}$; HRMS (ESI) m/z 272.1884 [(M)$^+$; calculated for [C$_{17}$H$_{24}$N$_2$O]$^+$: 272.1886]; MP 74-75 °C.
Tetracyclic amine (1.123): The title compound was obtained according to the procedure described for 1.57 in 93% yield as a white solid. This material was used without further purification in the next step. 1H-NMR and 13C-NMR spectral data of the product (>95 % pure) are reported here. R$_f$ 0.26 (5 % MeOH in CH$_2$Cl$_2$); 1H NMR (500 MHz, CDCl$_3$) δ 7.29 (d, $J = 8.3$ Hz, 1H), 6.51 (d, $J = 8.3$ Hz, 1H), 3.89 (s, 3H), 3.49 (dd, $J = 15.6, 8.9$ Hz, 1H), 3.24 (dd, $J = 15.6, 4.8$ Hz, 1H), 3.12 (m, 1H), 3.09-3.02 (m, 2H), 2.80 (br, s, 1H), 2.27 (dd, $J = 16.1, 8.9$ Hz, 1H), 2.16-2.02 (m, 1H), 2.00-1.90 (m, 2H), 1.86-1.66 (m, 2H), 1.23 (m, 2H), 1.11-1.01 (m, 1H), 0.94 (d, $J = 6.6$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 161.16, 157.67, 141.43, 131.28, 107.23, 55.38, 55.12, 53.19, 46.57, 38.77, 38.64, 37.30, 35.73, 32.29, 32.14, 26.30, 23.70; IR (film) v_{max} 2918, 2885, 1595, 1475, 1424, 1305, 1247, 1036, 820 cm$^{-1}$; MS (FAB) m/z 273 [(M+H)$^+$ for [C$_{17}$H$_{24}$N$_2$O$^+$]; MP 86-87 °C.

N-Chloro tetracyclic amine (1.132): A round-bottom flask was charged with tetracyclic amine 1.57 (42.8 mg, 0.157 mmol) in CH$_2$Cl$_2$ (3.2 mL) and cooled to 0 °C. To this solution was added N-chlorosuccinimide (NCS, 41.9 mg, 0.314 mmol). The reaction mixture was allowed to warm to rt and stirred for 6 h. The solvent was removed under vacuum and the resultant residue was purified by flash chromatography (5% Et$_2$O in CH$_2$Cl$_2$) to afford 39.0 mg (80% yield) of 1.132 as a white solid. R$_f$ 0.82 (8:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl$_3$) δ 7.20 (d, $J = 8.2$ Hz, 1H), 6.44 (d, $J = 8.2$ Hz, 1H), 4.38 (m, 1H), 3.89 (s, 3H), 3.71 (d, $J = 10.7$ Hz, 1H), 3.37 (dd, $J = 10.7, 4.8$ Hz, 1H), 3.00 (d, $J = 2.6$ Hz, 1H), 2.92 (t, $J = 4.7$ Hz, 1H), 2.79 (dd, $J = 15.3, 3.6$ Hz, 1H), 2.55-2.45 (m, 1H), 2.17 (br, s, 1H), 2.10-2.02 (m, 3H), 1.76 (dd, $J = 13.5, 1.4$ Hz, 2H), 1.29 (dt, $J = 12.6, 3.5$ Hz, 1H), 1.12 (dd, $J = 14.4, 12.6, 3.5$ Hz, 1H), 0.92 (d, $J = 6.5$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 161.64, 158.61, 140.97, 132.36, 106.49, 70.99, 70.51, 53.17, 45.86, 43.29, 42.96, 42.17, 39.87, 34.76, 34.40, 22.43, 21.23; IR (film) v_{max} 2948, 2917, 2889, 1597, 1574, 1476, 1425, 1309, 1253, 1036, 822 cm$^{-1}$; HRMS (ESI) m/z 307.1581 [(M+H)$^+$; calculated for [C$_{17}$H$_{24}$ClN$_2$O$^+$]: 307.1577]; MP 114-115 °C.
N-Nitroso tetracyclic amine (1.138): A round-bottom flask was charged with tetracyclic amine 1.57 (8 mg, 0.029 mmol) and pyridine (0.98 mL) and cooled to 0 °C. Into this solution was bubbled freshly prepared NOCl for 10 min. The reaction mixture was a deep yellow color after 2 h and was allowed to warm to rt and stirred for an additional 4 h. The solvent was removed under vacuum and water (10 mL) was added which was extracted with CH2Cl2 (2 X 10 mL). The combined organic extracts were dried over MgSO4 and concentrated under vacuum to provide N-Nitroso tetracyclic amine 1.138 (8.7 mg) in 98% yield as a yellow gel. 1H-NMR and 13C-NMR spectral data of the crude product (>95% pure) are reported here. Rf 0.71 (8:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.21 (d, J = 8.2 Hz, 1H), 6.42 (d, J = 8.2 Hz, 1H), 5.20 (d, J = 14.8 Hz, 1H), 4.11 (s, 1H), 3.84 (s, 3H), 3.36-3.25 (m, 1H), 3.05 (m, 1H), 3.03-2.96 (m, 2H), 2.84 (dd, J = 14.8, 6.5 Hz, 1H), 2.68 (dd, J = 16.1, 3.3 Hz, 1H), 2.28-2.09 (m, 3H), 1.98 (d, J = 12.9 Hz, 1H), 1.83 (d, J = 12.9 Hz, 1H), 1.55-1.38 (m, 2H), 0.96 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 161.72, 156.75, 140.81, 132.22, 106.97, 60.94, 53.36, 44.36, 42.86, 42.63, 38.63, 37.82, 36.16, 34.42, 33.69, 22.41, 21.45; IR (film) νmax 3427, 2921, 2894, 1598, 1477, 1423, 1310, 1255, 1201, 1032, 826 cm⁻¹; HRMS (FAB) m/z 302.1869 [(M+H)+; calculated for [C17H24N3O2]+: 302.1869].

Boc-protected tetracyclic amine (1.124): A round-bottom flask was charged with tetracyclic amine 1.123 (116 mg, 0.426 mmol) and triethylamine (178 μL, 1.28 mmol) in CH2Cl2 (8.5 mL) and cooled to 0 °C. To this solution was added di-tert-butyl dicarbonate ((Boc)2O, 147 μL, 0.639 mmol). The reaction mixture was allowed to warm to rt and stirred for 7 h. The solvent was removed under vacuum and the crude residue was purified by flash chromatography (8:1 hexanes/EtOAc) to afford 143 mg (90% yield) of 1.124 as a white solid, which provided crystals suitable for X-ray crystallography. Rf 0.58 (8:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.21 (d, J = 8.1 Hz, 1H), 6.45 (d, J = 8.1 Hz, 1H), 4.34 (m, 2H), 3.88 (s, 3H), 3.58 (t, J = 14.9 Hz, 1H), 3.17 (m, 2H), 2.91 (dd, J = 15.9, 3.6 Hz, 1H), 2.37 (br, s, 1H), 2.22 (td, J = 14.2, 8.8 Hz, 1H), 2.10 (ddd, J = 13.2, 8.5, 3.9 Hz, 1H), 1.97 (ddd, J = 13.0, 7.6, 5.0 Hz, 1H), 1.86 (m, 1H), 1.72-1.57 (m, 1H), 1.53 (m, 2H), 1.48 (s, 9H), 0.99 (d, J = 6.6 Hz, 3H), 0.98 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 161.66, 156.60, 155.58, 140.06, 132.74, 106.97, 79.32, 53.27, 51.87, 49.12, 40.81, 39.32, 35.77, 34.32, 32.68, 31.34, 29.41, 28.52, 25.66, 23.46; IR (film) νmax 2923, 2855, 2360, 2324, 1690, 1595, 1476, 1420, 1305, 1261, 1162, 1048, 824 cm⁻¹; HRMS (FAB) m/z 373.2491 [(M+H)+; calculated for [C22H33N2O3]+: 373.2491]; MP 99-100 °C.
Boc protected tetracyclic amine (1.141): The title compound was obtained according to the procedure described for 1.124. The crude material was purified by flash chromatography (8:1 hexane/EtOAc) to afford 1.141 as a colorless oil (92% yield). Rf 0.60 (2:1 hexanes/EtOAc); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.24 (d, \(J = 10.0\) Hz, 1H), 6.44 (d, \(J = 10.0\) Hz, 1H), 4.25 (br, 1H), 3.87 (s, 3H), 3.76 (m, 1H), 3.53 (br, 1H), 3.20 (dd, \(J = 17.0, 6.0\) Hz, 1H), 2.82-2.77 (m, 3 H), 2.16-2.02 (m, 3H), 1.89-1.68 (m, 3H), 1.32 (s, 9H), 1.26 (m, 1H), 1.14 (m, 1H), 0.92 (d, \(J = 8.0\) Hz, 3H); \(^1^3\)C NMR (100 MHz) \(\delta\) 161.45, 157.68, 154.98, 141.31, 132.37, 106.77, 79.37, 57.67, 53.19, 51.91, 43.85, 42.75, 39.73, 39.19, 38.99, 35.26, 35.20, 28.49, 23.11, 22.67; IR (film) \(\nu_{max}\) 2923, 2855, 2359, 1690, 1595, 1476, 1420, 1364, 1306, 1260, 1162, 1048, 824 cm\(^{-1}\); HRMS (ESI) m/z 373.2487 [(M+H)+]; calculated for [C\(_{22}\)H\(_{33}\)N\(_2\)O\(_3\)]\(^+\): 373.2491.

Methyl ether protected Lyconadin A (1.137): To a solution of 1.57 (22 mg, 0.081 mmol) in THF (4 mL) at -78 °C was added n-butyllithium (2.5M in hexanes, 96 μL, 0.24 mmol) over 2 min. After stirring the resulting bright orange solution for 30 min at -78 °C, iodine (40 mg, 0.16 mmol) was added in one portion. The reaction mixture was stirred at -78 °C for 2 h and then slowly allowed to warm to 0 °C (ca. 2 h). The color changed from bright orange to reddish amber during this time. The reaction mixture was quenched by sequential slow addition of saturated aq. NH\(_4\)Cl (1 mL), saturated aq. NaHSO\(_3\) (1 mL) and 1N NaOH (10 mL), and extracted with CH\(_2\)Cl\(_2\) (3 X 10 mL). The combined organic extracts were dried over MgSO\(_4\) and concentrated under vacuum to afford a yellow oil which was purified by flash chromatography (10 % MeOH in CH\(_2\)Cl\(_2\)) to afford 19.8 mg (90% yield) of 1.137 as a yellow oil. Rf 0.38 (10 % MeOH in CH\(_2\)Cl\(_2\)); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.20 (d, \(J = 8.0\) Hz, 1H), 6.44 (d, \(J = 8.0\) Hz, 1H), 4.20 (s, 1H), 3.90 (s, 3H), 3.39 (dd, \(J = 13.0, 3.0\) Hz, 1H), 3.26 (br, s, 1H), 2.85 (d, \(J = 13.0\) Hz, 1H), 2.65 (br, 1H), 2.13-2.08 (m, 1H), 2.00-1.95 (m, 3H), 1.91 (m, 1H), 1.81 (br, 1H), 1.68 (d, \(J = 13.5\) Hz, 1H), 1.24 (m, 1H), 1.03 (m, 1H), 0.92 (m, 1H), 0.90 (d, \(J = 6.0\) Hz, 3H); \(^1^3\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 162.67, 159.82, 134.83, 133.33, 106.17, 77.31, 68.58, 61.04, 53.53, 49.19, 46.33, 40.76, 39.82, 34.33, 33.72, 25.04, 21.85; IR (film) \(\nu_{max}\) 3408, 2922, 2825, 1601, 1476, 1422, 1310, 1270, 1111, 1033, 824 cm\(^{-1}\); HRMS (FAB) m/z 271.1805 [(M+H)+]; calculated for [C\(_{17}\)H\(_{23}\)N\(_2\)O\(_3\)]\(^+\): 271.1810.

Methyl ether protected Lyconadin A (1.137): To a solution of 1.132 (9 mg, 0.033 mmol) in MeOH (1.5 mL) was added KOH (0.65 mmol, 37 mg). The reaction was heated at reflux for 2 h.
The reaction was allowed to cool to rt and then concentrated under vacuum. The crude residue was dissolved in CH₂Cl₂ (5 mL) and H₂O (5 mL) and the aqueous layer was extracted with CH₂Cl₂ (2 x 5 mL). The combined organic extracts were dried over MgSO₄ and concentrated. The crude product was purified by flash chromatography (9:1 CH₂Cl₂/MeOH) to provide 3.8 mg (43% yield) of 1.137 as a clear oil. See previous procedure for full characterization of 1.137.

Lyconadin A (1.8): An oven-dried Schlenk tube was charged with pentacyclic methyl ether protected lyconadin A 1.137 (9.4 mg, 0.035 mmol) in DMF (400 µL) and cooled to 0 °C. To this reaction mixture was added EtSH (55 µL, 0.70 mmol) followed by 14 mg (0.35 mmol) of NaH (60 % dispersion on mineral oil). The Schlenk tube was then sealed and heated at 120 °C for 5 h. The reaction mixture was allowed to cool to rt, water (2 mL) was added and the mixture was extracted with CH₂Cl₂ (3 X 10 mL). The combined organic extracts were dried over MgSO₄ and concentrated under vacuum to afford 6.8 mg of 1.8 (76% yield) as a yellow gel. Rf 0.15 (20 % MeOH in CH₂Cl₂); ¹H NMR (500 MHz, MeOD) δ 7.44 (d, J = 8.9 Hz, 1H), 6.38 (d, J = 8.9 Hz, 1H), 4.32 (s, 1H), 3.67 (s, 1H), 3.64 (dd, J = 12.3, 3.0 Hz, 1H), 2.96 (d, J = 12.3 Hz, 1H), 2.89 (m, 1H), 2.30 (br, d, J = 3.6 Hz, 1H), 2.17 (dd, J = 5.7, 3.9 Hz, 1H), 2.15 (dd, J = 5.4, 3.9 Hz, 1H), 2.11 (br, s, 1H), 1.95 (dd, J = 12.1, 4.8 Hz, 1H), 1.86 (m, 1H), 1.77 (d, J = 13.8 Hz, 1H), 1.23 (t, J = 13.2 Hz, 1H), 1.08 (t, J = 12.4 Hz, 1H), 0.97 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, MeOD) δ 165.34, 148.26, 141.54, 126.22, 116.77, 73.66, 65.08, 61.19, 50.15, 48.16, 40.08, 39.64, 33.81, 33.51, 26.11, 21.91; IR (film) νmax 3396, 2923, 2824, 1656, 1609, 1557, 1456, 1418, 1193, 948, 834, 702 cm⁻¹; HRMS (FAB) m/z 257.1651 [(M+H)+ calculated for [C₁₆H₂₁N₂O]⁺: 257.1654]; [α]D = + 21 ° (c 0.40, MeOH). (natural: [α]D = + 14 ° (c 0.35, MeOH); synthetic: [α]D = + 33 ° (c 0.13, MeOH))

Tertiary Amine (1.161): To a solution of 1.155 (15 mg, 0.058 mmol) in THF (3 mL) at -78 °C was added n-butyllithium (2.5M in hexanes, 46 µL, 0.116 mmol) over 2 min. After stirring the resulting bright orange solution for 30 min at -78 °C, iodine (15 mg, 0.058 mmol) was added in one portion. The reaction mixture was stirred at -78 °C for 2 h and then slowly allowed to warm to 0 °C (ca. 2 h). The reaction mixture was quenched by sequential slow addition of saturated aq. NH₄Cl (1 mL), saturated aq. NaHSO₃ (1 mL) and 1N NaOH (5 mL), and extracted with CH₂Cl₂ (3 X 5 mL). The combined organic extracts were dried over MgSO₄ and concentrated under vacuum to afford a yellow oil which was purified by flash chromatography (10 % MeOH in CH₂Cl₂) to afford 1.161 (13.4 mg) in 90% yield as a yellow oil. Rf 0.32 (10 % MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, J = 8.1 Hz, 1H), 6.46 (d, J = 8.14 Hz, 1H), 4.25
(br s, 1H), 3.91 (s, 3H), 3.42 (dd, J = 13, 3.5 Hz, 1H), 3.31 (br s, 1H), 2.90-2.84 (m, 1H), 2.73-2.68 (m, 1H), 2.13-2.05 (m, 2H), 2.05-1.96 (m, 1H), 1.92-1.87 (m, 1H), 1.87-1.73 (m, 2H), 1.72-1.66 (m, 1H), 1.62-1.48 (m, 1H), 1.47-1.38 (m, 1H), 1.34-1.26 (m, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 162.67, 159.72, 134.84, 133.39, 106.04, 71.16, 68.07, 61.04, 53.55, 49.13, 46.53, 34.63, 33.74, 31.70, 30.77, 18.25; IR (film) \(v_{\text{max}}\) 2931, 2856, 1709, 1600, 1477, 1423, 1310, 1264, 1179, 1030, 780 cm\(^{-1}\); HRMS (ESI) m/z 257.1652 [M+H]+; calculated for [C\(_{16}\)H\(_{21}\)N\(_{2}\)O]\(^+\): 257.1648.

![C15-nor-Me-lyconadin A (1.156)](image1)

C15-nor-Me-lyconadin A (1.156): The title compound was obtained according to the procedure described for 1.8 in 72% yield as a yellow oil. \(R_f\) 0.20 (20 % MeOH in CH\(_2\)Cl\(_2\)); \(^1\)H NMR (600 MHz, CD\(_2\)OD) \(\delta\) 7.37 (d, J = 8.9 Hz, 1H), 6.30 (d, J = 8.9 Hz, 1H), 4.11 (br s, 1H), 3.47 (dd, J = 12.5, 3.3 Hz, 1H), 3.45-3.42 (m, 1H), 3.27 (m, 1H), 2.82-2.79 (m, 1H), 2.76-2.72 (m, 1H), 2.21-2.18 (m, 1H), 2.08 (dd, J = 13.7, 5.7, 3.9 Hz, 1H), 2.03-1.99 (m, 1H), 1.95-1.89 (m, 1H), 1.83-1.74 (m, 1H), 1.69-1.64 (m, 1H), 1.64-1.53 (m, 1H), 1.49 (ddt, J = 13.4, 6.6, 2.0 Hz, 1H), 1.38 (m, 1H); \(^{13}\)C NMR (150 MHz, CD\(_2\)OD) \(\delta\) 165.42, 141.75, 126.33, 121.19, 116.61, 72.79, 63.87, 61.54, 50.56, 48.28, 34.50, 33.77, 31.59, 31.37, 19.05; IR (film) \(v_{\text{max}}\) 2926, 2851, 1654, 1616, 1559, 1458, 1418, 796, 705 cm\(^{-1}\); HRMS (EI) m/z 242.1409 [(M)+]; calculated for [C\(_{13}\)H\(_{18}\)N\(_{2}\)O]\(^+\): 242.1409.

![C15-epi-lyconadin A (1.154)](image2)

C15-epi-lyconadin A (1.154): The title compound was obtained according to the procedures described for the conversion of 1.57 to 1.8 in 60% yield over the 2 steps as a yellow oil. \(R_f\) 0.1 (20 % MeOH in CH\(_2\)Cl\(_2\)); \(^1\)H NMR (600 MHz, CD\(_2\)OD) \(\delta\) 7.43 (d, J = 8.9 Hz, 1H), 6.36 (d, J = 8.9 Hz, 1H), 4.20 (s, 1H), 3.83 (d, J = 8.7 Hz, 1H), 3.65-3.59 (m, 1H), 2.93-2.87 (m, 2H), 2.50-2.46 (m, 1H), 2.32-2.24 (m, 1H), 2.21 (d, J = 7.4 Hz, 1H), 2.14-2.05 (m, 2H), 1.75 (d, J = 13.9 Hz, 1H), 1.69-1.60 (m, 1H), 1.39-1.29 (m, 2H), 0.93 (d, J = 6.68 Hz, 3H); \(^{13}\)C NMR (150 MHz, CD\(_2\)OD) \(\delta\) 163.83, 147.23, 140.43, 123.60, 115.18, 70.07, 67.66, 59.07, 48.44, 40.25, 38.64, 36.54, 32.27, 30.93, 20.49, 20.40; IR (film) \(v_{\text{max}}\) 2926, 1658, 1608, 1456, 1191, 1102, 1031, 959, 834, 732, cm\(^{-1}\); HRMS (EI) m/z 257.1641 [(M+H)+]; calculated for [C\(_{16}\)H\(_{21}\)N\(_{2}\)O]\(^+\): 257.1648.
X-Ray Crystallography Data for tricyclic benzoate ester 1.101
Crystal data and Structure Refinement for tricyclic benzoate ester 1.101

A. Crystal Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C$_{27}$N$_2$O7H${32}$</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>496.56</td>
</tr>
<tr>
<td>Crystal Color, Habit</td>
<td>colorless, blocky</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.45 X 0.35 X 0.00 mm</td>
</tr>
<tr>
<td>Crystal System</td>
<td>triclinic</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>Primitive</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td>a = 10.5537(8) Å</td>
</tr>
<tr>
<td></td>
<td>b = 10.9345(7) Å</td>
</tr>
<tr>
<td></td>
<td>c = 11.9132(8) Å</td>
</tr>
<tr>
<td></td>
<td>$\alpha = 69.127(1)^\circ$</td>
</tr>
<tr>
<td></td>
<td>$\beta = 83.691(1)^\circ$</td>
</tr>
<tr>
<td></td>
<td>$\gamma = 77.491(1)^\circ$</td>
</tr>
<tr>
<td></td>
<td>V = 1253.3(2) Å Å^3</td>
</tr>
<tr>
<td>Space Group</td>
<td>P -1 (#2)</td>
</tr>
<tr>
<td>Z value</td>
<td>2</td>
</tr>
<tr>
<td>D$_{calc}$</td>
<td>1.316 g/cm3</td>
</tr>
<tr>
<td>F$_{000}$</td>
<td>528.00</td>
</tr>
<tr>
<td>μ(MoKα)</td>
<td>0.95 cm$^{-1}$</td>
</tr>
</tbody>
</table>

B. Intensity Measurements

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer</td>
<td>Bruker SMART CCD</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα ($\lambda = 0.71069$ Å)</td>
</tr>
<tr>
<td></td>
<td>graphite monochromated</td>
</tr>
<tr>
<td>Detector Position</td>
<td>60.00 mm</td>
</tr>
<tr>
<td>Exposure Time</td>
<td>10.0 seconds per frame.</td>
</tr>
<tr>
<td>Scan Type</td>
<td>ω (0.3 degrees per frame)</td>
</tr>
<tr>
<td>θ_{max}</td>
<td>52.8$^\circ$</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td>Total: 9728</td>
</tr>
<tr>
<td></td>
<td>Unique: 3369 ($R_{int} = 0.012$)</td>
</tr>
<tr>
<td>Corrections</td>
<td>Lorentz-polarization</td>
</tr>
<tr>
<td></td>
<td>Absorption ($T_{max} = 1.00$</td>
</tr>
<tr>
<td></td>
<td>$T_{min} = 0.91$)</td>
</tr>
</tbody>
</table>
C. Structure Solution and Refinement

<table>
<thead>
<tr>
<th>Structure Solution</th>
<th>Direct Methods (SIR97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinement</td>
<td>Full-matrix least-squares</td>
</tr>
<tr>
<td>Function Minimized</td>
<td>$\sum w (</td>
</tr>
<tr>
<td>Least Squares Weights</td>
<td>$1/\sigma^2(F_o) = 4F_o^2/\sigma^2(F_o^2)$</td>
</tr>
<tr>
<td>p-factor</td>
<td>0.0500</td>
</tr>
<tr>
<td>Anomalous Dispersion</td>
<td>All non-hydrogen atoms</td>
</tr>
<tr>
<td>No. Observations (I>3.00\sigma(I))</td>
<td>3442</td>
</tr>
<tr>
<td>No. Variables</td>
<td>325</td>
</tr>
<tr>
<td>Reflection/Parameter Ratio</td>
<td>10.59</td>
</tr>
<tr>
<td>Residuals: R; Rw; Rall</td>
<td>0.039 ; 0.055; 0.055</td>
</tr>
<tr>
<td>Goodness of Fit Indicator</td>
<td>1.73</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum peak in Final Diff. Map</td>
<td>$0.20 \text{ e}^-/\text{Å}^3$</td>
</tr>
<tr>
<td>Minimum peak in Final Diff. Map</td>
<td>$-0.16 \text{ e}^-/\text{Å}^3$</td>
</tr>
</tbody>
</table>
X-Ray Crystallography Data for m-Nitrobenzoate 1.114
Crystal data and Structure Refinement for tricyclic alcohol 1.114

A colorless needle 0.12 x 0.10 x 0.06 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 99.7% complete to 67.00° in θ. A total of 19373 reflections were collected covering the indices, -12≤h≤12, -35≤k≤35, -9≤l≤9. 4367 reflections were found to be symmetry independent, with an R_int of 0.0246. Indexing and unit cell refinement indicated a C-centered, monoclinic lattice. The space group was found to be Cc (No. 9). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-97) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray ID</td>
<td>sarpong11</td>
</tr>
<tr>
<td>Sample/notebook ID</td>
<td>SW-VI-112B</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C27 H32 N2 O8</td>
</tr>
<tr>
<td>Formula weight</td>
<td>512.55</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.54178 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>Cc</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 10.2059(4) Å, α= 90°.</td>
</tr>
<tr>
<td></td>
<td>b = 29.7555(12) Å, β= 93.801(3)°.</td>
</tr>
<tr>
<td></td>
<td>c = 8.2858(4) Å, γ = 90°.</td>
</tr>
<tr>
<td>Volume</td>
<td>2510.71(19) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.356 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.833 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1088</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.12 x 0.10 x 0.06 mm³</td>
</tr>
<tr>
<td>Crystal color/habit</td>
<td>colorless needle</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.97 to 68.14°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-12<=h<=12, -35<=k<=35, -9<=l<=9</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>19373</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4367 [R(int) = 0.0246]</td>
</tr>
<tr>
<td>Completeness to theta = 67.00°</td>
<td>99.7 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9517 and 0.9067</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4367 / 2 / 338</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.060</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0296, wR2 = 0.0674</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0332, wR2 = 0.0697</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.01(13)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.184 and -0.154 e.Å⁻³</td>
</tr>
</tbody>
</table>
X-Ray Crystallography Data for Boc-protected tetracyclic amine 1.124
Crystal data and Structure Refinement for Boc-protected tetracyclic amine 1.124

A. Crystal Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>$\text{C}_{22}\text{N}_2\text{O}3\text{H}{32}$</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>372.51</td>
</tr>
<tr>
<td>Crystal Color, Habit</td>
<td>colorless, tabular</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.15 X 0.15 X 0.24 mm</td>
</tr>
<tr>
<td>Crystal System</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>Primitive</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td>$a = 11.129(1),\text{Å}$</td>
</tr>
<tr>
<td></td>
<td>$b = 14.816(2),\text{Å}$</td>
</tr>
<tr>
<td></td>
<td>$c = 13.034(1),\text{Å}$</td>
</tr>
<tr>
<td></td>
<td>$\beta = 107.184(2),^\circ$</td>
</tr>
<tr>
<td></td>
<td>$V = 2053.3(4),\text{Å}^3$</td>
</tr>
<tr>
<td>Space Group</td>
<td>P2$_1$/c (#14)</td>
</tr>
<tr>
<td>Z value</td>
<td>4</td>
</tr>
<tr>
<td>D_{calc}</td>
<td>1.205 g/cm3</td>
</tr>
<tr>
<td>F_{000}</td>
<td>808.00</td>
</tr>
<tr>
<td>μ(MoKα)</td>
<td>0.80 cm$^{-1}$</td>
</tr>
</tbody>
</table>

B. Intensity Measurements

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer</td>
<td>Bruker APEX CCD</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα ($\lambda = 0.71069$ Å)</td>
</tr>
<tr>
<td>detector Position</td>
<td>graphite monochromated</td>
</tr>
<tr>
<td>Exposure Time</td>
<td>20.0 seconds per frame.</td>
</tr>
<tr>
<td>Scan Type</td>
<td>ω (0.3 degrees per frame)</td>
</tr>
<tr>
<td>$2\theta_{\text{max}}$</td>
<td>52.8$^\circ$</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td>Total: 11559</td>
</tr>
<tr>
<td></td>
<td>Unique: 4454 ($R_{\text{int}} = 0.027$)</td>
</tr>
<tr>
<td>Corrections</td>
<td>Lorentz-polarization</td>
</tr>
<tr>
<td></td>
<td>Absorption (Tmax = 1.00</td>
</tr>
<tr>
<td></td>
<td>$T_{\text{min}} = 0.84$)</td>
</tr>
</tbody>
</table>
C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anomalous Dispersion
No. Observations (I>3.00σ(I))
No. Variables
Reflection/Parameter Ratio
Residuals: R; Rw; Rall
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map

Direct Methods (SIR97)
Full-matrix least-squares
Σ w (|Fo| - |Fc|)^2
1/σ^2(Fo) = 4Fo^2/σ^2(Fo^2)
0.0300
All non-hydrogen atoms
2931
244
12.01
0.040 ; 0.049; 0.061
1.82
0.00
0.19 e^-/Å^3
-0.17 e^-/Å^3
X-Ray Crystallography Data for tricyclic alcohol 1.92
Crystal data and Structure Refinement for tricyclic alcohol 1.92

A colorless needle 0.20 x 0.05 x 0.02 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 20 seconds per frame using a scan width of 1.0°. Data collection was 99.9% complete to 67.00° in θ. A total of 22748 reflections were collected covering the indices, -6<=h<=6, -37<=k<=37, -12<l<=12. 6151 reflections were found to be symmetry independent, with an R_{int} of 0.0511. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2(1) (No. 4). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97. Absolute stereochemistry was unambiguously determined at C3A, C3B, C7A, and C7B to be S and at C8A, C8B, C10A, and C10B to be R.
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C19 H27 N O4</td>
</tr>
<tr>
<td>Formula weight</td>
<td>333.42</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.54178 Å (CuKα)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5.1506(5) Å</td>
</tr>
<tr>
<td>b</td>
<td>30.990(3) Å</td>
</tr>
<tr>
<td>c</td>
<td>10.7824(11) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>β</td>
<td>90.789(7)°</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1720.9(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.287 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.724 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>720</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.20 x 0.05 x 0.02 mm³</td>
</tr>
<tr>
<td>Crystal color/habit</td>
<td>colorless needle</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.85 to 68.46°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-6≤h≤6, -37≤k≤37, -12≤l≤12</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>22748</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6151 [R(int) = 0.0511]</td>
</tr>
<tr>
<td>Completeness to theta = 67.00°</td>
<td>99.9%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9857 and 0.8687</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6151 / 1 / 439</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.040</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0414, wR2 = 0.0969</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0490, wR2 = 0.1007</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.03(16)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.322 and -0.301 e.Å⁻³</td>
</tr>
</tbody>
</table>
1.16 References

Appendix 1: Spectra Relevant to Chapter 1
Comparison of 1H NMR Spectra of Lyconadin A:

Kobayashi (isolated)

Sarpong

Amos B. Smith III

\[\times \text{H}_2\text{O} \]

\[\times \text{MeOH} \]
HPLC trace of racemic alcohol 1.91
(Chiralpak AD-H column, 92:8 hexanes/ethanol, 1 mL/min)

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.819</td>
<td>7484511</td>
<td>49.617</td>
</tr>
<tr>
<td>13.525</td>
<td>7610260</td>
<td>50.383</td>
</tr>
</tbody>
</table>

3: 270 nm, 4 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.819</td>
<td>3646747</td>
<td>49.851</td>
</tr>
<tr>
<td>13.525</td>
<td>3683583</td>
<td>50.149</td>
</tr>
</tbody>
</table>
HPLC trace of enantioenriched alcohol 1.91
(Chiralpak AD-H column, 92:8 hexanes/ethanol, 1 mL/min)

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.915</td>
<td>319610</td>
<td>0.941</td>
</tr>
<tr>
<td>13.520</td>
<td>33659799</td>
<td>99.059</td>
</tr>
</tbody>
</table>

3: 270 nm, 4 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.920</td>
<td>119698</td>
<td>0.714</td>
</tr>
<tr>
<td>13.515</td>
<td>16642076</td>
<td>99.286</td>
</tr>
</tbody>
</table>
HPLC trace of racemic cycloheptane \textbf{1.92}
(Chiralpak AD-H column, 92:8 hexanes/ethanol, 1 mL/min)

\begin{table}
\centering
\begin{tabular}{ccc}
\hline
\textbf{Retention Time} & \textbf{Area} & \textbf{Area Percent} \\
\hline
10.357 & 8668971 & 49.439 \\
16.853 & 8065536 & 50.561 \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\begin{tabular}{ccc}
\hline
\textbf{Retention Time} & \textbf{Area} & \textbf{Area Percent} \\
\hline
10.357 & 7183372 & 49.902 \\
16.859 & 7211522 & 50.098 \\
\hline
\end{tabular}
\end{table}
HPLC trace of enantioenriched cycloheptane 1.92
(Chiralpak AD-H column, 92:8 hexanes/ethanol, 1 mL/min)

1: 230 nm, 4 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.315</td>
<td>8393218</td>
<td>100.000</td>
</tr>
</tbody>
</table>

3: 270 nm, 4 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.315</td>
<td>6915657</td>
<td>100.000</td>
</tr>
</tbody>
</table>
HPLC trace of racemic ketone 1.125
(Chiralpak AS-H column, 90:10 hexanes/ethanol, 1 mL/min)

1: 230 nm, 4 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.128</td>
<td>2942850</td>
<td>50.250</td>
</tr>
<tr>
<td>21.008</td>
<td>2913592</td>
<td>49.750</td>
</tr>
</tbody>
</table>

3: 270 nm, 4 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.128</td>
<td>2125794</td>
<td>50.469</td>
</tr>
<tr>
<td>21.008</td>
<td>2086275</td>
<td>49.531</td>
</tr>
</tbody>
</table>
HPLC trace of enantioenriched ketone 1.125
(Chiralpak AS-H column, 90:10 hexanes/ethanol, 1 mL/min)

1: 230 nm, 4 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.123</td>
<td>21476108</td>
<td>99.656</td>
</tr>
<tr>
<td>20.661</td>
<td>74091</td>
<td>0.344</td>
</tr>
</tbody>
</table>

3: 270 nm, 4 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.123</td>
<td>16557352</td>
<td>99.788</td>
</tr>
<tr>
<td>20.709</td>
<td>35135</td>
<td>0.212</td>
</tr>
</tbody>
</table>
Chapter 2. Mechanistic Studies of Oxidative C-N Bond Formation

2.1 Introduction

An umpolung transformation is characterized by the inversion in the reactivity of an atom from donor to acceptor or from acceptor to donor. The union of two electrophilic positions or two nucleophilic positions to form a bond are examples of umpolung reactions. The Stetter reaction\(^1\) and the use of anions of dithianes as acyl anion surrogates are both examples of umpolung tactics that utilize the inversion of the reactivity of an electrophilic center to form a reactive nucleophile. The oxidative coupling of enolates is an umpolung reaction that utilizes a reversal in reactivity of the nucleophilic carbon of an enolate to form an electrophilic carbon and achieve the formation of a C-C bond. Umpolung reactions have proven to be powerful simplifying transformations that have enabled new efficient strategies for the synthesis of complex molecules.

Enolate coupling is an example of an umpolung transformation that employs the combination of two anions to form a carbon-carbon bond via an oxidative process. Since the discovery of the oxidative dimerization of enolates in 1935,\(^3\) extensive research has been conducted on the intermolecular and intramolecular oxidative coupling of enolates utilizing a wide variety of oxidants.\(^4\)-\(^6\) Recently, Baran and co-workers have extended the scope of the intermolecular heterocoupling of enolates and have also developed the oxidative coupling of enolates with indole and pyrrole anions.\(^7\) Intramolecular oxidative coupling of dienolates have been utilized to form three-, four-, five-, and six-membered rings in simple systems.\(^8\)-\(^11\) Only a few examples of the oxidative coupling of a dianion have appeared in synthetic studies of complex molecules. The limited number of examples may arise from the harsh conditions often necessary to generate the requisite dianion intermediate and the required chemoselectivity of the oxidant. One or both of these requirements often proves incompatible with polyfunctional substrates. Recently, the syntheses of avrainvillamide and the stephacidins (e.g., 2.3, Scheme 2.1) by Baran and co-workers were achieved employing an intramolecular oxidative coupling of amide and ester enolates generated from 2.1 to afford key intermediate 2.2.\(^12\) Additionally, Overman and co-workers utilized the oxidation of a dienolate intermediate arising from 2.4 to synthesize bridged ketone 2.5, an important intermediate in their synthesis of actinophyllic acid (2.6).\(^13\),\(^14\)
Although numerous examples of the intramolecular oxidative coupling of dianion intermediates to form C-C bonds have been reported, employing C,N-dianions to form carbon-nitrogen bonds has not been extensively studied.15 The majority of examples of oxidative C-N bond formation are intermolecular and utilize amidocuprate intermediates. The first example of this transformation (Scheme 2.2) involved the treatment of primary and secondary amines with dialkylcuprate 2.9 to form amidocuprate intermediate 2.11 which upon exposure to oxygen underwent oxidation to the alkylated amine product 2.12.16 Additionally, addition of lithium amide 2.8 to cyanocuprate 2.10 resulted in the formation of amidocuprate 2.11, which was then exposed to oxygen to promote the oxidative formation of the C-N bond of the amine product 2.12.17 Grignard reagents (2.13) have also been utilized to form arylcuprate species 2.14, which upon addition of lithium amide 2.8 form an amidocuprate intermediate (2.15) that is subsequently oxidized by chloranil (2.16) to mediate formation of the C-N bond.18 Although these methods provide an alternative amine synthesis via the intermolecular oxidative coupling of a carbanion and an amide, their application to an intramolecular substrate had not been reported prior to our work.
Scheme 2.2. Intermolecular Oxidative C-N Bond Formation Examples

\[
\begin{array}{c}
R^1_NR^2 \quad + \quad R^3_2CuLi \quad \text{(2.9)} \quad \text{or} \quad R^3Cu(CN)Li \quad \text{(2.10)} \\
\rightarrow \quad \begin{cases}
\text{(2.11)} & \text{2.7 (}X = H) \\
\text{(2.12)} & \text{2.8 (}X = Li)
\end{cases}
\end{array}
\]

After the publication of our mechanistic studies, Verkman and co-workers reported the oxidation of an internally chelated dianion generated from chloride 2.18 (Scheme 2.3) to form a key C-N bond in the synthesis of macrocycle 2.19. Both I₂ and (PhSe)₂ were found to effectively promote this oxidative transformation. Additionally, this approach was applied successfully to the synthesis of 6- to 15-membered cyclic amino ethers (e.g., 2.20 → 2.21). \(^{13}\)

Scheme 2.3. Intramolecular Oxidative C-N Bond Formation Examples

\[\text{2.18} \quad \xrightarrow{\text{Li}^0, \text{KO}^\text{t-Bu}} \quad \text{I}_2 \text{ or (PhSe)}_2 \quad \xrightarrow{\text{I}_2, \text{84\% yield}} \quad \text{(PhSe)}_2, \text{92\% yield} \quad \text{2.19}\]

\[\text{2.20} \quad \xrightarrow{\text{1) Li}^0, \text{KO}^\text{t-Bu}} \quad \rightarrow \text{(PhSe)}_2 \quad \text{2) TFA} \quad \text{91\% yield} \quad \text{2.21}\]
2.2 Proposed Mechanism of Oxidative C-N Bond Formation

In our synthesis of lyconadin A, direct formation of the C-N bond from a dianion intermediate to afford the pentacyclic core was an effective simplifying transform. Oxidation of a C,N-dianion to form a carbon-nitrogen bond is a transformation that we envisioned could be utilized to form a variety of alkaloid ring systems. Prior to exploring the scope of this oxidative C-N bond formation, examination of the structure and reactivity of the dianion intermediate was conducted. Deuterium quenching experiments, NMR studies, DFT calculations and reactivity studies with different oxidants and electrophiles were performed to gain a better understanding of the mechanism of the C-N bond-forming reaction.

Mechanistic studies of the C-N bond formation were conducted utilizing tetracyclic amine 1.155, which does not possess a methyl group at C15. Model tetracycle 1.155 can be synthesized from cycloheptane 1.92 in six steps and 46% overall yield (Scheme 2.4). Treatment of 1.155 with two equivalents of n-butyllithium at -78 °C results in the formation of dianion 2.25 (Scheme 2.5). Upon addition of one equivalent of iodine to 2.25, initial reaction may occur at C6 to generate iodide 2.26 which is rapidly converted to pentacycle 1.161.

Scheme 2.4. Synthesis of Model Tetracycle

Scheme 2.5. Proposed Mechanism of C-N Bond Formation
Although the picolinic methylene position is relatively acidic (pKa ≈ 34 in THF),20 the deprotonation of the secondary amine of 1.155 appears vital to successful formation of the carbanion at C6. Initial deprotonation of tetracyclic 1.155 (Scheme 2.5) provides lithium amide 2.23, which could serve as an intramolecular base to promote lateral deprotonation of the C6 picolinic position to form carbanion 2.24. Subsequent reaction with a second equivalent of n-BuLi would afford dianion 2.25. Additionally, the C6-bound lithium of 2.25 could form an internal chelate with the β-nitrogen lone pair, which would stabilize the dianion intermediate. The importance of the free secondary amine moiety in 1.155 is supported by the observation that protection (Boc, allyl, Cbz) of the amine nitrogen of 1.155 followed by attempted lateral deprotonation at C6 and trapping with different electrophiles (D$_2$O and I$_2$) only resulted in the recovery of starting material. These experiments indicate that formation of the carbanion at C6 was not achieved for these protected tetracyclic amine substrates.

Reaction of dianion 2.25 (Scheme 2.5) with iodine may proceed with inversion of stereochemistry at C6 due to the steric bulk and soft nature of iodine to provide exo-iodide 2.26. Subsequent intramolecular nucleophilic attack of the lithium amide of 2.26 to displace the C6-exo iodide furnishes pentacycle 1.161. In contrast, reaction of dianion 2.25 with a sterically small, hard electrophile such as D$_2$O should result in retention of stereochemistry, placing deuterium in the C6 endo position due to the configurational stability of 2.25. Generation of dianion 2.25 and treatment with D$_2$O (Scheme 2.6) resulted in exclusive endo-deuteration to provide tetracycle 2.27 (72% D). Previous examples of the stereodivergence of sterically encumbered lithium anions based on the electrophile have been reported by Applequist and Glaze21,22 and are consistent with our results. Additionally, studies on the conducted tour mechanism of epimerization of heteroatom stabilized carbanions provides support for the reaction of halogen electrophiles to occur with inversion of stereochemistry.23,24 In these examples, two pathways are proposed to rationalize the stereochemical inversion of the carbanion. A concerted mechanism which involves the interaction of the electrophile with the minor lobe of the sp3 carbanion orbital could be operative and result in stereochemical inversion. For dianion 2.25, interaction of the electrophile with the major lobe of the carbanion orbital would involve severe steric clash and therefore the interaction with the carbanion would likely occur with the minor lobe from the more sterically accessible exo face. Alternatively, a single-electron transfer (SET) pathway could proceed by one electron oxidation of dianion 2.25 to a radical followed by inversion and subsequent recombination to provide the product with the electrophile in the exo position. In the SET mechanism, the recombination would occur on the exo face due to the steric considerations in the approach of the electrophile. In both of these mechanisms, sterically bulky electrophiles should result in stereochemical inversion, which is in agreement with our results.

To further examine the stereoselectivity of the deprotonation of amine 1.155, deuterated amine 2.27 (72% D) was treated with two equivalents of n-BuLi and quenched by the addition of D$_2$O to provide tetracycle 2.28 (85% D) possessing increased deuterium incorporation (Scheme 2.6). Formation of the dianion from amine 2.27 and treatment with H$_2$O afforded amine 1.155 with no deuterium incorporation. These studies illustrate that the C6 endo proton is deprotonated stereoselectively to generate dianion 2.25 and subsequent quenching with H$_2$O or D$_2$O occurs with retention of stereochemistry to place H/D at the C6 endo position.
Scheme 2.6. Deuteration Experiments

\[n\text{-BuLi (2 equiv)} \rightarrow \]

\[\text{D}_2\text{O} \rightarrow \]

2.3 NMR Studies of Dianion

To gain further insight into the structure of dianion 2.25, NMR studies of the dianion intermediate were conducted in collaboration with the Collum group at Cornell University. In addition to examining tetracycle 1.155, NMR studies utilizing \(^{15}\text{N}\)-labeled amine 2.31 would enable direct observation of Li-N coupling, which could provide support for the proposed internal chelation of dianion 2.25. Investigation of the dianions generated from amine 1.155 and labeled amine 2.31 should enable elucidation of the structure of the key dianion intermediate.

In our original synthesis of amine 1.155 (Scheme 2.7), installation of the \(\beta\)-N was achieved by a Curtius rearrangement utilizing diphenylphosphoryl azide (DPPA). Since \(^{15}\text{N}\)-labeled azide sources are prohibitively expensive or unavailable, redesigning the synthesis to enable installation of the \(\beta\)-N from a commercially available \(^{15}\text{N}\) precursor was necessary. Formation of a primary amide from acid 2.29 using labeled ammonium chloride or labeled ammonium hydroxide followed by Hofmann rearrangement could provide \(^{15}\text{N}\)-labeled Cbz-amine 2.31, which could be advanced to \(^{15}\text{N}\)-labeled tetracycle 2.31 by the established route for the conversion of 2.22 to 1.155.
Scheme 2.7. Proposed Synthesis of 15N-labeled Tetracycle

Original Tetracycle Synthesis

\[
\begin{align*}
\text{DPPA, Et$_3$N, } & \Delta \rightarrow \text{BnOH,} \quad 69\% \text{ yield} \\
2.29 & \rightarrow 2.22 \\
& \quad \quad 80\% \text{ yield (over 3 steps)} \\
& \quad \quad \text{1.155}
\end{align*}
\]

Proposed 15N Labeled Tetracycle Synthesis

\[
\begin{align*}
\text{1) Amide formation using 15NH$_4$Cl or} \\
& \quad \quad \text{or 15NH$_4$OH} \\
\text{2) Hofmann RAR} \\
2.29 & \rightarrow 2.30 \\
& \quad \quad \text{H}^{15}\text{N} \\
& \quad \quad 2.31
\end{align*}
\]

Treatment of acid 2.29 with oxalyl chloride and catalytic DMF provided the intermediate acid chloride, which upon treatment with an aqueous solution of NH$_3$ generated from NH$_4$Cl and NaOH provided primary amide 2.32 in 35% yield. Reaction of the acid chloride of 2.29 with excess ammonium hydroxide provided amide 2.32 in 70% yield. Alternatively, treatment of acid 2.29 with EDCI and HOBT to activate the acid moiety as well as DIPEA and NH$_4$Cl to generate NH$_3$ in situ resulted in the formation of amide 2.32 in excellent yield (Scheme 2.8). In addition to furnishing amide 2.32 in high yield, the EDCI-mediated amide formation utilized only 2 equivalents of NH$_4$Cl, which was amenable to larger scales using 15NH$_4$Cl.

Initial attempts to promote a Hofmann rearrangement of amide 2.32 using standard conditions (NaOMe, Br$_2$, Δ or DBU, NBS, Δ) resulted in complex mixtures possessing only trace amounts of the desired product. Oxidants such as hypervalent iodine reagents and lead(IV) tetraacetate effectively mediate the Hofmann rearrangement, which can be performed in the presence of a variety of alcohols to directly provide carbamate products. Inspired by this precedent, amide 2.32 was subjected to PhI(OAc)$_2$ in the presence of benzyl alcohol, which provided Cbz-amine 2.22 in 30% yield. Alternatively, amide 2.32 was treated with Pb(OAc)$_4$ and benzyl alcohol to afford Hofmann rearrangement product 2.22 in a modest 42% yield.

With an alternate route to Cbz-amine 2.22 developed, the synthesis of 15N-tetracycle 2.31 commenced by treatment of acid 2.29 with 15NH$_4$Cl, EDCI, HOBT, and DIPEA to efficiently furnish amide 2.33 in 91% yield. Subjecting amide 2.33 to Pb(OAc)$_4$ and benzyl alcohol promoted Hofmann rearrangement to afford Cbz-amine 2.30 in 46% yield. Cleavage of the methoxymethyl ether of 2.30 followed by Swern oxidation yielded an intermediate ketone which was subjected to H$_2$ and Pd/C to effect hydrogenolysis of the Cbz group and reductive amination to provide 15N-tetracyclic amine 2.31.
Scheme 2.8. 15N-Labeled Tetracycle Synthesis

Tetracycle 1.155 was treated with 2 equivalents of 6Li-butyllithium to form dianion intermediate 2.25, which was examined by NMR spectroscopy. The 6Li NMR of 2.25 (Figure 2.1) contains two singlets in a 1:1 ratio, indicating a single dianionic species with two distinct coordinated lithium ions present in solution. 13C NMR of dianion 2.25 was conducted to determine 6Li-13C coordination, but the signal for the picolinic carbon did not exhibit distinct coupling. Rapid exchange of the lithium bound to the picolinic carbanion could be responsible for the absence of 6Li-13C coupling in the 13C NMR spectrum of 2.25. Fast lithium exchange has been reported in previous studies of benzylic carbanions and results in no observed 6Li-13C coupling, which is consistent with our results.

Similarly, 15N-labeled tetracycle 2.31 was subjected to 6Li-butyllithium to afford dianion 2.34 which was studied spectroscopically. The 6Li NMR spectrum of 2.34 (Figure 2.2) displays two doublets in a 1:1 ratio. The observed 6Li-15N coupling for both lithium resonances exhibited in this spectrum is due to both lithium ions of 2.34 being coordinated to the 15N-labeled nitrogen. Consistent with the 6Li NMR spectrum, 15N NMR spectrum (Figure 1.2) of dianion 2.34 shows a single quintet resonance due to coupling to both lithium ions. Due to the absence of 6Li-13C coupling, lithium coordination to the carbanionic position could not be determined from the 13C NMR spectrum. Proposed structure 2.25 (Figure 2.1) for the dianion intermediate possessing a single bridging lithium ion is consistent with the NMR data. Additionally, proposed structure 2.35 (Figure 2.3) with two bridging lithium ions is also in agreement with the NMR data.
Figure 2.1. NMR Spectra of Dianion 2.25

6Li NMR of 2.25
* indicates artifact of $[^6$Li]n-BuLi

![Image of NMR spectrum for 2.25]

Figure 2.2. NMR Spectra of Dianion 2.34

6Li NMR of 2.34
* indicates artifact of $[^6$Li]n-BuLi

15N NMR of 2.34

![Image of NMR spectrum for 2.34]
2.4 DFT Calculations of Proposed Dianion Structures

To provide further insight regarding the structure of the dianion intermediate, DFT calculations were conducted by the Collum group at Cornell University to analyze proposed structures 2.35, 2.36 and 2.37 (Figure 2.3). The relative energies of the solvent-coordinated dianion structures were calculated. The unsolvated structure of 2.25 including three unbound THF molecules was set as the zero point for these calculations. Mono-bridging lithium species 2.36 possessing three coordinated THF molecules was calculated to have a free energy of -38.9 kcal/mol. Alternatively, the free energies of structures 2.35 and 2.37, which both contain two bridging lithium ions, were determined to be -33.7 and -34.2 kcal/mol, respectively. Overall, dianion structure 2.36 with a single bridging lithium is lower in energy than structures 2.35 and 2.37 by 5.2 and 4.7 kcal/mol, respectively. The data from the DFT calculations and the NMR studies indicate that the structure of the dianion is best represented by structure 2.36.

Figure 2.3. Energy Diagram of Proposed Dianion Structures

![Energy Diagram](image)

Note: Calculated energies of structures 2.35 and 2.37 include an unbound THF.

2.5 Dianion Reactivity Studies

During the initial attempts to promote oxidative C-N bond formation in our lyconadin synthesis, iodine was found to be an effective oxidant, whereas transition metal salts such as Pd(OAc)$_2$, Cu(OTf)$_2$ and FeCl$_3$ did not result in formation of the desired pentacycle. Screening other halogen electrophiles (NCS, NBS, and NIS) revealed that all of them efficiently provided pentacycle 1.161 in excellent yield (Scheme 2.9). Mechanistically, treatment of dianion 2.25 with halogen electrophiles may proceed by reaction at C6 with inversion to provide halide 2.38, which rapidly forms the C6-βN bond via intramolecular displacement of the halide to furnish pentacycle 1.161. X-ray analysis of crystals of the HCl salt of amine 1.161 (2.39) provided
unambiguous support for the structure of 1.161. To confirm the C6 stereochemistry after reaction with a halogen electrophile, quenching of the reaction and attempted isolation of the corresponding amine of 2.38 was pursued. Addition of the halogen electrophile to the dianion at -78 ºC, followed by quenching the reaction at -78 ºC after short reaction times provided exclusively the pentacyclic amine product 1.161 in high yield. This result indicates that the oxidative C-N bond formation is facile and rapid at -78 ºC.

Scheme 2.9. Screen of Halogen Electrophiles

After the unsuccessful attempts to quench and isolate an intermediate possessing a halide at C6 to confirm the stereochemical outcome, additional electrophiles were screened that would hopefully lead to a more persistent and isolable intermediate bearing a substituent at C6. Treatment of dianion 2.25 with trimethylsilyl chloride (TMSCl) or trimethylstannyl chloride resulted in complex mixtures of products. Generation of the dianion of 1.155 followed by addition of excess phenylselenyl chloride or diphenylselenide afforded products bearing a phenylseleno group at C6; however these compounds were unstable under a variety of purification conditions. Addition of one equivalent of diphenyl disulfide to dianion 2.25 afforded pentacyclic amine 1.161 in 64% yield (Scheme 2.10). Treatment of dianion 2.25 with a large excess of diphenyl disulfide furnished bis-sulfide 2.40 in 40% yield and likely proceeds with inversion of the carbanion to place the thiophenoxo group in the C6 exo position. NOESY experiments with bis-sulfide 2.40 revealed a nOe interaction between the hydrogen atom at C6 and the axial hydrogen atom at C9 in 2.40, which indicates that the thiophenoxo substituent at C6 occupies the exo position and the hydrogen atom is in the endo position.

Generation of the dianion from 1.155 with three equivalents of n-BuLi followed by treatment with excess diphenyl disulfide unexpectedly afforded ketosulfide 2.41 after aqueous workup. Recrystallization of 2.41 and subsequent X-ray crystallographic analysis confirmed its structure. Formation of ketone 2.41 could proceed by the mechanism outlined in Scheme 2.11.
Generation of dianion 2.25 from 1.155 followed by reaction with diphenyl disulfide could provide sulfide 2.43. Subsequent deprotonation of 2.43 at C6 could generate dianion 2.44, which could react with diphenyl disulfide to furnish disulfide 2.45. Loss of thiophenol from 2.45 could give thienoether 2.46, which could be in equilibrium with carbanion 2.47. Reaction of 2.47 with diphenyl disulfide could then provide hemithioaminal 2.48, which upon aqueous workup could hydrolyze to afford ketosulfide 2.41.

To gain further insight into the mechanism of C-N bond formation utilizing PhSSPh, N-sulfide 2.42 (Scheme 2.10) was prepared from amine 1.155 by treatment with PhSCl. Treatment of 2.42 with 2 equivalents of n-BuLi afforded pentacycle 1.161 in 71% yield. On the basis of these results, formation of the pentacycle with PhSSPh could occur by formation of the N-sulfide followed by nucleophilic attack of the carbanion on nitrogen to form the C-N bond with the displacement of thiophenoxide. Formation of the C-N bond by this pathway is supported by an earlier observation that the N-chloroamine derivative of 1.155 is converted to pentacycle 1.161 upon treatment with KOH in refluxing methanol. To determine which position (C6 or N) of dianion 2.25 reacts with PhSSPh initially, 2.25 was treated with diphenyl disulfide for 1 h at -78 ºC and provided sulfide 2.49 as the major product (Scheme 2.11) along with bissulfide 2.40 (2.49 : 2.40, 5:3). Sulfide 2.49 was unstable to column chromatography, so the mixture of 2.40 and 2.49 was treated with Boc₂O to afford bis-sulfide 2.40 and sulfide 2.50 in 25% and 35% yield, respectively. The formation of sulfide 2.49 provides support that initial reaction of the electrophile occurs at the carbanionic position of dianion 2.25. In contrast, earlier experiments revealed that formation of pentacycle 1.161 could be achieved from N-sulfide 2.42. Overall, these experiments have demonstrated that multiple reaction pathways are viable for the reaction of dianion 2.25 with diphenyl disulfide to provide pentacycle 1.161.
Scheme 2.10. Sulfur Electrophiles

1. $1.155 \xrightarrow{1) \text{n-BuLi (2 equiv)
2) PhSSPh (1 equiv)}} 1.161 \quad 64\% \text{ yield}$

2. $1.155 \xrightarrow{1) \text{n-BuLi (2 equiv)
2) PhSSPh (12 equiv)}} 2.40 \quad 40\% \text{ yield}$

3. $1.155 \xrightarrow{1) \text{n-BuLi (3 equiv)
2) PhSSPh (8 equiv)}} 2.41 \quad 55\% \text{ yield}$

4. $1.155 \xrightarrow{\text{PhSCI, Et$_3$N}} 2.42 \quad 57\% \text{ yield}$

5. $2.42 \xrightarrow{n\text{-BuLi (2 equiv)}} 1.161 \quad 71\% \text{ yield}$
Scheme 2.11. Proposed Mechanism for Ketosulfide Formation

\[
\text{Scheme 2.11. Proposed Mechanism for Ketosulfide Formation}
\]

\[
\text{1.155} \quad n-\text{BuLi (2 equiv)} \quad \text{PhSSPh} \quad \text{2.43}
\]

\[
\text{n-BuLi} \quad \text{PhSSPh} \quad -\text{PhSH}
\]

\[
\text{2.44} \quad \text{2.45}
\]

\[
\text{2.46} \quad \text{2.47} \quad \text{2.48}
\]

\[
\text{H}_2\text{O} \quad \text{2.41}
\]
Scheme 2.12. Synthesis of Sulfides

In addition to halogen electrophiles and diphenyl disulfide, phenyliodine(III) diacetate (PIDA) promotes the formation of pentacycle 1.161 from dianion 2.25 in 65% yield. Although experimental evidence from reactivity studies with PhSSPh provides support for polar mechanistic pathways for the transformation of tetracycle 1.155 to tertiary amine 1.161, a single-electron transfer (SET) mechanistic pathway cannot be excluded. For halogen electrophiles (NCS, NBS, NIS, I₂) and hypervalent iodine (PIDA), both polar and radical mechanisms could be operative during the formation of pentacycle 1.161. SET reactions of metalated organic compounds are well-documented and are often dependent on the nature of the electrophile.³⁰,³¹

To test the viability of SET processes, amine 1.155 was treated with 2 equivalents of n-BuLi to generate dianion 2.25, which upon treatment with 2.5 equivalents of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO, 2.52) furnished pentacyclic amine 1.161 in 70% yield (Scheme 2.13). Mechanistically, single electron oxidation of dianion 2.25 mediated by TEMPO could provide radical anion 2.51. Subsequent oxidation of radical anion 2.51 to diradical 2.53 followed by recombination could afford pentacycle 1.161. Alternatively, radical combination of TEMPO (2.52) and radical anion 2.51 could furnish TEMPO adduct 2.54. Intramolecular displacement by the lithium amide of 2.54 could give pentacycle 1.161. The oxidation of dianion 2.25 to tertiary amine 1.161 facilitated by TEMPO provides support that the mechanism of the oxidative C-N bond formation could proceed by a SET pathway.
Scheme 2.13. Proposed Mechanism for TEMPO Oxidation

NMR experiments and DFT calculations were employed to investigate the structure of dianion intermediate 2.25 and these studies indicate that the structure of the dianion is best represented by internally-chelated dianion 2.36, which possesses three coordinated THF molecules. Consistent with the NMR studies and DFT calculations, deuterium quenching studies provide support that the stereodefined carbanion of 2.25 resides in the C6 endo position. Several oxidants including PhSSPh, I2, PIDA and TEMPO were found to promote C-N bond formation by oxidation of dianion 2.25 to furnish pentacyle 1.161. The diverse nature of the reagents capable of mediating this oxidation provides support that the C-N bond formation may proceed by polar or SET mechanisms and that the mechanistic pathway is dependent on the type of oxidant utilized. Electrophilic reagents such as PhSSPh were found to react initially at C6 of dianion 2.25 and to proceed with stereochemical inversion to place the electrophile in the C6 exo position. The application of intramolecular oxidative C-N bond formation in other systems is currently being examined.

2.6 Conclusion
2.7 Experimental Contributions

Jocelyn M. Gruver under the direction of Professor David B. Collum at Cornell University conducted the NMR experiments on the dianion intermediates (Figures 2.1 and 2.2). Jocelyn M. Gruver performed the DFT calculations on the proposed dianion structures (Figure 2.3). Andrew D. Lim synthesized intermediates that were used to prepare the model tetracycle for the mechanistic studies. The remainder of the work in this chapter was conducted by Scott P. West.
2.8 Experimental Methods

Materials and Methods

Unless otherwise stated, reactions were performed in oven-dried glassware fitted with rubber septa under a nitrogen atmosphere and were stirred with Teflon-coated magnetic stirring bars. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled over sodium/benzophenone ketyl. Dichloromethane (CH₂Cl₂), toluene, and benzene were distilled over calcium hydride. Acetonitrile was distilled over potassium carbonate. N,N-Diisopropylethylamine (DIPEA) was distilled over calcium hydride prior to use. All other solvents and reagents were used as received unless otherwise noted. Reaction temperatures above 23 °C refer to oil bath temperature, which was controlled by an OptiCHEM temperature modulator. Thin layer chromatography was performed using SiliCycle silica gel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation and anisaldehyde stain. SiliCycle Silica-P silica gel (particle size 40-63 μm) was used for flash chromatography. Melting points were recorded on a Laboratory Devices Mel-Temp 3.0 and are uncorrected. ¹H and ¹³C NMR spectra were recorded on Bruker AVB-400, DRX-500, AV-500 and AV-600 MHz spectrometers with ¹³C operating frequencies of 100, 125, 125 and 150 MHz, respectively. ¹⁵N NMR spectra were recorded on Bruker AVB-400 with ¹⁵N operating frequency of 40 MHz. Chemical shifts (δ) are reported in ppm. ¹⁵N NMR spectra are calibrated relative to ¹⁵NH₄Cl in D₂O at δ = 20.0 ppm. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a Nicolet MAGNA-IR 850 spectrometer and are reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. High resolution mass spectral data were obtained from the Mass Spectral Facility at the University of California, Berkeley.

Acid (2.29): The title compound was prepared according to the procedures described for the conversion of alcohol 1.158 to acid 1.159 in 86% yield over 2 steps to give a pale yellow foam. ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, J = 8.4 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 4.68 (d, J = 6.7 Hz, 1H), 4.61 (d, J = 6.7 Hz, 1H), 3.85 (s, 3H), 3.60-3.55 (m, 1H), 3.39-3.35 (m, 1H), 3.34 (s, 3H), 3.32-3.25 (m, 1H), 3.21 (d, J = 14.2 Hz, 1H), 2.91 (dd, J = 13.5, 6.5 Hz, 1H), 2.82 (dd, J = 16.0, 6.6 Hz, 1H), 2.69 (dd, J = 16.04, 8.5 Hz, 1H), 2.40-2.34 (m, 1H), 1.88-1.80 (m, 2H), 1.65-1.53 (m, 2H), 1.37-1.14 (m, 4H), 0.64-0.49 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 177.59, 161.58, 157.09, 134.41, 130.97, 106.37, 94.27, 78.15, 55.18, 53.41, 45.57, 42.34, 39.44,
35.96, 35.87, 27.51, 27.00, 24.93, 24.19; HRMS (ESI) m/z 350.1970 [(M+H)+; calculated for [C19H28NO3]+: 350.1962].

Cbz-protected amine (2.22): The title compound was prepared according to the procedures described for the preparation of Cbz-protected amine 1.131 in 66% yield to give a colorless oil. \(R_f \) 0.50 (1:1 hexanes/EtOAc); \(^1\)H NMR (500 MHz, CDCl\(_3\), major rotamer) \(\delta \) 7.37-7.21 (m, 6H), 6.50 (d, \(J = 8.37 \) Hz, 1H), 5.11-5.04 (m, 2H), 4.99-4.93 (m, 1H), 4.67-4.61 (m, 2H), 3.86 (s, 3H), 3.65-3.43 (m, 3H), 3.39-3.29 (m, 3H), 3.13-3.28 (m, 1H), 2.96-2.78 (m, 2H), 2.32-2.15 (m, 1H), 1.92-1.80 (m, 1H), 1.67-1.51 (m, 2H), 1.40-1.14 (m, 5H), 0.68-0.53 (m, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\), major rotomer) \(\delta \) 161.56, 156.33, 156.25, 136.37, 128.42, 128.40, 128.02, 128.01, 127.97, 106.70, 94.75, 78.58, 66.04, 55.22, 53.24, 44.68, 42.28, 42.15, 36.00, 31.14, 26.99, 25.64, 24.07, 20.49; IR (film) \(\nu_{\text{max}} \) 3366, 2937, 2146, 1701, 1594, 1533, 1474, 1299, 1254, 1032, 915, 823 cm\(^{-1}\); HRMS (ESI) m/z 455.2538 [(M+H)+; calculated for [C\(_{20}\)H\(_{33}\)N\(_2\)O\(_5\)]+: 455.2540].

Amide (2.33): To a solution of acid 2.29 (500 mg, 1.43 mmol) in N,N-dimethylformamide (DMF, 14 mL) was added \(^{15}\)N-labeled ammonium chloride (\(^{15}\)NH\(_4\)Cl, 156 mg, 2.86 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI, 412 mg, 2.15 mmol), and 1-hydroxybenzotriazole (HOBt, 291 mg, 2.15 mmol) followed by N,N-diisopropylethylamine (DIPEA, 0.996 mL, 5.72 mmol). The reaction mixture was stirred at rt for 12 h. The reaction mixture was diluted with CH\(_2\)Cl\(_2\)/Et\(_2\)O (1:3, 50 mL) and poured on H\(_2\)O (50 mL). The aqueous layer was extracted with CH\(_2\)Cl\(_2\)/Et\(_2\)O (1:3, 25 mL). The combined organic layers were washed with water (3 x 25 mL), saturated NH\(_4\)Cl (2 x 25 mL), saturated NaCl (25 mL), dried over MgSO\(_4\) and concentrated under vacuum to afford amide 2.33 (456 mg) in 91% yield. This material was >95% pure and was taken on to the next step without purification. \(R_f \) 0.10 (9:1 CH\(_2\)Cl\(_2\)/MeOH); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.26 (d, \(J = 8.4 \) Hz, 1H), 6.50 (d, \(J = 8.4 \) Hz, 1H), 5.72 (d, \(J^{(15}\text{N,H)} = 88.4 \) Hz, 1H), 5.61 (d, \(J^{(15}\text{N,H)} = 88.6 \) Hz, 1H), 4.68 (d, \(J = 6.7 \) Hz, 1H), 4.62 (d, \(J = 6.70 \) Hz, 1H), 3.87 (s, 3H), 3.61-3.55 (m, 1H), 3.37 (s, 3H), 3.35-3.29 (m, 1H), 3.25-3.19 (m, 1H), 2.90 (dd, \(J = 13.7, 7.0 \) Hz, 1H), 2.69 (dd, \(J = 14.8, 6.2 \) Hz, 1H), 2.52 (dd, \(J = 14.8, 8.8 \) Hz, 1H), 2.40-2.32 (m, 1H), 1.92-1.81 (m, 2H), 1.67-1.54 (m, 2H), 1.35-1.18 (m, 4H), 0.66-0.54 (m, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 173.76 (d, \(J(C^{(15}\text{N)}) = 13.8 \) Hz), 161.56,
157.03, 134.73, 131.05, 106.53, 78.07, 55.33, 53.34, 45.18, 42.54, 41.08, 36.30, 35.89, 29.23, 25.11, 24.22, 15N NMR (40 MHz, CDCl$_3$) δ 105.5; IR (film) v_{max} 2929, 1735, 1595, 1477, 1299, 1150, 1102, 1010, 915, 825 cm$^{-1}$; HRMS (ESI) m/z 350.2104 [(M+H)$^+$; calculated for [C$_{19}$H$_{29}^{15}$NNO$_4$]$^+$: 350.2092].

Cbz-amine (2.30): To a solution of amide 2.33 (320 mg, 0.92 mmol) in N,N-dimethylformamide (DMF, 14 mL) was added lead (IV) tetraacetate (2.45 g, 5.5 mmol) and benzyl alcohol (574 μL, 5.5 mmol). The reaction vial was sealed and heated at 100 °C for 48 h. The reaction was allowed to cool to rt, poured on saturated NaHCO$_3$ (30 mL), and extracted with Et$_2$O (3 x 25 mL). The combined organic layers were washed with saturated NaHCO$_3$ (25 mL), water (2 x 25 mL), and saturated NaCl (25 mL), dried over MgSO$_4$, and concentrated under vacuum. The crude product was purified by flash chromatography (8:1 hexanes/EtOAc to 4:1 hexanes/EtOAc) to provide Cbz-amine 2.30 (193 mg) in 46% yield. R$_f$ 0.35 (2:1 hexanes/EtOAc); 1H NMR (600 MHz, CDCl$_3$) δ 7.37-7.21 (m, 6H), 6.50 (d, J = 8.4 Hz, 1H), 5.11-5.04 (m, 2H), 4.95-4.77 (dt, J(15N,H) = 90.8 Hz, J(H,H) = 5.6 Hz, 1H), 4.67-4.61 (m, 2H), 3.86 (s, 3H), 3.65-3.43 (m, 3H), 3.39-3.29 (m, 3H), 3.13-2.98 (m, 1H), 2.96-2.78 (m, 2H), 2.32-2.15 (m, 1H), 1.92-1.80 (m, 1H), 1.67-1.51 (m, 2H), 1.40-1.14 (m, 5H), 0.68-0.53 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 161.71, 157.23, 156.30 (d, J(C,15N) = 26.9 Hz), 136.46, 129.30, 128.49, 128.10, 128.09, 128.06, 106.84, 94.88, 78.69, 66.72, 55.30, 53.30, 44.75 (d, J(C,15N) = 12.0 Hz), 42.37, 40.22, 34.63, 27.09, 24.75, 24.14, 23.51; 15N NMR (40 MHz, CDCl$_3$) δ 80.9; IR (film) v_{max} 3336, 2937, 2146, 1701, 1594, 1533, 1474, 1299, 1254, 1032, 915, 823 cm$^{-1}$; HRMS (ESI) m/z 456.2530 [(M+H)$^+$; calculated for [C$_{26}$H$_{35}^{15}$NNO$_5$]$^+$: 456.2511].

Amino ketone (2.55): The title compound was prepared according to the procedures described for the conversion of Cbz-protected amine 1.131 to amino ketone 1.59 in 86% yield over the two steps to give a yellow oil. R$_f$ 0.70 (1:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl$_3$, major rotamer) δ 7.38-7.25 (m, 6H), 6.53 (d, J = 8.3 Hz, 1H), 5.08 (br s, 2H), 3.88 (s, 3H), 3.61-3.28 (m, 2H), 3.11-2.96 (m, 2H), 2.96-2.87 (m, 1H), 2.73-2.58 (m, 1H), 2.33-2.15 (m, 3H), 2.00-1.87 (m, 1H), 1.76-1.54 (m, 4H), 1.26-1.12 (m, 1H); 13C NMR (125 MHz, CDCl$_3$, major rotamer) δ
213.68, 161.97, 156.39, 156.21, 140.50, 136.35, 128.45, 128.08, 128.03, 127.92, 107.37, 66.72, 53.36, 52.74, 44.33, 41.22, 38.63, 37.26, 34.05, 28.70, 25.80, 24.63; IR (film) \(\nu_{\text{max}} \) 3335, 2937, 1709, 1595, 1477, 1301, 1255, 1032, 734, 698 cm\(^{-1}\); HRMS (ESI) m/z 409.2123 \([\text{M+H}]^+\); calculated for \([\text{C}_{24}\text{H}_{20}\text{N}_2\text{O}_4]^+\): 409.2122.

Ketone (2.56): The title compound was obtained according to the procedure described for the conversion of 1.131 to 1.59 in 76% yield. \(R_f \) 0.70 (1:1 hexanes/EtOAc); \(^1\text{H NMR} \) (500 MHz, CDCl\(_3\), major rotamer) \(\delta \) 7.38-7.25 (m, 6H), 6.53 (d, \(J = 8.3 \text{ Hz} \), 1H), 5.08 (br s, 2H), 3.88 (s, 3H), 3.61-3.28 (m, 2H), 3.11-2.96 (m, 2H), 2.96-2.87 (m, 1H), 2.73-2.58 (m, 1H), 2.33-2.15 (m, 3H), 2.00-1.87 (m, 1H), 1.76-1.54 (m, 4H), 1.26-1.12 (m, 1H); \(^1\text{C NMR} \) (125 MHz, CDCl\(_3\), major rotamer) \(\delta \) 213.53, 161.97, 156.46, 156.28, 140.44, 136.40, 128.42, 128.04, 128.01, 127.99, 107.37, 66.69, 53.28, 52.72, 44.36 (d, \(J(C,^{15}\text{N}) = 10.7 \text{ Hz} \)), 41.22, 38.66, 37.27, 30.56, 28.92, 24.59, 19.03; \(^{15}\text{N NMR} \) (40 MHz, CDCl\(_3\)) \(\delta \) 80.4; IR (film) \(\nu_{\text{max}} \) 3335, 2937, 1709, 1595, 1477, 1301, 1255, 1032, 734, 698 cm\(^{-1}\); HRMS (ESI) m/z 410.2102 \([\text{M+H}]^+\); calculated for \([\text{C}_{24}\text{H}_{29}\text{NNO}_4]^+\): 410.2092.

Tetracyclic amine (1.155): The title compound was obtained according to the procedure described for 1.57 in 90% yield as a colorless gel. This material was used without further purification in the next step. \(R_f \) 0.15 (10% MeOH in CH\(_2\)Cl\(_2\)); \(^1\text{H NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 7.22 (d, \(J = 8.1 \text{ Hz} \), 1H), 6.43 (d, \(J = 8.1 \text{ Hz} \), 1H), 4.66 (m, 1H), 3.89 (s, 3H), 3.27-3.15 (m, 2H), 3.02 (br s, 1H), 2.74 (dd, \(J = 15.5, 4.5 \text{ Hz} \), 1H), 2.66 (m, 1H), 2.13-2.06 (m, 1H), 2.00 (m, 1H), 1.95-1.79 (m, 2H), 1.79-1.54 (m, 4H), 1.43-1.33 (m, 2H); \(^1\text{C NMR} \) (125 MHz, CDCl\(_3\)) \(\delta \) 161.65, 157.45, 141.20, 132.27, 106.94, 70.48, 55.19, 53.16, 44.32, 36.83, 36.28, 34.14, 33.35, 33.06, 31.08, 15.59; IR (film) \(\nu_{\text{max}} \) 2928, 2865, 1596, 1478, 1425, 1307, 1283, 1034, cm\(^{-1}\); HRMS (ESI) m/z 259.1808 \([\text{M+H}]^+\); calculated for \([\text{C}_{16}\text{H}_{23}\text{N}_2\text{O}]^+\): 259.1805.
Tetracyclic amine (2.31): The title compound was obtained according to the procedure described for 1.57 in 91% yield as a colorless gel. This material was used without further purification in the next step. \(R_f \) 0.15 (10% MeOH in CH\(_2\)Cl\(_2\)); \(^1\text{H} \)NMR (600 MHz, CDCl\(_3\)) \(\delta \) 7.22 (d, \(J = 8.1 \ \text{Hz}, 1\)H), 6.43 (d, \(J = 8.1 \ \text{Hz}, 1\)H), 4.66 (m, 1H), 3.89 (s, 3H), 3.27-3.15 (m, 2H), 3.02 (br s, 1H), 2.74 (dd, \(J = 15.5, 4.5 \ \text{Hz}, 1\)H), 2.66 (m, 1H), 2.13-2.06 (m, 1H), 2.00 (m, 1H), 1.95-1.79 (m, 3H), 1.79-1.54 (m, 4H), 1.43-1.33 (m, 1H); \(^{13}\text{C} \)NMR (150 MHz, CDCl\(_3\)) \(\delta \) 161.36, 158.96, 141.21, 134.32, 106.19, 56.50 (d, \(J(C^{\text{15}}\text{N}) = 3.0 \ \text{Hz} \)), 54.25 (d, \(J(C^{\text{15}}\text{N}) = 3.3 \ \text{Hz} \)), 53.12, 45.54 (d, \(J(C^{\text{15}}\text{N}) = 2.2 \ \text{Hz} \)), 38.84, 37.73, 35.58, 34.12, 33.75, 33.37, 16.01; \(^{15}\text{N} \)NMR (40 MHz, CDCl\(_3\)) \(\delta \) 48.1; IR (film) \(\nu_{\text{max}} \) 2928, 2865, 1596, 1478, 1425, 1307, 1283, 1034, cm\(^{-1}\); HRMS (ESI) m/z 260.1774 [(M+H)_+] ; calculated for [C\(_{16}\)H\(_{23}\)\(^{15}\)NNO]\(^+\): 260.1775.

Deuterated amine (2.27): To a solution of 1.155 (5.0 mg, 0.019 mmol) in THF (1 mL) at -78 °C was added \(n \)-butyllithium (2.5M in hexanes, 15 µL, 0.038 mmol). After stirring the resulting bright orange solution for 30 min at -78 °C, D\(_2\)O (30 µL, 1.7 mmol) was added in one portion. The reaction mixture was allowed to warm to rt over 1 h. The reaction mixture was added to 1N NaOH (5 mL) and extracted with CH\(_2\)Cl\(_2\) (3 X 5 mL). The combined organic extracts were dried over MgSO\(_4\) and concentrated under vacuum to provide 2.27 (5 mg, 72% D incorporation) in quantitative yield as a colorless oil. \(R_f \) 0.15 (10% MeOH in CH\(_2\)Cl\(_2\)); \(^1\text{H} \)NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.22 (d, \(J = 8.1 \ \text{Hz}, 1\)H), 6.43 (d, \(J = 8.1 \ \text{Hz}, 1\)H), 4.66 (m, 0.28 H), 3.89 (s, 3H), 3.27-3.15 (m, 2H), 3.02 (br s, 1H), 2.72 (m, 1H), 2.66 (m, 1H), 2.13-2.06 (m, 1H), 2.00 (m, 1H), 1.95-1.79 (m, 2H), 1.79-1.54 (m, 4H), 1.43-1.33 (m, 2H); \(^{13}\text{C} \)NMR (125 MHz, CDCl\(_3\)) \(\delta \) 161.35, 158.94, 141.22, 134.38, 106.20, 56.52, 54.30, 53.15, 45.23 (t), 38.87, 37.74, 35.60, 34.13, 33.68, 33.39, 16.03; IR (film) \(\nu_{\text{max}} \) 2926, 1594, 1476, 1424, 1246, 1100, 1036, 821, 664 cm\(^{-1}\); HRMS (EI) m/z 259.1799 [(M+H)_+] ; calculated for [C\(_{16}\)H\(_{23}\)DN\(_2\)O]\(^+\): 259.1795. This procedure was used for the conversion of 2.27 \(\rightarrow \) 2.28 (D\(_2\)O quench) and 2.27 \(\rightarrow \) 1.155 (H\(_2\)O quench).

Boc-protected tetracyclic amine (2.57): The title compound was obtained according to the procedure described for 1.124 to provide 2.57 as a colorless oil in 90% yield. \(R_f \) 0.55 (2:1 hexanes/EtOAc); \(^1\text{H} \)NMR (500 MHz, C\(_6\)D\(_6\)) \(\delta \) 6.79 (d, \(J = 8.2 \ \text{Hz}, 1\)H), 6.46 (d, \(J = 8.2 \ \text{Hz}, 1\)H), 4.26-4.22 (m, 1H), 3.96 (dd, \(J = 16.1, 13.8 \ \text{Hz}, 1\)H), 3.82 (s, 3H), 3.22-3.17 (m, 1H), 3.07 (dd, \(J = 16.4, 4.3 \ \text{Hz}, 1\)H), 3.04-2.96 (m, 1H), 2.93 (dd, \(J = 13.5, 4.6 \ \text{Hz}, 1\)H), 2.36-2.32 (m, 1H), 2.30-2.21 (m, 1H), 1.91-1.84 (m, 1H), 1.63-1.56 (m, 2H), 1.54-1.48 (m, 1H), 1.48-1.39 (m,
3H), 1.38-1.29 (m, 1H), 1.25 (s, 9H); \(^{13}\)C NMR (125 MHz) \(\delta\) 161.53, 157.55, 153.66, 141.08, 131.84, 107.28, 78.35, 56.90, 52.52, 52.04, 43.47, 39.19, 38.71, 35.33, 34.51, 33.36, 30.26, 28.02, 18.13. NOESY, COSY, and HMBC data for 2.57 is included with \(^1\)H and \(^{13}\)C.

General Procedure for C-N bond formation using the following oxidants: iodine, N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), N-iodosuccinimide (NIS), and (diacetoxyiodo)benzene.

Tertiary Amine (1.161): To a solution of 1.155 (1 equiv) in THF (0.02M) at -78 °C was added \(n\)-butyllithium (2.5M in hexanes, 2 equiv) over 2 min. After stirring the resulting bright orange solution for 30 min at -78 °C, the oxidant (1 equiv) was added in one portion. The reaction mixture was stirred at -78 °C for 2 h and then slowly allowed to warm to 0 °C (ca. 2 h). The reaction mixture was quenched by sequential slow addition of saturated aq. NH\(_2\)Cl (1 mL), saturated aq. NaHSO\(_3\) (1 mL) and 1N NaOH (5 mL), and extracted with CH\(_2\)Cl\(_2\) (3 X 5 mL). The combined organic extracts were dried over MgSO\(_4\) and concentrated under vacuum to afford a yellow oil which was purified by flash chromatography (10 % MeOH in CH\(_2\)Cl\(_2\)) to afford 1.161 as a yellow oil. The results for the different oxidants are I\(_2\) (90% yield), NCS (80% yield), NBS (86% yield), NIS (90% yield) and (diacetoxyiodo)benzene (65% yield). \(R_f\) 0.32 (10 % MeOH in CH\(_2\)Cl\(_2\)); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.21 (d, \(J = 8.1\) Hz, 1H), 6.46 (d, \(J = 8.14\) Hz, 1H), 4.25 (br s, 1H), 3.91 (s, 3H), 3.42 (dd, \(J = 13, 3.5\) Hz, 1H), 3.31 (br s, 1H), 2.90-2.84 (m, 1H), 2.73-2.68 (m, 1H), 2.13-2.05 (m, 2H), 2.05-1.96 (m, 1H), 1.92-1.87 (m, 1H), 1.87-1.73 (m, 2H), 1.72-1.66 (m, 1H), 1.62-1.48 (m, 1H), 1.47-1.38 (m, 1H), 1.34-1.26 (m, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 162.67, 159.72, 134.84, 133.39, 106.04, 71.16, 68.07, 61.04, 53.55, 49.13, 46.53, 34.63, 33.74, 31.70, 30.77, 18.25; IR (film) \(\nu_{\text{max}}\) 2931, 2856, 1709, 1600, 1477, 1423, 1310, 1264, 1179, 1030, 780 cm\(^{-1}\); HRMS (ESI) m/z 257.1652 [(M+H)]\(^+\); calculated for [C\(_{16}\)H\(_{21}\)N\(_2\)O]\(^+\): 257.1648.

Tertiary amine salt (2.39): To a solution of 1.155 (10 mg, 0.039 mmol) in THF (2 mL) at -78 °C was added \(n\)-BuLi (2.5M in hexanes, 62 \(\mu\)L, 0.156 mmol) over 2 min. After stirring at -78 °C for 30 min (bright orange reaction mixture), solid \(N\)-bromosuccinimide (NBS, 56 mg, 0.312 mmol) was added in one portion. The reaction mixture was stirred at -78 °C for 2 h and then slowly allowed to warm to 0 °C (2 h). During this time, the color of the reaction mixture changed from bright orange to amber. The reaction mixture was quenched by sequential slow addition of
saturated aq. NH₄Cl (1 mL), saturated aq. NaHSO₃ (2 mL) and 1N NaOH (10 mL), and extracted with CH₂Cl₂ (3 X 5 mL). The combined organic extracts were dried over MgSO₄, concentrated under vacuum and purified by flash chromatography (CH₂Cl₂ → 9:1 CH₂Cl₂/Methanol → 4:1 CH₂Cl₂/Methanol → 1:1 CH₂Cl₂/Methanol) to provide 7.0 mg (61% yield) of **2.39** as a yellow solid. Recrystallization of **2.39** from CH₂Cl₂/pentane provided crystals suitable for X-ray analysis. *R*₂ (10 % MeOH in CH₂Cl₂); H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 8.0 Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 4.95 (s, 1H), 3.95 (s, 1H), 3.91 (s, 3H), 3.79 (dd, *J* = 12.5, 3.5 Hz 1H), 3.30 (d, *J* = 12 Hz 1H), 3.14 (br s, 1H), 2.86-2.75 (m, 1H), 2.37 (m, 1H), 2.30 (s, 1H), 2.26-2.18 (m, 1H), 2.15-1.96 (m, 2H), 1.95-1.89 (m, 1H), 1.83-1.75 (m, 1H), 1.70-1.59 (m, 1H), 1.50 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 163.71, 152.53, 135.63, 129.67, 109.84, 73.68, 67.76, 58.59, 53.89, 47.24, 46.95, 32.83, 32.10, 29.73, 27.53, 17.06; IR (film) *υ* *max* 3420, 2928, 2856, 1647, 1608, 1482, 1425, 1318, 1030, 831 cm⁻¹; HRMS (ESI) m/z 257.1654 ([M]+); calculated for [C₁₅H₂₁N₂O]⁺: 257.1648; MP 193-194 °C.

Bissulfide (2.40): To a solution of **1.155** (10 mg, 0.039 mmol) in THF (2 mL) at -78 °C was added n-BuLi (0.3M in hexanes/diethyl ether, 260 μL, 0.078 mmol) over 2 min. After stirring at -78 °C for 30 min (bright orange reaction mixture), diphenyl disulfide (102 mg, .47 mmol) in THF (0.5 mL) was added over 1 min. The reaction mixture was stirred at -78 °C for 2 h and then slowly allowed to warm to 0 °C (3 h). During this time, the color of the reaction mixture changed from bright orange to yellow. The reaction mixture was quenched by sequential slow addition of saturated aq. NH₄Cl (2 mL) and water (3 mL). The reaction mixture was poured on 1N NaOH (8 mL) and extracted with CH₂Cl₂ (3 X 5 mL). The combined organic extracts were dried over MgSO₄, concentrated under vacuum and purified by flash chromatography (hexanes → 50:1 hexanes/EtOAc → 20/1 hexanes/EtOAc → CH₂Cl₂ → 10% MeOH/CH₂Cl₂) to provide 7.2 mg (40% yield) of bissulfide **2.40** as a clear oil and 2.2 mg (22% yield) of tertiary amine **1.161** as a yellow oil. *R*₂ 0.52 (8:1 hexanes/EtOAc); H NMR (500 MHz, (CD₃)₂CO) δ 7.50 (d, *J* = 8.3 Hz, 1H), 7.39-7.37 (m, 2H), 7.32-7.24 (m, 7H), 7.14-7.10 (m, 1H), 6.54 (d, *J* = 8.2 Hz, 1H), 5.60 (d, *J* = 7.6 Hz, 1H), 3.64 (s, 3H), 3.61-3.59 (m, 1H), 3.38 (dd, *J* = 12.0, 4.2 Hz, 1H), 3.06 (br s, 1H), 3.02 (m, 1H), 2.89-2.81 (m, 1H), 2.49-2.47 (m, 1H), 2.43 (m, 1H), 2.37-2.30 (m, 2H), 1.96-1.90 (m, 1H), 1.67-1.51 (m, 2H), 1.46-1.37 (m, 2H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ 161.80, 156.64, 143.05, 140.34, 137.09, 132.57, 131.03, 129.98, 129.68, 129.46, 128.45, 126.17, 109.35, 66.57, 62.54, 60.32, 53.27, 41.87, 41.56, 39.00, 34.11, 31.11, 28.75, 17.76; IR (film) *υ* *max* 2924, 2854, 2359, 1732, 1597, 1477, 1438, 1272, 1026, 737 cm⁻¹; HRMS (ESI) m/z 475.1875 ([M+H]+); calculated for [C₁₉H₁₉N₂O₂S]⁺: 475.1872. 2D NOESY data was used to determine relative stereochemistry. NOESY, COSY, and HMBC data for **2.40** is included with ¹H and ¹³C.
Tertiary amine (1.161): To a solution of 1.155 (10 mg, 0.039 mmol) in THF (2 mL) at -78 °C was added n-BuLi (2.5 M in hexanes, 32 µL, 0.078 mmol) over 2 min. After stirring at -78 °C for 30 min (bright orange reaction mixture), diphenyl disulfide (9 mg, 0.039 mmol) is added in one portion. The reaction mixture was stirred at -78 °C for 2 h and then slowly allowed to warm to 0 °C (3 h). During this time, the color of the reaction mixture changed from bright orange to yellow. The reaction mixture was quenched by sequential slow addition of saturated aq. NH₄Cl (2 mL) and water (2 mL). The reaction mixture was poured on 1M NaOH (5 mL) and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic extracts were dried over MgSO₄, concentrated under vacuum and purified by flash chromatography (CH₂Cl₂ → 5% MeOH/CH₂Cl₂ → 10% MeOH/CH₂Cl₂) to provide 6.4 mg (64% yield) of tertiary amine 1.161 as a yellow oil.

Aminosulfide (2.42): To a solution of amine 1.155 (10 mg, 0.038 mmol) and triethylamine (54 µL, 0.38 mmol) in CH₂Cl₂ (1 mL) is added PhSCI₆ (0.95 M soln in CH₂Cl₂, 0.20 mL, 0.19 mmol) over 2 min. Reaction is allowed to stir for 12 h and then poured on water (5 mL) and extracted with CH₂Cl₂ (2 x 5 mL). The combined organic extracts were dried over MgSO₄, concentrated under vacuum and purified by flash chromatography (hexanes → 50:1 hexanes/EtOAc → 20:1 hexanes/EtOAc) to give 8.0 mg (57% yield) of aminosulfide 2.42 as a light red oil. Rₚ 0.62 (8:1 hexanes/EtOAc); ¹H NMR (600 MHz, CDCl₃) δ 7.37 (m, 2H), 7.32-7.28 (m, 2H), 7.27-7.24 (m, 1H) 7.20 (d, J = 8.2 Hz, 1H), 6.44 (d, J = 8.1 Hz, 1H), 4.50-4.43 (m, 1H), 3.91 (s, 3H), 3.54 (td, J = 11.8, 1.7 Hz, 1H), 3.28 (dd, J = 11.9, 4.7 Hz, 1H), 2.98 (m, 2H), 2.75 (t, J = 5.0 Hz, 1H), 2.69 (dd, J = 15.3, 3.9 Hz, 1H), 2.13-2.06 (m, 1H), 2.06-2.02 (m, 1H), 1.90 (td, J = 13.4, 5.7 Hz, 1H), 1.82-1.74 (m, 1H), 1.68 (td, J = 13.5, 4.2 Hz, 1H), 1.50 (td, J = 9.1, 4.2 Hz, 1H), 1.43 (m, 1H), 1.28 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 161.56, 158.83, 141.08, 135.71, 133.53, 131.37, 128.51, 127.64, 106.35, 64.59, 61.25, 53.20, 44.63, 41.23, 39.54, 35.22, 34.45, 34.37, 30.43, 15.97; IR (film) ν=2928, 1597, 1477, 1425, 1302, 1265, 1035, 822, 749, 692 cm⁻¹; HRMS (ESI) m/z 367.1838 [(M+H)⁺; calculated for [C₂₂H₂₇N₂OS]⁺: 367.1839].
Tertiary amine (1.161): To a solution of aminosulfide 2.42 (4.0 mg, 0.011 mmol) in THF (1 mL) at -78 °C was added n-BuLi (0.2 M in hexanes/diethyl ether, 110 µL, 0.022 mmol) over 2 min. After stirring for 1.5 h at -78 °C, the reaction was slowly allowed to warm to 0 °C (1.5 h). Water (3 mL) was added and the reaction mixture was extracted with CH₂Cl₂ (2 x 5 mL). The combined organic extracts were dried over MgSO₄, concentrated under vacuum and purified by flash chromatography (50:1 hexanes/EtOAc → 20:1 hexanes/EtOAc → CH₂Cl₂ → 10% MeOH/CH₂Cl₂) to give 2.0 mg (71% yield) of tertiary amine 1.161 as a yellow oil.

![N-BuLi and PhSSPh reagents](image)

Ketosulfide (2.41): To a solution of 1.155 (15 mg, 0.058 mmol) in THF (2.5 mL) at -78 °C was added n-BuLi (2.5 M in hexanes, 70 µL, 0.174 mmol) over 2 min. After stirring at -78 °C for 30 min (bright orange reaction mixture), diphenyl disulfide (101 mg, .46 mmol) in THF (0.5 mL) was added over 1 min. The reaction mixture was stirred at -78 °C for 2 h and then slowly allowed to warm to 0 °C (2 h). During this time, the color of the reaction mixture changed from bright orange to yellow. The reaction mixture was quenched by sequential slow addition of saturated aq. NH₄Cl (2 mL) and water (3 mL). The reaction mixture was poured on 1M NaOH (8 mL) and extracted with CH₂Cl₂ (2 x 8 mL). The combined organic extracts were dried over MgSO₄, concentrated under vacuum and purified by flash chromatography (50:1 hexanes/EtOAc → 2:1 hexanes/EtOAc → 1:1 hexanes/EtOAc) to provide 11.5 mg (55% yield) of 2.41 as a yellow solid. Rf 0.38 (1:1 hexanes/EtOAc); H NMR (600 MHz, CDCl₃) δ 7.61-7.55 (m, 2H), 7.40 (d, J = 8.3 Hz, 1H), 7.36-7.32 (m, 1H), 7.28 (m, 2H), 6.77 (d, J = 8.2 Hz, 1H), 4.09 (s, 3H), 3.12 (dd, J = 11.3, 3.9 Hz, 1H), 2.93-2.87 (m, 2H), 2.87-2.83 (m, 1H), 2.68-2.62 (m, 1H), 2.32-2.29 (m, 1H), 2.13-2.08 (m, 1H), 2.02-1.95 (m, 2H), 1.80-1.72 (m, 1H), 1.72-1.66 (m, 1H), 1.50-1.43 (m, 1H), 1.40 (dt, J = 13.0, 4.1 Hz, 1H); C NMR (150 MHz, CDCl₃) δ 188.70, 162.27, 152.83, 140.56, 137.26, 130.23, 129.20, 128.46, 123.14, 112.59, 61.39, 58.77, 53.26, 52.92, 46.23, 36.69, 36.2, 32.46, 30.93, 19.18; IR (film) v max 2926, 2240, 1673, 1599, 1477, 1321, 1267, 1017, 837, 730 cm⁻¹; HRMS (ESI) m/z 381.1639 [(M+H)⁺]; calculated for [C₂₂H₂₅N₂O₂S]⁺: 381.1637; MP 152-154 °C.

![n-BuLi and TEMPO reagents](image)

Tertiary amine (1.161): To a solution of 1.155 (10 mg, 0.039 mmol) in THF (2 mL) at -78 °C was added n-BuLi (0.3M in hexanes/diethyl ether, 260 µL, 0.078 mmol) over 2 min. After stirring at -78 °C for 30 min (bright orange reaction mixture), 2,2,6,6-Tetramethyl-1-
piperidinyloxy (TEMPO, 15 mg, 0.098 mmol) in THF (0.2 mL) is added in one portion and the reaction mixture turned red. The reaction mixture was stirred at -78 °C for 2 h and then slowly allowed to warm to rt and stir overnight (14 h). During this time, the color of the reaction mixture changed from red to yellow. The reaction mixture was quenched by sequential addition of saturated aq. NH₄Cl (2 mL) and water (2 mL). The reaction mixture was poured on 1M NaOH (5 mL) and extracted with CH₂Cl₂ (3 X 5 mL). The combined organic extracts were dried over MgSO₄, concentrated under vacuum and purified by flash chromatography (CH₂Cl₂ → 5% MeOH/CH₂Cl₂ → 10% MeOH/CH₂Cl₂) to provide 7.0 mg (70% yield) of tertiary amine **1.161** as a yellow oil.

Boc-sulfide (2.50): To a solution of **1.155** (10 mg, 0.039 mmol) in THF (2 mL) at -78 °C was added n-BuLi (0.3M in hexanes/diethyl ether, 260 µL, 0.078 mmol) over 2 min. After stirring at -78 °C for 30 min (bright orange reaction mixture), diphenyl disulfide (26 mg, 0.117 mmol) in THF (0.25 mL) was added over 1 min. The reaction mixture was stirred at -78 °C for 2 h. During this time, the color of the reaction mixture changed from bright orange to yellow. The reaction mixture was quenched at -78 °C by sequential slow addition of saturated aq. NH₄Cl (2 mL) and water (3 mL). The reaction mixture was poured on 1N NaOH (8 mL) and extracted with CH₂Cl₂ (3 X 5 mL). The combined organic extracts were dried over MgSO₄ and concentrated under vacuum.

The crude residue was dissolved in CH₂Cl₂ (1 mL), and triethylamine (54 µL, 0.39 mmol) and di-tert-butyl dicarbonate (44 µL, 0.19 mmol) were added. The reaction was allowed to stir at rt for 16 h. The reaction was diluted with CH₂Cl₂ (5 mL) and poured on water (5 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 5 mL) and the combined organic layers were dried over MgSO₄ and concentrated under vacuum. The crude residue was purified by flash chromatography (hexanes → 50:1 hexanes/EtOAc → 20:1 hexanes/EtOAc → 8:1 hexanes/EtOAc) to provide 6.5 mg (35% yield) of boc-sulfide **2.50** as a clear oil and 4.6 mg (25% yield) of bissulfide **2.40** as a clear oil. **Rf** 0.4 (8:1 hexanes/EtOAc); **¹H NMR** (600 MHz, CDCl₃) δ 7.56-7.53 (m, 2H), 7.28 (d, J = 8.3 Hz, 1H), 7.27-7.24 (m, 2H), 7.21-7.17 (m, 1H), 6.53 (d, J = 8.3 Hz, 1H), 4.70 (d, J = 5.2 Hz, 1H), 3.97-3.91 (m, 1H), 3.90-3.86 (m, 1H), 3.69 (s, 3H), 3.42 (dd, J = 14.1, 5.6 Hz, 1H), 3.26-3.20 (m, 1H), 2.70-2.66 (m, 1H), 2.66-2.60 (m, 1H), 2.54-2.49 (m, 1H), 2.32-2.25 (m, 1H), 1.90 (ddd, J = 14.4, 6.5, 4.1 Hz, 1H), 1.73-1.64 (m, 2H), 1.55-1.50 (m, 3H), 1.38 (s, 9H); **¹³C NMR** (150 MHz, CDCl₃) δ 161.03, 155.14, 154.81, 141.78, 138.01, 131.12, 130.16, 128.63, 126.40, 109.00, 79.35, 61.82, 54.03, 53.08, 48.51, 38.86, 36.45, 32.73, 30.01, 28.42, 26.96, 26.37, 16.98; **HRMS** (ESI) m/z 467.2369 [(M+H)⁺; calculated for [C₂₇H₃₅N₂O₃S]⁺: 467.2363].
Materials and Methods for 6Li NMR experiments

Reagents and Solvents.

$[^{6}\text{Li}]{\text{n-BuLi}}$ was prepared and recrystallized in n-pentane as described previously.32,33 An aliquot was removed and the pentane was evaporated and replaced with freshly distilled cyclopentane. n-BuLi was then titrated using diphenylacetic acid to determine a precise molarity. THF-d_8 was distilled from a solution containing sodium benzophenone ketyl. Cyclopentane was distilled from blue solutions containing sodium benzophenone ketyl with approximately 1\% tetraglyme to dissolve the ketyl. Air- and moisture-sensitive materials were manipulated under argon using standard glove box, vacuum line, and syringe techniques.

Sample Preparation.

A stock solution of 2.31 was prepared at room temperature. After flame drying the NMR tube under vacuum and flushing with argon, the tube was placed in a -78 °C dry ice/acetone bath. The appropriate amount of the amine and THF-d_8 was added via syringe, followed by dropwise addition n-BuLi. All samples had a total volume of 0.60 mL. The tube was sealed under partial vacuum and immediately vortexed for approximately 5 seconds before being replaced into a -78 °C bath. The samples were stored in a -94 °C freezer.

Spectroscopic Analysis.

NMR spectra were recorded at -90 °C or -100 °C on a 500 or 600 MHz spectrometer with a delay between scans set to >5 x T1 to ensure accurate integrations. 6Li chemical shifts are reported relative to a 0.30 M 6LiCl/MeOH standard and 15N chemical shifts are reported relative to a [15N]DMEA standard.
Figure 2.4. ^6Li NMR spectrum of 0.05 M $[^{15}\text{N}]\text{2.31}$ and 2 equiv $[^6\text{Li}]\text{n-BuLi}$ in THF-d_8 at -90 °C. * denotes an artifact of $[^6\text{Li}]\text{n-BuLi}$.

Figure 2.5. $[^{15}\text{N}]^6\text{Li}$ NMR spectrum of 0.05 M $[^{15}\text{N}]\text{2.31}$ and 2 equiv $[^6\text{Li}]\text{n-BuLi}$ in THF-d_8 at -90 °C. * denotes an artifact of $[^6\text{Li}]\text{n-BuLi}$.
Figure 2.6. 15N NMR spectrum of 0.05 M $[^{15}$N]2.31 and 2 equiv $[^6\text{Li}]n$-BuLi in THF-d_8 at -90 °C.

Figure 2.7. 13C NMR spectrum of 0.025 M 1.155 and 2 equiv $[^6\text{Li}]n$-BuLi in THF-d_8 at -100 °C expanded around benzylic carbon resonance. 2-D NMR techniques (COSY, HMBC, and HSQC) were used to identify the chemical shift of the benzylic carbon.
DFT Calculations Data

Table 1.1. Relative free energies (ΔG, kcal/mol) of various forms of 2.25 at -78 °C calculated using B3LYP level of theory with 6-31G(d) basis set

<table>
<thead>
<tr>
<th>Structure (S=THF)</th>
<th>Free Energy (ΔG, kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td> + 3S</td>
<td>0.0</td>
</tr>
<tr>
<td> + 2S</td>
<td>-19.9</td>
</tr>
<tr>
<td> + 2S</td>
<td>-19.5</td>
</tr>
<tr>
<td> + S</td>
<td>-32.0</td>
</tr>
<tr>
<td></td>
<td>-38.9 (see Fig. 2.8)</td>
</tr>
<tr>
<td>Chemical Structure</td>
<td>Equations</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>+ 3S</td>
</tr>
<tr>
<td></td>
<td>+ 2S</td>
</tr>
<tr>
<td></td>
<td>+ 2S</td>
</tr>
<tr>
<td></td>
<td>+ S</td>
</tr>
<tr>
<td></td>
<td>+ 3S</td>
</tr>
<tr>
<td></td>
<td>+ 2S</td>
</tr>
</tbody>
</table>
(see Fig. 2.8)
Figure 2.8. The relative energies of the three most stable solvates of the three prominent structural forms of 2.25.
X-Ray Crystallography Data for pentacyclic amine salt 2.39
Crystal data and Structure Refinement for pentacyclic amine salt 2.39

A colorless block 0.20 x 0.15 x 0.10 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 139(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 10 seconds per frame using a scan width of 0.3°. Data collection was 99.5% complete to 25.00° in θ. A total of 8916 reflections were collected covering the indices, -9<=h<=9, -10<=k<=11, -17<=l<=18. 3587 reflections were found to be symmetry independent, with an \(R_{\text{int}} \) of 0.0196. Indexing and unit cell refinement indicated a primitive, triclinic lattice. The space group was found to be P-1 (No. 2). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.
Empirical formula C16 H21 Cl N2 O
Formula weight 292.80
Temperature 139(2) K
Wavelength 0.71073 Å (MoKα)
Crystal system Triclinic
Space group P-1
Unit cell dimensions a = 7.3398(7) Å α= 84.584(2)°
b = 8.3066(8) Å β= 75.864(2)°
c = 13.8028(13) Å γ = 68.311(2)°
Volume 758.28(13) Å³
Z 2
Density (calculated) 1.282 Mg/m³
Absorption coefficient 0.250 mm⁻¹
F(000) 312
Crystal size 0.20 x 0.15 x 0.10 mm³
Crystal color/habit colorless block
Theta range for data collection 1.52 to 28.34°.
Index ranges -9<=h<=9, -10<=k<=11, -17<=l<=18
Reflections collected 8916
Independent reflections 3587 [R(int) = 0.0196]
Completeness to theta = 25.00° 99.5 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9755 and 0.9518
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 3587 / 0 / 182
Goodness-of-fit on F² 1.028
Final R indices [I>2sigma(I)] R1 = 0.0444, wR2 = 0.1087
R indices (all data) R1 = 0.0581, wR2 = 0.1193
Largest diff. peak and hole 0.414 and -0.241 e.Å⁻³
X-Ray Crystallography Data for Ketosulfide 2.41
Crystal data and Structure Refinement for ketone 2.41

A colorless needle 0.08 x 0.06 x 0.06 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 97.8% complete to 67.00° in θ. A total of 13774 reflections were collected covering the indices, -9<=h<=9, -13<=k<=13, -13<=l<=10. 3271 reflections were found to be symmetry independent, with an R_{int} of 0.0193. Indexing and unit cell refinement indicated a primitive, triclinic lattice. The space group was found to be P-1 (No. 2). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.
Empirical formula \(\text{C22 H24 N2 O2 S} \)
Formula weight 380.49
Temperature 100(2) K
Wavelength 1.54178 Å
Crystal system Triclinic
Space group P-1
Unit cell dimensions
\[a = 7.6286(7) \, \text{Å} \quad \alpha = 107.145(5)^\circ. \]
\[b = 11.1810(12) \, \text{Å} \quad \beta = 95.759(5)^\circ. \]
\[c = 12.0135(13) \, \text{Å} \quad \gamma = 105.904(4)^\circ. \]
Volume \(923.21(16) \, \text{Å}^3 \)
\(Z \) 2
Density (calculated) 1.369 Mg/m³
Absorption coefficient 1.715 mm⁻¹
\(F(000) \) 404
Crystal size 0.08 x 0.06 x 0.06 mm³
Crystal color/habit colorless needle
Theta range for data collection 3.93 to 68.25°.
Index ranges
\[-9 \leq h \leq 9, \quad -13 \leq k \leq 13, \quad -13 \leq l \leq 10 \]
Reflections collected 13774
Independent reflections 3271 [R(int) = 0.0193]
Completeness to theta = 67.00° 97.8 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9041 and 0.8750
Refinement method Full-matrix least-squares on \(F^2 \)
Data / restraints / parameters 3271 / 0 / 248
Goodness-of-fit on \(F^2 \) 1.034
Final R indices \([I>2\sigma(I)]\) \(R_1 = 0.0381, \; wR_2 = 0.1016 \)
R indices (all data) \(R_1 = 0.0386, \; wR_2 = 0.1021 \)
Largest diff. peak and hole 0.532 and -0.295 e.Å⁻³
2.9 References

Appendix 2: Spectra Relevant to Chapter 2

ppm (f1)

N
O
Me
MOMO
HO
2
C
H
H

MOMO
HO_2C
210
NOESY of Tetracycle 2.57

Te t r a c y c l e S 1 8 N O E S Y
COSY of Tetracycle 2.57
HMBC of Tetracycle 2.57
Comparison of Amine 1.155 and Amine-\textit{d} 2.27
NOESY of Bisulfide 2.40
COSY of Bissulfide 2.40
HMOC of Bissulfide 2.40