Lawrence Berkeley National Laboratory
Recent Work

Title
THE LONGITUDINAL CRITICAL CURRENT IN TYPE-II SUPERCONDUCTORS

Permalink
https://escholarship.org/uc/item/5kq657dj

Author
Boyd, R.G.

Publication Date
1965-11-01
THE LONGITUDINAL CRITICAL CURRENT IN TYPE-II SUPERCONDUCTORS

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE LONGITUDINAL CRITICAL CURRENT IN TYPE-II SUPERCONDUCTORS

R. G. Boyd

November 1965
THE LONGITUDINAL CRITICAL CURRENT IN TYPE-II SUPERCONDUCTORS

R. G. Boyd

Inorganic Materials Research Division, Lawrence Radiation Laboratory, University of California, Berkeley

ABSTRACT

The longitudinal critical current of a bulk type-II superconductor near the transition field \(H_{c2} \) has been calculated from the Ginzburg-Landau equations via a simple extension of Abrikosov's treatment of the mixed state, subject to the approximation that the self-field of the current can be ignored. The critical current is given by

\[
(\frac{4\pi J_c}{c}) = (2/3)^{3/2} (H_{cb}/\lambda)(1-H/H_{c2})^{3/2}/\beta(1-1/2\kappa^2).
\]

It is suggested that this expression may be approached for real wires in the limit of small radius.
1. INTRODUCTION AND DISCUSSION

We have calculated the longitudinal critical current of a bulk type-II superconductor near the transition field H_{c2}, subject to the approximation that the self-field of the current can be ignored. The calculation is a simple extension of the Abrikosov treatment of the mixed state (based on the Ginzburg-Landau equations). The result is

$$(4\pi J_c/c) = (2/3)^{3/2} (H_{cb}/\lambda) (1-H/H_{c2})^{3/2} / \beta (1-\frac{1}{2}\kappa^2).$$

This differs from the result obtained by a simple free energy argument only by a numerical factor of order unity. It is of the same form and order of magnitude as the critical surface current density, except for the substitution of H_{c2} for H_{c3}. Although the result is derived subject to the approximation $H_{c2} - H \ll H_{c2}$, it is interesting to note that for zero field the result is identical to the Ginzburg-Landau critical current of a thin film in zero field except for the numerical factor $\beta(1-\frac{1}{2}\kappa^2)$ which is of order unity.

Unfortunately the current densities permitted by our equation are so large that in most circumstances it is a rather poor approximation to ignore their self-field. For instance, if we consider a material with $H_{cb}/\lambda = 2.5 \times 10^7$ Oe/cm and $H_{c2} \approx 80$ kOe, then at 60 kOe we have $J_c \approx 10^6$ A/cm2. The self-field of the current at the surface of a standard 10 mil wire would be $H \approx 5$ kOe. If the current flows parallel to the axis of the wire, then the product $\alpha = |J \times H| \approx 5 \times 10^6$ kOe cm2 at the surface. "Pinning strengths" of this order of magnitude can be achieved in some materials, to which--unfortunately--the theory does not strictly apply, since such materials tend to be rather inhomogeneous. Such scanty data as are available
on longitudinal critical currents indicate that our predicted values are approached for materials with strong pinning3,7 but not for homogeneous well-annealed alloys.8

The self-field of the current can be reduced considerably by making the radius of the wire smaller and going to higher longitudinal fields (lower current densities). In this way we can to some extent replace bulk pinning with surface pinning, and so should be able to see the predicted behavior in more homogeneous materials. However, we then run into the problem of separating the contribution of surface currents9 from that of the bulk. At \(H_{c2}\) itself, for instance, the current is carried entirely by the surface.

Despite the difficulties we have mentioned, our expression for the bulk critical current should be correct in the limit of small radius and \(H_{c2} - H \ll H_{c2}\).

2. DERIVATION OF LONGITUDINAL CRITICAL CURRENT

We shall follow Abrikosov1 closely. We assume an infinite superconductor. The external field \(H_0\) and vector potential \(A\) are assumed to be directed along the \(z\) and \(y\) axes respectively. The units of field and length are the thermodynamic critical field \(\sqrt{2} H_{cb}\) and penetration depth \(\lambda\) respectively. In these units the Ginzburg-Landau2 equations can be written

\[
\left(\frac{i \nabla}{\kappa} + A\right)^2 \psi = \psi \left(1 - |\psi|^2\right) \tag{1}
\]

\[
- \nabla(\nabla \psi) = A|\psi|^2 + \frac{1}{2\kappa} \left(\psi^* \nabla \psi - \psi \nabla \psi^*\right). \tag{2}
\]

Near the transition field \(|\psi|^2 \ll 1\), so that we may approximate the field with

\[
A = H_0 x. \tag{3}
\]
We include a phase factor \(\exp(\i j z) \) in \(\Psi \) to insure the presence of a longitudinal current, but neglect throughout the magnetic field due to this current, which amounts to neglecting \(A_z \). We assume that \(\Psi \) is otherwise a function of \(x \) only:

\[
\Psi = \exp(\i j z) f(x). \tag{4}
\]

Then, neglecting the term \(\Psi |\Psi|^2 \), we obtain for \(f(x) \) the harmonic oscillator equation

\[
d^2 f/dx^2 + \left(\kappa^2 - j^2 \right)[1 - \kappa \gamma_0 x^2/(\kappa^2 - j^2)] f = 0 \tag{5}
\]

which has solutions when \(H_o = (\kappa^2 - j^2)/\kappa(2n + 1) \). The nucleation field is given by the largest eigenvalue

\[
H_o = (\kappa^2 - j^2)/\kappa \tag{6}
\]

and corresponds to the solution

\[
\Psi = \exp(\i j z) \exp[-(\kappa^2 - j^2)x^2/2]. \tag{7}
\]

Equation (1) is also satisfied by the functions

\[
\Psi = \exp \left\{ \i j z + \i k y - \frac{(\kappa^2 - j^2)}{2} \left[x - \frac{k}{(\kappa^2 - j^2)} \right]^2 \right\}. \tag{8}
\]

We choose a general solution of the form

\[
\Psi = \exp(\i j z) \sum_{n} c_{n} \exp(\i k y) \varphi_{n}(x),
\]

\[
\varphi_{n} = \exp \left\{ - \frac{(\kappa^2 - j^2)}{2} \left[x - \frac{kn}{(\kappa^2 - j^2)} \right]^2 \right\}, \tag{9}
\]

where \(k, c_{n} \) are arbitrary constants.

Let \(A_o \) be the vector potential at the nucleation field,

\[
A_o = (\kappa^2 - j^2)x/\kappa. \tag{10}
\]
We note the useful identity
\[\frac{\partial \psi}{\partial x} = -\kappa \left[\left(\frac{i}{\kappa} \right) \frac{\partial}{\partial y} + A_0 \right] \psi, \tag{11} \]
which may be easily verified by differentiation of Eq. (9).

We substitute \(\psi \) and \(A_0 \) into the equation for the current, Eq. (2), to obtain the first order correction to \(A \). On making use of the identity Eq. (11), we get
\[\frac{\partial^2 A}{\partial x^2} = -(1/2\kappa) \left(\frac{\partial}{\partial x} \right) \left[\psi \right]^2 \tag{12} \]
\[H = \frac{\partial A}{\partial x} = H_0 - (1/2\kappa) \left[\psi \right]^2 \tag{13} \]
\[A = H_0 x - (1/2\kappa) \int^x \left[\psi \right]^2 \, dx \tag{14} \]
which are identical to Abrikosov's results, since the phase \(j \) is contained only in \(\left| \psi \right|^2 \). The constant \(H_0 \) was shown by Abrikosov to be the external field strength.

We now add to the factors \(c_n \psi_n \) in Eq. (9) small terms \(\psi_n^{(1)} \):
\[\psi = \psi^{(0)} + \psi^{(1)} = \sum e^{ikny} (c_n \psi_n + \psi_n^{(1)}). \tag{15} \]
We substitute \(\psi \) together with \(A \) given by Eq. (14) into Eq. (1). Keeping terms of first order in small quantities, and subtracting the linear equation satisfied by \(\psi^{(0)} \), we obtain
\[\left[\left(\frac{iV}{k} + A_0 \right)^2 - 1 \right] \psi^{(1)} = \left[\left(\frac{iV}{k} + A_0 \right)^2 - \left(\frac{iV}{k} + A \right)^2 - \left| \psi^{(0)} \right|^2 \right] \psi^{(0)} \tag{16} \]
On multiplication by \(\exp(-ikny) \) and integration over \(y \), we get an inhomogeneous equation for \(\psi_n^{(1)} \). For a solution to exist, the inhomogeneous part must be orthogonal to the solution of the corresponding homogeneous equation. But this is simply \(\psi_n \). We multiply the inhomoge-
geneous part by ψ_n, integrate over x, and set the result equal to zero:

$$\iint \text{d}x\text{d}y \, e^{-ikny} \psi_n \left(\left(\frac{iV}{\kappa} + A_\omega \right)^2 - \left(\frac{iV}{\kappa} + A \right)^2 - |\psi|^2 \right) = 0 \quad (17)$$

We discard the superscript on ψ hereafter.

Setting $A_\omega + A = 2A_\omega$ and discarding $\nabla \cdot A$, we get from Eq. (17) after applying Eq. (11)

$$\iint e^{-ikny} \psi_n \left[-\frac{2}{\kappa} (A_\omega - A) \frac{d}{dx} - |\psi|^2 \right] = 0 \quad (18)$$

At this point some caution is necessary. We wish to obtain a polynomial in $|\psi|^2$ under the integral after we multiply by C_n^* and sum over n. For this purpose we must transfer the derivative to the term $(A_\omega - A)$ by partial integration, which eliminates x as a coefficient. However, we must do this before performing the sum if the evaluated term is to be zero. The order of operations is as follows: we partially integrate half the derivative term, then multiply by C_n^* and sum over n. After adding the complex conjugate equation, we finally get

$$\iint |\psi|^2 \left[\frac{1}{\kappa} \frac{d}{dx} (A_\omega - A) - |\psi|^2 \right] = 0 \quad (19)$$

The phase j appears explicitly only in the derivative term. On evaluation we obtain Abrikosov's relation

$$\frac{\kappa^2 - j^2 - \kappa H_0}{\kappa^2} |\psi|^2 + \left(\frac{1}{2\kappa^2} - 1 \right) |\psi|^4 = 0, \quad (20)$$

in which the quantity $(\kappa^2 - j^2)/\kappa$ has taken the place of κ as the bulk nucleation field. From this we obtain
where
\[\beta = \frac{|\psi|^4}{(|\psi|^2)^2} \]
and \(\beta \) is independent of \(H_0 \).

The natural unit of current is
\[\left(\frac{c}{4\pi} \right) \left(\sqrt{2} \frac{H_{cb}}{\lambda} \right), \]
which ensures that \(J = \nabla \times H \) in this system of units. Then the mean longitudinal current is given by
\[J = \left(\frac{j}{\kappa} \right) |\psi|^2 = 2j \left[\frac{(\kappa^2 - j^2)}{\kappa - H_0} \right] / (2\kappa^2 - 1) \beta. \]
We differentiate \(J \) with respect to \(j \) and set the derivative equal to zero to find the value of \(j \) for which \(J \) is a maximum:
\[\frac{\partial J}{\partial j} \propto \kappa^2 - \kappa H_0 - 3j^2 = 0 \]
or
\[j^2 = \frac{1}{3} \left(\kappa^2 - \kappa H_0 \right). \]
The maximum occurs at a value of \(j \) only \(1/\sqrt{3} \) of the maximum possible value of \(j \).

In ordinary cgs units, the critical current is then given by
\[\frac{4\pi J_c}{c} = \left(\frac{2}{3} \right)^{3/2} \frac{H_{cb}}{\lambda} \frac{(1 - H/H_{c2})^{3/2}}{\beta(1 - 1/2\kappa^2)}. \]

The magnetization at the transition falls to two-thirds of its equilibrium value in the absence of current. The smallness of the change in the magnetization accounts for the fact that a simple free energy argument gives very nearly the same result for the critical current.
ACKNOWLEDGEMENTS

I wish to thank Kenneth Ralls for helpful discussions. This work was supported by the United States Atomic Energy Commission.
REFERENCES

