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Abstract The zodiacal-light photometers on the twin Helios spacecraft, the Solar Mass
Ejection Imager (SMEI) on the Coriolis spacecraft, and the Heliospheric Imagers (HIs)
on the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft all point the
way to optimizing future remote-sensing Thomson-scattering observations from deep space.
Such data could be provided by wide-angle viewing instruments on Solar Orbiter, Solar
Probe, or other deep-space probes. Here, we present instrument specifications required for a
successful heliospheric imager, and the measurements and data-processing steps that make
the best use of this remote-sensing system. When this type of instrument is properly designed
and calibrated, its data are capable of determining zodiacal-dust properties, and of three-
dimensional reconstructions of heliospheric electron density over large volumes of the inner
heliosphere. Such systems can measure fundamental properties of the inner heliospheric
plasma, provide context for the in-situ monitors on board spacecraft, and enable physics-
based analyses of this important segment of the Sun-spacecraft connection.
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1. Introduction

Heliospheric remote-sensing observations provide one of very few means of observing struc-
tures in the solar wind between the time they leave the immediate solar environment and the
time when they arrive and are measured by in-situ spacecraft instruments near Earth or in
deep space. These remote-sensing data probe the global extent of the solar wind over a
large range of solar elongations. They also extend across the high-latitude regions (the solar
poles), which are difficult to access by other means. Past research has extensively used he-
liospheric remote sensing to study the physics of structures in the solar wind as they move
out into the heliosphere.

Before spaceborne instruments made heliospheric imaging from remote-sensing data
possible, interplanetary scintillation (IPS) observations of meter-wavelength intensity vari-
ations from point radio sources were used for heliospheric remote-sensing studies. IPS
has long been used to measure small-scale (~ 200 km) density variations along the line
of sight to a radio source (see, e.g., Hewish, Scott, and Wills, 1964; Ananthakrishnan,
Coles, and Kaufman, 1980). IPS observations taken using the Cambridge IPS array in the
UK (Houminer, 1971), show structures that can be classified as either corotating or de-
tached from the Sun (Gapper et al., 1982; Hewish and Bravo, 1986; Behannon, Burlaga,
and Hewish, 1991). More recently, IPS data used in conjunction with tomographic three-
dimensional (3D) reconstruction techniques have shown the global shapes of heliospheric
density and velocity structures including corotating regions and coronal mass ejections
(CMEs) or their interplanetary counterparts (ICMEs) in the solar wind (see, e.g., Jack-
son et al., 1998; Kojima et al., 1998; Asai et al., 1998; Jackson, Hick, and Buffington,
2002; Jackson et al., 2003; Jackson and Hick, 2005; Tokumaru et al., 2007; Tokumaru,
Kojima, and Fujiki, 2010; Bisi et al., 2007, 2008a, 2008b, 2009a, 2009b; Jackson et al.,
2008a, 2008b, 2009, 2010). These tomographic analyses match in-situ spacecraft measure-
ments from near-Earth spacecraft fairly well. Since they measure solar wind structures
prior to their reaching Earth, they have been used to forecast solar wind conditions at
Earth in near real time for over a decade at the Solar Terrestrial Environment Laboratory
(STELab), Nagoya, Japan and the University of California, San Diego (UCSD), websites
http://stesun5.stelab.Nagoya-u.ac.jp/index-e.html, and http://ips.ucsd.edu, respectively.

In the mid 1970s, spaceborne instruments first began to view the solar corona (Tou-
sey, 1973); and shortly thereafter “discovered” CMEs (MacQueen et al., 1974; Koomen et
al., 1975) as the manifestations of the coronal depletions and changing mass measured be-
fore in ground-based coronagraph observations (Hansen et al., 1971, 1974). The first truly
heliospheric white-light Thomson-scattering observations of CMEs (Richter, Leinert, and
Planck, 1982) were obtained with the zodiacal-light photometers (Leinert et al., 1975) on
the Helios spacecraft (Porsche, 1984). The analyses of these data using a variety of imaging,
perspective viewing, and tomographic techniques demonstrating that Thomson-scattering
observations were possible to large elongations (Jackson, 1985a, 1985b; Jackson and Lein-
ert, 1985; Jackson et al., 1985) advanced the NASA proposal for the Large Angle and
Spectrometric COronagraph (LASCO) C3 instrument that viewed to a then-unprecedented
7.5° elongation (Brueckner et al., 1995). The analyses from Helios and following observa-
tions from C3 spurred development of the Solar Mass Ejection Imager (SMEI) instrument
(Eyles et al., 2003; Jackson et al., 2004), and the Solar-TErrestrial RElations Observatory
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(STEREO) spacecraft Heliospheric Imager (HI) instruments (see, e.g., Eyles et al., 2009).
For lessons learned in this article, we use the analyses from the Helios, SMEI, and STEREO
white-light heliospheric imaging instrumentation.

Section 2 describes the Helios, SMEI, and STEREO HI data sets. Section 3 explains the
motivation for obtaining precisely-calibrated heliospheric Thomson-scattering observations,
and describes the difficulties that need to be overcome to extract these from the Helios
photometer data and, by extension, from the SMEI white-light data. Section 4 discusses how
a better instrument could be built and used for these same analyses, and finally Section 5
presents our conclusions.

2. The Helios, SMEI and HI Imaging Data Sets

Understanding the difficulties in measuring Thomson-scattered light down to the level
needed to map heliospheric structures near Earth requires an assessment of the signal levels
involved. Thomson-scattered signals must be separated from many other sources of diffuse
light: background light from the Sun; zodiacal light; and starlight, either individually as
bright point sources or collectively as a mottled contribution to the diffuse sky brightness
(Figure 1). Here, one S10 is the sky brightness of one 10th magnitude solar-type star spread
over a square degree (Cox, 2000). Heliospheric structures are viewed by scattered sunlight,
which retains its same spectral characteristics. Since these structures typically cover many
degrees of sky, and are detected and calibrated relative to background stars, the S10 unit
is an ideal comparative measure for subsequent analysis of Thomson-scattering brightness.
In near-Earth orbit, reflected sunlight from the Moon or Earth can scatter into the field of
view; contributions from atmospheric ram glow, aurorae, and light from the geocorona can
obscure the Thomson-scattering brightness (for a summary of these signals, see Jackson et
al., 2004, and references therein).

When evaluating heliospheric and instrumental stray-light contributions in terms of S10
surface brightness relative to the total Sun in S10s (Figure 1, right-hand scale), the Sun’s total
brightness (in a fashion similar to stars) is spread out over one square degree, and near Earth
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this decreases the Sun’s surface brightness by a factor of 0.223.! When the observer is closer
to the Sun, this fraction becomes larger, as does the brightness of the heliospheric structures
(see Section 4). The Sun is the equivalent of ~ 2 x 10'* S10 units when viewed from Earth by
SMEI. A fundamental limit to diffuse-light photometry is set by photon counting statistics;
a good instrument design reduces other noise sources down to or below this level. This
limit depends upon the optics and scanning configuration, spectral bandpass, and detector
efficiency. The total detected photon count N for a square degree of sky projected onto the
detector surface (see, e.g., Jackson et al., 1989) in Earth orbit is

log,g N =6.15 — 0.4m 4+ log,, Acos 6 + log,, At, (1)

where A is the aperture area in cm?, 6 the incident-light angle relative to the aperture nor-
mal, At the integration time in seconds, and m the brightness “magnitude” in a square
degree evaluated for the instrument’s particular bandpass. Here, the constant 6.15 includes
a bandpass efficiency for the combination of detector and optics of roughly 20%. Further-
more, a detector design requires that the total sky brightness signal m must be determined
well enough throughout the field of view. This will allow the background contribution to be
removed sufficiently well (see Section 3) to be able to isolate the faint Thomson-scattered
signal with sufficient precision for subsequent analysis.

The first truly remote-sensing heliospheric-imaging white-light data came from the
zodiacal-light photometer experiments on the twin Helios spacecraft (Leinert et al., 1975)
(Figure 2). There were two Helios spacecraft, Helios 1 was launched in December 1974,
Helios 2 in January 1976. The Helios photometers on board these spacecraft were designed
to map the brightness of the zodiacal-dust cloud to an unprecedented precision from their
unique orbits (Leinert ez al., 1975, 1981), which carried the spacecraft from 0.3 to 1.0 AU in
the ecliptic plane over a six-month time interval. With a downlink data rate of only one bit
per second, these photometer systems mapped the sky in 65 heliographic locations at 16°,
31°, and 90° ecliptic latitude, in three color bands, using a rotating filter wheel with three
polarization orientations and a clear filter. The total sample interval extended over approx-
imately five hours. Because absolute photometry was a goal for these Helios instruments,
the photometers and the Helios spacecraft were designed to keep stray light to a minimum,
where other instruments up to that time had failed (see Leinert and Kliippelberg, 1974).
The Helios photometers had no discernable stray-light contribution, although attempts were
made to find an amount by slightly tilting the spacecraft from its spin axis perpendicular to
the ecliptic plane. This allowed sunlight to enter into the blackened skirt of the spacecraft
(see Figure 2), and presumably into the ends of the Helios photometer tubes at certain times
during the one-second spacecraft revolution period (Leinert et al., 1981).

The Helios photometers measured the zodiacal-light brightness in the inner heliosphere
in three colors and polarized light with unprecedented precision (see, e.g., Leinert, Richter,
and Planck, 1982; Leinert and Pitz, 1989). The Helios photometer systems detected the
brightness of “plasma clouds” (Leinert, Richter, and Planck, 1982) that were traced in sev-
eral examples by Richter, Leinert, and Planck (1982) to CMEs observed by the Solwind
coronagraph (Sheeley et al., 1980). The Helios spacecraft spin axis was usually kept per-
pendicular to the ecliptic plane with the Helios 1 photometers viewing to the south, and

IWe note that the right-hand scale of Figure 1 is determined in the context of SMEI which views in the red
rather than visual light. This differs from the B/Bgyn used in coronagraph observations (Socker et al., 2000;
as defined by LASCO observations, Morrill ef al., 2006; and see a discussion in Buffington et al., 2007). In
this alternate method of brightness ratio measurement, a unit sky pixel on the image is compared with the
brightness of the mean Sun were it to fall on this pixel assuming the Sun more than overlaps the unit pixel.
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Figure 2 The Helios spacecraft.
The Helios spacecraft
photometers are shown nestled
behind the blackened skirt of the
spacecraft.

those of Helios 2 viewing north. Nevertheless, the Helios photometer coverage of the sky
retained enough spatial information to provide CME images over nearly half a hemisphere
(Jackson, 1985a, 1985b; Jackson and Leinert, 1985) from its non-Earth viewpoint. This in-
formation was used to provide images and to track a halo CME (as observed from Earth)
outward along the Sun — Earth line from the perspective of the two Helios spacecraft until it
produced a geomagnetic storm (Jackson, 1985a), and to determine perspective information
about the 3D shapes of CME:s (see, e.g., Jackson et al., 1985; Jackson, Rompolt, and Svestka,
1988). These same white-light observations were also used to view corotating heliospheric
structures and to measure their outflow and persistence (Jackson, 1991). Although a superb
instrument for measuring zodiacal light, the low data rates from the Helios photometers and
their poor spatial coverage allowed only a rudimentary measurement of the wealth of fine
structure present in the plasma heliosphere.

Building on this instrumentation and these ideas, SMEI (Figure 3) (Eyles et al., 2003;
Jackson et al., 2004) was designed to image nearly the entire sky in visual light during each
102-minute Earth orbit, and to map large-scale variations in heliospheric electron densities
around Earth. The SMEI design required that the instrument provide a 3-sigma signal for
Thomson-scattered light in a square degree of sky 90° from the Sun for a single orbit ex-
posure, and this specification was shown to be adequately met (Buffington et al., 2006).
SMEI provides roughly an order of magnitude improved angular and photometric resolu-
tion compared with Helios, and a three-fold faster cadence for full-sky maps. Designed for
deployment on the Wind spacecraft (Ogilvie and Desch, 1997), SMEI was initially con-
ceived to operate on a rapidly-rotating satellite in deep space (Jackson et al., 1989). In this
configuration, the SMEI detectors would have counted individual photons and integrated
their totals over time much as the Helios photometers had. Various constraints and lack
of funding curtailed this initial effort for Wind. After the Helios spacecraft were launched,
cooled, low-readout-noise CCD detectors became available and were flown into space. With
no deep-space satellite bus available to provide an instrument launch, and with a large data
downlink available from near Earth, SMEI was redesigned with a CCD detector and baffles
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(b)

Figure 3 (a) The Coriolis spacecraft with the Solar Mass Ejection Imager (SMEI) instrument (Jackson et
al., 2004) and the Windsat antenna prior to launch from Vandenberg AFB. The three SMEI camera baffles
(circled) are seen on the lower portion of the spacecraft. (b) SMEI in its polar orbit at 840 km with an orbital
inclination of 98°. SMEI looks away from the Earth at 30° from the local horizontal to avoid sunlight reflected
from the Earth and from the Windsat antenna. The combined fields of view of the three cameras (shown as
shaded cones) cover nearly all the sky.

for Earth orbit using the Air Force Space Test Program P91-1 spacecraft. When resources
proved unavailable to include the instrument on P91-1, the SMEI design was placed on hold
until the University of Birmingham, UK, with a contribution of NASA funding, joined the
effort with contributions of manpower and money starting in 1995.

With this design change for SMEI to operate in Earth orbit, a new primary consideration
was that this orbit be high enough to stay above the atmospheric glows previously reported
from lower similar instruments that caused them to fail. Variable stray-light signals (with
changing spacecraft orientation) from the Sun, Earth, Moon, and from the spacecraft bus
itself needed to be kept below the Thomson-scattering signal level. For the Helios photome-
ters, SMEI, and the HI instruments, stray light is controlled by an external baffle. For a
practical design that could be flown on an existing spacecraft bus, the SMEI baffle needed to
fit within approximately a 30 cm length rather than the 100 cm length available for Helios.
The main advantage of an imaging system over the Helios photometers, however, is that
imaging enables identification of point objects (mostly stars) in the instrument field of view.
Helios required that each stellar signal above about the fourth magnitude within the pho-
tometer field and color band be known and identified beforehand. This was acceptable for
the photometric precision required for the zodiacal-light brightness, and the relatively small
fields of view (and small numbers of stars) viewed by each Helios photometer, but this be-
comes a far more difficult task if stars must be removed down to the Thomson-scattering
signal level at 1 AU over the whole sky (see Figure 1).
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SMEI, now into its seventh year of operation, is the first true heliospheric imaging system
to track CMEs outward from the Sun until they arrive at Earth (Jackson et al., 2004; Tappin
et al., 2004). The photometric signals from SMEI allow 3D reconstructions and modeled
2D images (see, e.g., Jackson et al., 2006, 2008a, 2009; Buffington et al., 2008, 2009a; Bisi
et al., 2008a). The SMEI team has produced significant scientific results directly from the
2D sky map orbit differences (see, e.g., Tappin et al., 2004; Reiner et al., 2005; Tappin,
2006; and Webb et al., 2006, 2009b; Tappin and Howard, 2009). One of the most notable
serendipitous discoveries using the SMEI data has been the measurement of high altitude
aurora (Mizuno et al., 2005). Removal of zodiacal light to an unprecedented precision has
led to the precise characterization of the Gegenschein brightness (Buffington et al., 2009a).
The SMEI images have also been used to measure solar wind speeds from comet tails with an
unprecedented precision (Buffington et al., 2008). There are now at least three near-real time
data pipelines operating (including one at UCSD) to image SMEI data in order to forecast
CME arrival at Earth. SMEI has proven to be a robust Earth-orbiting instrument and as a
pathfinder mission has been extremely successful. Auroral signals over the north and south
poles of Earth, and high energy particle noise during South Atlantic Anomaly and in auroral
oval passes, produce significant amounts of unwanted noise in the SMEI orbit. Inadequate
cooling of the sun-pointing camera has also hastened the degradation of the sunward SMEI
CCD, and the images from this instrument camera. For solar studies, however, the single
most-significant difficulty with the SMEI instrument is its inability to view close to the Sun
in order to measure the onset of the plasma structures that originate there.

The twin STEREO spacecraft (see, e.g., Kaiser er al., 2008) Sun—Earth Connection
Coronal Heliospheric Investigation (SECCHI) instrument suite (Howard et al., 2008) (Fig-
ure 4) was designed primarily to track CME:s all the way from the Sun along the Sun — Earth
line to Earth. With two spacecraft, coronal detail can be viewed in stereo using simultaneous
images when the spacecraft are near Earth and associated directly with solar surface features.
At locations more distant from Earth the SECCHI coronagraph instruments in combination
with the HIs (Harrison et al., 2008; Eyles et al., 2009) provide a near-continuous view of
CMEs and other heliospheric structures as they move from their origin near the Sun to Earth.
With the consideration of a Sun to Earth view as a design objective, the requirement that the

SECCHI

(LET, HET, SIT)

SECCHI
(HI)

S/WAVES

antennas

IMPACT
(Magnetometer)

(STE-D, SWEA)
(a)

Figure 4 (a) One of the two STEREO spacecraft showing the instrument suite on board. Of particular
interest, and similar in concept to SMEI, are the SECCHI HI-1 and HI-2 instruments (example shown in (b)).
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imager suite opening angle be at least the average CME width observed in coronagraphs,
and from stray light and field-of-view considerations predicated by other instruments and
spacecraft appendages on STEREQ, the fields of view from the SECCHI HIs were limited
in latitude and angular opening. The HI-1 instruments have a field of view of 20° beginning
at ~ 4° from the solar limb, and the HI-2 instruments, a 70° field of view beginning at 18.7°.
This smaller field of view, with its orientation fixed relative to the Sun— Earth line, signifi-
cantly reduces the difficulty of managing stray light variation in the HI images as compared
with SMEIL

The SECCHI imaging suite has had high NASA visibility, and the HI instruments have
performed extremely well since STEREO launch in 2006. Because there is significantly
more coronal and heliospheric signal near the Sun, the HI-1 instruments can view fine detail
in heliospheric structures that is then traced outward to 1 AU. The HI achievements include
the detailed tracking of CMEs all the way from 4° past 1 AU in the ecliptic (see, e.g., Davis
et al., 2009; Webb et al., 2009a), the measurement of fine structure present in corotating
regions (see, e.g., Sheeley et al., 2008; Rouillard ez al., 2008), and the measurement of the
fine structure in a CME from the perspective views of both instruments until they reach Earth
(Liu et al., 2010). The HI images have spawned a considerable number of modeling efforts
aimed at understanding the 3D shapes of CMEs from the wealth of SECCHI instrument
data (see, e.g., Vourlidas and Howard, 2006; Lugaz et al., 2008; Davis et al., 2009; Howard
and Tappin, 2009). A good summary of HI achievements in the first two years of STEREO
operation can be found in Harrison et al. (2009). The relatively small fields of view of the
HI instruments, while very good at measuring remote structures in the ecliptic, do not work
well to map a structure that impacts the viewing spacecraft, and are less able than Helios or
SMEI to view the heliosphere globally. In addition, operated nominally, the HI instruments
cannot directly measure the Archimedian spiral structure to the north and south, and map
the interactions between structures that co-rotate and faster (or slower-moving) solar wind
features.

3. Motivation to Provide Precise Heliospheric Brightness Data

To improve upon the observations available from the IPS and the Helios photometers, SMEI
was conceived from the onset as an instrument capable of providing long-term measure-
ments of heliospheric brightness with high precision, in order to determine the extent of,
and to forecast, the arrival of heliospheric plasma structures near Earth. With precise mea-
surements, the change of the heliospheric structure response along the line of sight (LOS)
with elongation can be used to measure its distance from the observer. This is shown in
a rudimentary way in Figure 5. The solar wind follows well-known physical principles in
its outward flow. These physical principles have led to many different solar wind modeling
efforts such as those using 3D kinematic models (i.e., Fry et al., 2003), and 3D magneto-
hydrodynamics (MHD) (see, e.g., Odstrcil and Pizzo, 1999; Odstrcil et al., 2004). Intensity
IPS observations measure the amplitude variations of radio signals traveling through the he-
liosphere from small-scale inhomogeneities (~ 50 —200 km in size) in solar wind electron
density that can be optically thick to the radio waves used to observe them. These small-
scale electron density inhomogeneities provide only an uncertain proxy for solar wind bulk
density (see, e.g., Jackson et al., 1998). On the other hand, heliospheric electron Thomson-
scattering is a well-known process that is optically thin (Billings, 1966) and this, unlike
intensity IPS, is a more direct measure of solar wind bulk density.

As heliospheric structures move outward from the Sun, spacecraft instrumentation shows
to a first approximation that this flow is radial above about 15 solar radii. The material in
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Figure 5 Outward-flowing solar
wind structure follows very
specific physics as it moves away
from the Sun.

Sun Earth

these structures changes shape to first order as in a “kinematic system” with mass and mass
flux conserved as faster material catches up with slower, or slower recedes from faster. On
average, however, the heliosphere expands at constant velocity, implying an r~2 density
fall-off with distance from the Sun. As the elongation of the outflowing material increases,
it does not escape from view, but simply is viewed from a different perspective. For the IPS
analyses the LOS weight function can be separated (approximately) from the amount of the
density inhomogeneities present in the heliosphere. In the case of Thomson scattering, the
LOS weighting can be separated from the density of the electrons at any given elongation
(see, e.g., Jackson and Hick, 2002; Jackson et al., 2008b for a description of these weight-
ing processes). These considerations led to using the change in brightness of heliospheric
structures relative to the LOS to determine their position relative to the observer. Figure 5,
coupled with Figure 6 provides a graphical overview of this process. The reader is referred
to other articles (Jackson, 1985b; Jackson and Hick, 2002; Vourlidas and Howard, 2006;
Howard and Tappin, 2009; Jackson et al., 2008b) for mathematical descriptions of the loca-
tion of heliospheric material relative to the point of closest approach of the LOS to the Sun
(or observer).

Other instrument techniques to determine the LOS extent and locations of coronal and
heliospheric structures have been attempted. These utilize the difference between the LOS
polarization brightness (pB) and brightness weighting to give information about the LOS
position of coronal structures relative to the point the LOS comes closest to the Sun (Munro,
1977; Moran and Davila, 2004, and references therein), and heliospheric structures (Jackson
and Froehling, 1995). An instrument providing pB measurements usually accomplishes this
using a series of three rotating Polaroid filters, and thus has significantly greater weight and
complexity than one that does not. For a heliospheric imager at 1 AU, photons collected
over most of the sky number only in the hundreds per second per degree of sky, and pB mea-
surements decrease the amount of light by approximately an order of magnitude. Thus in
general, unacceptably longer integration times would be required to achieve adequate photo-
metric precision with this type of instrument. A practical instrument design that can provide
this type of heliospheric imaging process has yet to be thoroughly explored. However, we
note, that the ambiguity, whether a heliospheric structure is or is not beyond the point of
closest approach of the LOS to the Sun, is removed at elongations > 90° when using this
technique (see Figure 6).

Measurements of the changing brightness of a heliospheric structure, as it moves across
the sky, can be used to determine its distance from the observer. This requires that the back-
ground brightness can be determined accurately over the entire time period (or longer) that
the structure is observed. This allows the background to be consistently removed, thus iso-
lating the brightness due to the structure itself. Note that this cannot be achieved by “image
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Figure 6 The weighting along the LOS at three elongations for electron Thomson scattering. (a) Distances
to 2 AU are included in these lines of sight outward from the observer. The “opening angle” of a view of the
sky is included in the brightness measurement of a single electron per cm™3 along the LOS. The electron
distance from the Sun decreases the line-of-sight brightness with solar elongation that is normalized to unity
at 90° elongation at the observer. (b) Relative-response distribution of the brightness contribution along the
LOS for an r—2 heliosphere. The point of closest approach to the line of sight to the Sun is marked by the
dotted line. The red line shows the midpoint location of the LOS response (from Jackson, 1985b), and has
been used in this and previous articles as a rough means to estimate the distance of structures beyond 90°
elongation.

differencing” where one image is simply subtracted from another. For CMEs viewed from
Earth (where the motion of Earth is relatively slow compared to the solar wind speed), this
implies that the CME must be measured together with the surrounding structures over the
time span that it takes the ensemble of structures to flow from the Sun past Earth. For aver-
age solar wind speeds of 400 kms~!, this means the time it takes for material to flow from
the solar surface out to about 2 AU, or over about eight days. For corotating structures a
slightly longer time base (about 14 days) is needed to be able to discern these structures
as they evolve moving across the sky from east to west of the Sun. For a tomographic
inversion technique to be able to fully disentangle these features the Thomson-scattering
signal needs to be determined with a precision of perhaps 10% or better. For less accu-
rate data one very quickly loses the ability to deconvolve 3D heliospheric structures, and
it is only possible to determine the maximum response of structures on successive image
frames.

That all these criteria can be met has been amply shown by SMEI whose observations
have been used to successfully reconstruct in-sifu densities, observed near Earth, and at
the STEREO spacecraft, both for the “quiet” background solar wind as well as for tran-
sient heliospheric structures (CMEs, corotating structures, and the density enhancements
behind interplanetary Shocks; Bisi ef al., 2008a; Jackson et al., 2008a, 2010, and refer-
ences therein; see, e.g., Figure 7). The current 3D reconstructions of heliospheric structures
available from the SMEI data use only about 1/50th of the information available on SMEI
skymaps. Achieving considerably better spatial and temporal resolutions is currently limited
by the available computer resources for SMEI data.
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Figure 7 3D reconstruction of the 27 —28 May 2003 halo ICME sequence of events. (a) An ecliptic-plane
cut of the reconstructed density at the time when the CME reaches Earth, viewed from the North. The Sun
is at the center marked with a +, an ellipse marks the Earth’s orbital path, the Earth is shown by & (from
Jackson et al. (2008b)). The density scale is given to the left. To best display the structure, an r2 density
fall-off has been removed to scale densities to 1 AU. The main structure at Earth is associated with the halo
CME sequence observed by LASCO on 27 —28 May 2003. The density enhancement of the ICME hitting
Earth in this event is more extensive to the east of the Earth than to the west. (b) Time-series plot of the
density at Earth from the reconstruction and from Wind proton observations for the whole Carrington rotation
that includes the ICME. The latter in-situ measurements are combined into 12-hour averages matching the
temporal and spatial resolutions of the SMEI reconstruction. The correlation coefficient within six days of
the ICME passage is 0.86.

4. Towards a Better Heliospheric Imager

With the current analyses, it is clear that a system that holds variable stray light to a mini-
mum, and consistently below the Thomson-scattering signal level is of primary importance.
At 1 AU the signal level for bright CMEs approximates an ambient heliospheric medium
having a density of 10 e~ cm™3 at 1 AU and an inverse-square density drop-off with solar
distance. At 90° elongation, this implies a changing stray-light brightness per square degree
on the detector that is below a few parts in 10~ of the brightness of the Sun. It is desir-
able that this be kept constant, or at least modeled and removed down to this level, for the
time it takes the transient heliospheric structure to pass through the instrument view (eight
days to two weeks). Some background solar wind structures are fainter than the maximum
sky brightness, and to measure these effectively as they move across the image, stray-light
changes must be kept to an even lower level.

Sidereal-sky brightness adds noise to the system. A typical square degree of sky contains
the equivalent brightness of 200 10th magnitude stars, and at least one 8th magnitude star. At
1 AU, this contribution is a factor of several hundred brighter than the Thomson-scattering
signal at 90°. It does little good to finely resolve the sky and try to isolate these bright stel-
lar signals since nearly every square degree of sky has one star that is nearly a factor of five
brighter than the brightest heliospheric CME:s at these elongations. To enable removal of this
contribution, the detector must therefore provide a reliable measurement of a star’s bright-
ness, no matter where it falls on the image plane. In addition steep gradients in brightness
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across the point spread function (PSF) or detector, or simply motion of the geometric-edge
of the stellar image must not cause stars to have an apparent changing total brightness as
these move across the detector. For this reason in SMEI, the PSF covers 50 pixels on the
detector, with optics designed to create as bland a point image as the fast off-axis SMEI
optics allow. The STEREO HI-2 instruments have a more circular PSF which covers ~ 35
detector pixels.

It is clearly desirable for heliospheric measurements that the detector view as much sky
as possible. There are several reasons for this. The first is simply that with larger fields of
view more heliospheric structures are observed. Given that a field of view that extends into
the hemisphere away from the Sun provides more information close to the observer than
does an instrument with a narrow field of view directed toward the Sun, observations in
the antisolar hemisphere will help to extend in-sifu measurements at the spacecraft away
from it. An examination of Figure 6 shows why this is so. For lines of sight greater than
90°, the contribution from the LOS signal is at a maximum at the spacecraft. This becomes
the most-steeply defined at 180° opposite the Sun. With a smaller contribution from LOS
segments distant from the observer, for a scientific instrument designed to extend structures
near the observer to distances from it, this is a primary reason to provide observations into
the hemisphere opposite the Sun. With SMEI, using signals from the hemisphere of sky
beyond 90° only, in-situ observations can be adequately reconstructed (see, e.g., Jackson et
al., 2008a). Finally, the background sidereal brightness across the entire sky can be most
accurately characterized using data from the anti-solar hemisphere because the Thomson-
scattering and zodiacal-light signal is at a minimum there. The sidereal background sky thus
determined can then be removed at other times from observations closer to the Sun where
these signals are much stronger.

There is also a premium on viewing heliospheric structures very close to the Sun. For
a single white-light instrument with a large field of view, this is difficult to accomplish be-
cause of the very large sky-brightness variation from near to far away from the solar surface.
Add to this that with more light close to the Sun much finer angular resolutions become pos-
sible, it makes more sense to provide more than one instrument to view the regime close
to and far away from the Sun (assuming that adding detectors, weight, and telemetry is not
an issue). This was argued effectively for the STEREO SECCHI instruments. For an instru-
ment viewing sky brightness from deep space at any distance from the Sun, the following
Thomson-scattering principles hold.

i) The Thomson-scattering sky surface brightness at a given solar elongation in the sky
falls off with Sun-observer distance » as » 3. Relative to the total solar brightness the
fall-off is r~'; thus as a spacecraft moves closer to the Sun, the Thomson-scattering sky
gets somewhat brighter relative to the Sun.

i) The r~! dependence on Sun-observer distance is valid for almost any heliospheric elon-
gation from 0.1 AU out to and beyond 1 AU.

The r~! dependence can be understood using Figure 8. In general, for most of the he-
liosphere above 10-20 solar radii, the solar wind neither accelerates nor decelerates. At
constant velocity, this implies the solar wind density changes by r~2 as it moves outward
from the Sun. In Figure 8, observer B is twice the distance from the Sun as observer A. Both
are viewing along a LOS with the same elongation angle from the Sun and the same opening
angle. A sees a solar wind packet (indicated in blue). The same packet is shown when it has
moved outward twice as far from the Sun (and now lies along the LOS from B). The elec-
trons in this packet contribute a certain amount of light to the Thomson-scattering brightness
when viewed from A or B. Each electron seen by B intercepts less light from the Sun by
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Figure 8 Graphical depiction of
the brightness of the sky at two
locations from the Sun.

Location A is 1/2 the distance of
the Sun from B. The lines of
sight at A and B have the same
elongations and opening angle.

Sun A B

a factor of r~2 (a factor of 1/4) as an electron seen by A. Because the scattering geometry
(the angle Sun-electron-observer) is the same for A and B, electrons will re-radiate the same
fraction of the incident light toward the observer. Since each electron at B is twice as far
from the observer than at A its contribution to the observed brightness decreases by another
factor of 1/4. Thus, for each electron, the total contribution at B is 1/16th the amount at A.
However, since the opening angle is the same for A and B, two packets of outward-moving
electrons now fit within the LOS at B. So the contribution from all electrons at B is 1/8th
the amount at A, resulting in a r—> dependence for the total Thomson-scattering brightness.
At B the Sun is twice the distance of A; hence its apparent brightness is decreased by 1/4th
from A. Thus the Thomson-scattering brightness at B normalized to the Sun’s brightness is
only 1/2 of A, resulting in a r~! dependence.

In Figure 9 we determine the brightness of the sky using the equations in Billings (1966),
and knowing the numbers of heliospheric electrons from modeled data, the sky brightness
is calculated by summing along the integral path out to a distance of 3 AU. Figure 9a plots
the ratio of the integral brightness from the number of heliospheric electrons assuming a
r~2 solar electron density fall-off with 10 e~ cm™ at 1 AU. We obtained the total solar
brightness from the Cox (2000) value in visual-light. This value is not a surface brightness,
and the limb darkening of a few percent at the spacecraft is not included (although limb
darkening is included for the electrons from the Billings formulae). Figure 9b plots this same
ratio using the Cox values of heliospheric density. The Cox densities have about 10 e~ cm™3
at 1 AU, and the two heliospheric density distributions give approximately the same answer.
The Cox densities show a slight increase in brightness in the lower left hand corner of
Figure 9b that shows where the 2 approximation does not hold because on average the
solar wind is accelerating close to the Sun at that location in Figure 9b.

The most severe restriction placed on a heliospheric imager is the very large difference
between the signal intensity and the brightness of the Sun, the latter of which will also illu-
minate the spacecraft bus and portions of the imager (Figures 1 and 9). This large range of
brightness challenges, and usually precludes, direct laboratory testing except under very lim-
ited circumstances (see, e.g., Figure 10 adapted from Buffington, 2000). In a heliospheric-
imager design there are two important considerations in the elimination of stray light, the
field of view and the “field of regard”. The first is simply the region of the sky that falls
on the image plane of the detector, while the second includes also the region outside this,
which, because of its proximity to the field of view, must also not have extremely-bright
objects present. For the Helios 90° photometer, a SMEI camera unit, and the STEREO
HI-2, the former quantity is respectively, 3°, 3°x 60°, and 70°. All of these designs em-
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Figure 9 Ratio of the visual sky
brightness relative to solar
brightness. Contours are log;( of
respectively, (a) the R™2 density
model with 10 e~ cm™ at 1 AU,
and (b) the Cox (2000) density
model.
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ploy a baffle system to reduce light from objects within the field of regard but beyond the
field of view. The baffles of Helios, SMEI, and STEREO are multistage labyrinthine de-
signs that employ multiple vanes to reduce light reaching the interior of the baffle aper-
ture, and/or from diffracting over baffle edges (Buffington, Jackson, and Korendyke, 1996;
Buffington, Jackson, and Hick, 2003; Eyles et al., 2009) in order to reduce stray light that
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Figure 11 (a) A cross-sectional schematic diagram of a heliospheric imager (from Jackson, Buffington, and
Hick, 2001). The composite optic, a combination of a mirror and lens, allows viewing over an entire 180°
hemisphere. The system scales; the version shown is designed to operate at 0.5 AU. The dimension becomes
8 cm and the angle in the upper right side of the Figure 2° for an instrument at 1.0 AU. (b) A complete
heliospheric imager 1 AU model attached to the SMEI prototype CCD camera used to obtain night-sky
observations in order to test instrument throughput and image quality.

could shine into the instrument aperture. It is best if an instrument defines its own field of re-
gard, but this is only possible for a very wide-angle viewing design if an instrument location
can be found on the spacecraft bus that places the instrument somewhat above a horizontal
plane that extends outward from the instrument aperture, and so that the field of regard does
not include the Sun or, in the case of an instrument in Earth orbit, both the Earth and the Sun.

A second restriction is placed by the brightness of the zodiacal cloud. At 1 AU, and 90°
elongation, its signal is from two to three orders of magnitude greater that the Thomson-
scattering signal. That this signal does not vary in the same manner as the Thomson-
scattering signal and can be modeled has been explored in several ways (see Buffington
et al., 2009a). Measurements of the change in brightness of zodiacal-light dust bands, comet
trails, and the Gegenschein (the zodiacal-dust counterglow), are studies in themselves. As
distances from the Sun become less than 1 AU, the dust brightness relative to the Thomson-
scattering signal decreases somewhat, and thus as shown by the Helios photometers, there
is less zodiacal light to interfere with the Thomson-scattering signal. In any case, where
quantitative analysis of the Thomson-scattered heliospheric light is needed, the contribution
from zodiacal light must be removed. Whether this is modeled simply by determining and
subtracting a minimum map of the sky brightness, or by a parametric fit to a data ensemble,
or finally by employing a 3D model of the distribution and scattering of the zodiacal-dust
cloud, this large zodiacal-light brightness and its removal must be accounted for in deter-
mining the upper limit of the overall detector response.

Taking all these principles into account, Buffington, Jackson, and Korendyke (1996),
Buffington (1998), Buffington et al. (1998), Buffington (2000) designed a heliospheric im-
ager that allows a view of nearly a hemisphere of sky from as close to the Sun as 2° outward
to as distant an elongation as 180° from the solar surface (Figure 11). This instrument de-
sign employs a composite mirror-lens optical system allowing the field of view to extend
over nearly an 180° hemisphere (Buffington, 2000), and also employs a laboratory-tested
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diamond-turned mirror optic (Buffington et al., 2009b) that reduces residual light from
bright objects present in the instrument field of view. In space free from auroral bright-
ness, the Moon, and the Sun, and on a sunward-pointing platform, such an instrument could
in theory view the whole sky photometrically with a data cadence of at least one image per
hour, and weigh less than 5 kg. Such a design requires that the spacecraft bus be tailored
to meet the requirements of the instrument, in order to provide no (or at least very little)
stray light from the other instruments and appendages on the spacecraft bus that must stay
below the horizontal plane of the detector, and if possible outside an approximately 2° field
of regard greater than the 180° field of view. This very small field-of-regard augmentation
in angular dimension (over the field of view) is allowed because diffraction (rather than a
multi-vane labyrinthine baffle system) can eliminate stray light by more than ten orders of
magnitude beyond the instrument aperture (Figure 10).

5. Summary and Conclusions

The Helios photometers, SMEI, and the STEREO HIs all show that spaceborne imagers can
operate effectively to view the Thomson-scattering brightness signal from heliospheric elec-
trons. These instruments contribute greatly to views of the corona near the Sun, to predicting
in-situ measurements from interplanetary spacecraft, and to heliospheric modeling efforts.
Such data are planned using moderately-wide-angle viewing instruments on Solar Orbiter,
Solar Probe, and other deep-space explorers. Here, we have presented a set of instrument
specifications required for a fully-performing successful heliospheric imager, and the mea-
surements and data-processing steps that make the best use of this remote-sensing system.
When this type of instrument is properly designed and calibrated, its data are also capable of
determining zodiacal-dust properties, and as a main objective it enables 3D reconstructions
of heliospheric electron density over large volumes of the inner heliosphere.

Accurate determinations of heliospheric bulk density extend beyond just this basic he-
liospheric parameter. In combination with global velocity estimates (e.g. from IPS velocity
remote sensing), these density measurements give an estimate of heliospheric pressure that
can be used e.g. to determine the distance of the heliospheric interstellar boundary, or the
dynamic solar wind pressure at Mars, and its effect on the Martian magnetosphere (Jack-
son et al., 2007). In combination with Faraday rotation (FR) observations, bulk densities
allow the remote determination of heliospheric vector magnetic field components globally
(Jensen et al., 2010). This combination of bulk density measurements combined with FR
observations planned from radio arrays such as the Murchison Widefield Array (MWA) or
the LOw Frequency ARray (LOFAR) now under construction may usher in a whole new
remote-sensing capability.

The limits placed on heliospheric imagers from the many orders of magnitude bright-
ness difference between the Sun and the signal to be observed requires careful design that
incorporates the stray-light impacts of the instrument bus, its appendages, and other in-
struments on the spacecraft. Furthermore, if determining the 3D tomographic locations of
heliospheric features using brightness change is considered important, the resultant need to
provide photometric images that are stable over days to weeks requires an even more strin-
gent set of specifications, as well as careful instrument calibration. The heliospheric physics
community should be extremely indebted to the Helios photometer systems and to their PI
Dr. Christoph Leinert for his and his colleagues’ serendipitous discovery of “heliospheric
plasma clouds”. Without this, SMEI, and the STEREO HI instruments would have not been
possible. In spite of the difficulties of such instrumentation and the requirement of much data
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analyses to make them operate effectively, heliospheric imagers thrive and find increasing
uses and a place on spacecraft probes whether they are used for remote sensing only small
portions of the sky as on the upcoming Solar Orbiter mission, as a proposed instrument for
Solar Probe Lite (NASA AO), or for the potential measurement of rocket plumes (Dressler
and Goldstein, 2010).
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