Lawrence Berkeley National Laboratory
Recent Work

Title
THE ASSESSMENT OF PROGRESS IN ENERGY EFFICIENT BUILDINGS

Permalink
https://escholarship.org/uc/item/5m1310h9

Authors
Wall, L.W.
Rosenfeld, A.H.

Publication Date
1983-04-01
Presented at the Second International Congress on Building Energy Management, Ames, IA, May 30 - June 3, 1983; and to be published in the Proceedings

THE ASSESSMENT OF PROGRESS IN ENERGY EFFICIENT BUILDINGS

L.W. Wall and A.H. Rosenfeld

April 1983

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

THE ASSESSMENT OF PROGRESS IN ENERGY EFFICIENT BUILDINGS

Leonard W. Wall* and Arthur H. Rosenfeld

Energy Efficient Buildings Program
Lawrence Berkeley Laboratory
University of California
Berkeley CA 94720 USA

April 1983

The work described in this report was funded by the Assistant Secretary for Conservation and Renewable Energy, Office of Building Energy Research and Development, Building Systems Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

*Permanent Address: Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407.
ABSTRACT

The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at Lawrence Berkeley Laboratory. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, the cost-effectiveness of buildings energy conservation measures, and the validation of building energy computer programs. We also examine recent comparisons of predicted vs. actual energy performance, and present the case for home energy use ratings.

KEYWORDS: Buildings energy data bases
Buildings energy conservation
Measured energy savings
New residential and new commercial buildings
Residential and commercial retrofits
Home energy use ratings

INTRODUCTION

In 1981, 35 percent of U.S. resource energy consumption was used by the buildings sector. For existing buildings, it has been estimated that half the current energy consumption could be saved by careful retrofitting [SERI 1981]. In the case of new construction, commercial buildings and houses can be designed to use one-half or less of the energy of the pre-1975 stock [SERI 1981]. In this article, we wish to discuss how much progress has been made in the past few years towards energy-efficient buildings.

Much of the research conducted by the Energy Efficient Buildings (EEB) Program at Lawrence Berkeley Laboratory (LBL) [EEB Program 1982, 1983] can be classified under the heading of "Methods of Assessment of Buildings Energy Use," which is the subject of Session 8 at this Congress. The assessment research at LBL can be roughly divided into three parts: simulation tools, collection of primary data, and compilation and analysis of energy performance data. The first two of these are briefly mentioned below whereas the third topic is treated extensively in this paper.

There have been numerous contributions by the EEB Program towards the development of computer simulation tools for building energy design and retrofit purposes. Some examples are as follows [for detailed references, see EEB Program 1982, 1983]:

- the public-domain computer program DOE-2.1 and its predecessors (Cal-ERDA, DOE-1.4, and DOE-2.0) with the capability of very detailed studies of building energy use analysis;
analytical models for daylighting such as QUICKLITE, SUPERLITE, and DOE-2/DAYLIGHT;

the public-domain microcomputer program, CIRA (Computerized Instrumented Residential Audit), which is designed to give fast and accurate residential audits.

The development of new measurement and diagnostic techniques and the collection of primary data from field studies and component tests are also important elements in the assessment of energy use. Some samples of the applicable work by the EEB Program are listed [for detailed references, see EEB Program 1982, 1983]:

- air infiltration and house doctoring measurements in houses throughout the country (Midway, WA, Eugene, OR, Rochester, NY, Walnut Creek, CA, etc.);

- controlled field tests of fenestration system performance by use of the MoWiTT (Mobile Window Thermal Test) facility;

- measurements of indoor air quality in residential and non-residential buildings;

- the development of a low-cost (approx. $500), microprocessor-based, solid-state data logger called the ESM (Energy Signature Monitor) that can make long-term measurements (up to 10 channels of data and unattended for 5 weeks) of energy utilization in buildings.

The analysis of energy usage data to assess progress in the energy efficiency of buildings is being conducted by the Buildings Energy Data (BED) Group at LBL. Metered values of energy consumption are necessary to determine the performance of new buildings and the savings due to retrofits. Good cost data are needed to assess the cost-effectiveness of conservation measures. In the past there has not been a systematic tracking of measured data in order to determine what progress has been made towards the goal of energy-efficient buildings. The BED Group is concentrating its efforts in that direction, establishing a series of data bases that deal with new and existing commercial and residential buildings, appliances and equipment, and the validation of computational tools for estimating energy usage. These data bases provide the factual data needed for load forecasting, policy and program design, and the evaluation of conservation efforts in the buildings sector. In this paper we summarize the major results from our buildings energy data bases.

THE BECA DATA BASES

Millions of existing buildings have now been retrofitted and a significant number of new buildings designed and built to save energy compared to conventional construction. Good quality, measured data on actual building energy performances, actual energy savings, and costs of achieving low-energy performance or retrofit savings are necessary to
assess the progress that the U.S. is making towards more energy-efficient buildings.

The need for compiling actual building energy performance and cost data, critically analyzing it, and periodically publishing the results is being addressed by the Buildings Energy Data Group at Lawrence Berkeley Laboratory. We have initiated the five-part BECA (Building Energy Use Compilation and Analysis) series which consists of the following:

- BECA-A analyzes new residential buildings;
- BECA-B concentrates on residential retrofits;
- BECA-C covers progress in new and existing commercial buildings;
- BECA-D deals with energy-efficient appliances;
- BECA-V assesses the accuracy of building energy computer programs.

In the following sections, we introduce results from the BECA data bases to discuss time trends in the energy performance of new commercial and new residential buildings, the level of success of recent retrofits in both the commercial and residential sectors, comparisons between predicted and actual energy performance, and the case for home energy-efficiency ratings.

Trends in New Commercial Buildings

In this section we present energy data for office buildings, which have been examined more thoroughly than other types of commercial buildings. Our preliminary data for schools and other commercial building types indicate trends similar to those discussed below for office buildings.

The energy intensity of office buildings grew significantly between World War II and the 1973 Oil Embargo, for three main reasons: 1) the great popularity of glass facades (mainly single-glazed); 2) very intensive area lighting (up to 6 W/ft² or 65 W/m²); 3) very large and inefficient HVAC systems. This trend began to change in 1975 when ASHRAE passed its now-famous voluntary Standard 90-75, which recommended a factor of two reduction in annual resource energy use, down to 245 kBtu/ft²-yr [2780 MJ/m²-yr], as shown in Figure 1. In many new buildings constructed in the late 1970's this was cheaply accomplished by countering the three trends mentioned previously.

Standard 90-75 was so successful that it was voluntarily revised in about 1980. Recommended lighting power was reduced to no more than 2 W/ft² [22 W/m²], and supplemented with task lighting. The point marked "BEPS," at 110 kBtu/ft²-yr [1250 MJ/m²-yr], was originally proposed by the Carter Administration as a mandatory Building Energy Performance Standard but was recast as a voluntary guideline by the Reagan Administration. The point marked "LCC" at 71 kBtu/ft²-yr [810 MJ/m²-yr] is the estimated Life-Cycle-Cost minimum using 1980 technology, with
considerable attention to daylighting and thermal storage. Its first cost is $1-2/ft² [$11-22/m²] (i.e., only a few percent) more than today's typical costs. The buildings need almost no space heat—the 71 kBTU/ft²-yr [810 MJ/m²-yr] of resource energy is almost all electricity for lighting, ventilation, and equipment. Also it is reassuring to note (as shown in Fig. 1) that the Swedes are following a similar path, but are a few years ahead of us, and never reached the excesses of our worst buildings. New Swedish office buildings, of which the first of its class was the Farsta Folksam building (plotted at 90 kBTU/ft²-yr or 1020 MJ/m²-yr), have enough thermal storage to get through a long Stockholm winter with only 6 kWh/ft²-yr [65 kWh/m²-yr] of electricity for routine lighting and equipment, and less than 20 kBTU/ft²-yr [230 MJ/m²-yr] of district heating.

Also on this graph (Fig. 1) we plot (denoted by "X’s") ten recently constructed (between 1976 and 1979) U.S. office buildings for which we have actual resource energy consumption data. They represent the forefront in energy-efficient U.S. commercial buildings and range roughly between 100 and 180 kBTU/ft²-yr [1140 and 2040 MJ/m²-yr] in resource energy usage. In site energy usage these buildings vary between 30 and 60 kBTU/ft²-yr [340 and 680 MJ/m²-yr]. Five out of the ten buildings are all-electric, a trend followed by many of the new U.S. commercial buildings.

In Figure 2 we plot a histogram of the total site energy usage per unit floor area for all of the new office buildings for which we presently have actual or predicted energy data. The buildings with actual performance data (N = 18) were constructed between 1976 and 1979 and vary in site usage between 20 and 70 kBTU/ft²-yr [230 and 790 MJ/m²-yr], but cluster at the 40-50 kBTU/ft²-yr [450-570 MJ/m²-yr] range. The buildings with design data only (N = 25) display a wide scatter in predicted energy usage with three-fourths of them below 50 kBTU/ft²-yr [570 MJ/m²-yr]. They are either under construction or have been recently completed and represent newer stock than the set of buildings for which we have metered usage data. More energy-saving design features and innovative mechanical systems have been incorporated in the construction of the newer office buildings and they are potentially more energy-efficient than the older stock.

Next we list some of the energy-saving characteristics of the new office buildings reported here. These features hold true for many of the 1976-79 buildings and for a strong majority of the newer 1980-84 buildings.

- Connected lighting loads have been reduced to the range of 1.0 to 2.0 watts/ft² [11 to 22 W/m²].

- Daylighting, photocell controls for lighting levels, and supplementary task lighting are commonplace.

- Envelope strategies include extra insulation, moderate window areas, and special treatments (especially shading) for the glazing.
Variable air volume distribution, heat recovery systems, economizer cycles, natural cooling and ventilation, thermal storage, and energy management control systems are now the "norm" for HVAC systems.

Designing the building for the particular site (utilizing and being innovative with whatever is available) is the general practice.

Trends in New Single-Family U.S. Homes

In Figure 3 [taken from Rosenfeld and Wagner 1982] where annual space heating fuel intensity is plotted versus the year of construction, we notice the improvement of space heating efficiency for U.S. gas heated single family homes as a function of time. The points labelled "NAHB" are DOE-2 computer simulations of space heating in homes constructed by builders surveyed by the National Association of Home Builders in 1973, 1976, and 1979 and are used here to represent the average new stock for those years. For comparison, the space heat requirements for the U.S. average stock is shown in a bar graph on the left side, as are the average water heat and appliance energy use for the 1979 stock. The "BEPG" points represent proposed federal energy guidelines for practice that more closely approaches minimum life-cycle costs and the corresponding energy usages are about one-third that of 1979 average stock. The point labelled "superinsulated" is the average of the 15 best-performing superinsulated houses of the 30 for which detailed data are available in the BECA-A study at LBL [Ribot, et al. 1982]. The bar labelled "BECA-A" represents the approximate range of 5 to 25 kBTu/ft^2-yr [60 to 280 MJ/m^2-yr] for the annual fuel intensities of many of the new low-energy residences compiled in BECA-A.

With adequate insulation (i.e., 6 inches [15 cm] of fiberglass in the walls and 12 inches [30 cm] in the roof) and double or triple glazing, but no real innovation, the cost-effective fuel intensity today is about 22 kBTu/ft^2-yr [250 MJ/m^2-yr]. By reducing the natural infiltration from 0.7 air changes per hour (ach) to 0.3, and then supplying 0.4 ach mechanically through a heat exchanger, the cost-effective optimum drops to about 15 kBTu/ft^2-yr [170 MJ/m^2-yr]. An interesting development is the superinsulated house, consuming as low as 5 kBTu/ft^2-yr [60 MJ/m^2-yr]. It uses all the features mentioned so far, plus even more insulation (typically 10 inch [25 cm] walls), has its windows concentrated to the south, and often has insulating window shades for use at night. Even in Canada, where such homes are increasingly commonplace, they do not need a conventional central heating system. Instead they use baseboard electric heat, or use tiny radiators supplied by hot water from the domestic water heater.

Figure 4 is a BECA-A scatter plot of thermal intensity (adjusted annual heating load per unit area) versus degree-days for 27 points representing 215 submetered energy-efficient new residential buildings. The design techniques include active solar, passive solar, earth-sheltered, superinsulated, and several combinations. There are large variations in both the climates and the values of thermal intensity. We see that some of the new homes in the BECA-A compilation are achieving the low
consumption levels corresponding to cost-effective optimum practice (15-22 kBtu/ft\(^2\)-yr or 170-250 MJ/m\(^2\)-yr) and superinsulated dwellings (5-10 kBtu/ft\(^2\)-yr or 60-110 MJ/m\(^2\)-yr), and are much more energy-efficient than today's conventional construction, according to NAHB.

An economic analysis was done for the 92 BECA-A buildings for which cost data are available. Annual energy savings were plotted as a function of the added cost for the conservation measures. The cost of the conserved energy was compared to recent U.S. average residential energy prices to determine cost-effectiveness. Superinsulation is the only clearly cost-effective conservation measure in the present BECA-A compilation. Passive/superinsulation is cost-effective in some regions and some of the passive solar homes are marginally cost-effective.

Commercial and Residential Sector Retrofits

There is considerable potential for improvements in the energy efficiency of the existing U.S. stock in both the residential and commercial sectors. The initial retrofit efforts are summarized in the present editions of BECA-B [Wall, et al. 1982] and BECA-C [Ross and Whalen 1982].

The picture pieced together from the BECA-C compilation of "first generation" commercial retrofits is as follows: they are mainly low-investment "proven" retrofits which cost less than $1/ft\(^2\) [$11/m\(^2\)], save approximately 20\% in resource energy, and have relatively fast payback times (less than 3 years) and low costs of conserved energy (less than 1981 energy prices). In Figure 5 we see that almost all of the 223 buildings included operations and maintenance (O & M) as part of the retrofit. The second most popular measure was lighting (mainly delamping and replacements of fluorescent tubes with more efficient ones). Dominant building types were schools and offices; over 75\% of the buildings had floor areas larger than 50,000 ft\(^2\) [4650 m\(^2\)]. There are wide variations in the energy savings achieved by the different retrofit projects with the median value of source energy savings being 19\% of the pre-retrofit consumption. Nine percent of the retrofits failed to save.

The median value of retrofit cost is $0.56/ft\(^2\) [$6.00/m\(^2\)]. Figure 6 shows the distribution of simple payback periods for the subset of the overall compilation which have complete cost data (excluding "failed" retrofits). Almost 90\% of the sample achieved payback periods of three years or less. The median value is in the 1 to 2 year range. This distribution clearly indicates that most of the "first generation" retrofits emphasized quick returns on investment, not extensive modifications with longer term paybacks. In our next edition of the BECA-C compilation, we hope to report more of the extensive retrofits that are now occurring.

The BECA-B data base for existing residences includes over 65 retrofit projects with the sample size within each project ranging from individual homes to 33,000 dwellings participating in a utility-sponsored program. Both the energy and economic performances of energy conservation retrofit measures in houses are assessed. In Figure 7 the annual resource energy savings are plotted against contractor cost. The sloping reference lines represent the boundary of cost-effectiveness for
typical residential energy prices. The conservation retrofit is cost-effective if the data point lies above the purchased energy line for that fuel. We see that a substantial majority of the retrofit projects are cost-effective. The median value of space heating savings is 28 MBtu [30 GJ] or 24% of the pre-retrofit consumption; the median value of retrofit cost is $1082. The data suggest that a $1000 investment in conservation retrofits, on the average, reduced a house’s space heating energy consumption by about 20-25%; a $2000 investment reduced annual consumption by roughly 35-40%. Figure 8 shows the distribution of simple payback periods for the retrofit projects in the compilation. The median payback time is 7.9 years. A factor that partially accounts for the relatively high median value is the large number of research and demonstration projects. In these studies, new retrofit measures or procedures with unproven cost-effectiveness are often tested. The lower median payback time of 5.7 years for conservation programs sponsored by utilities and private firms reflects investments primarily in established retrofit measures or procedures with relatively high returns on investment. The median value for cost of conserved energy (using 7% real interest over a 15-year amortization period) in the BECA-B compilation is $3.80/MBtu [$3.60/GJ], comfortably below the U.S. average residential price for purchased energy. Preliminary results reveal that attic insulation, sealing bypass and infiltration losses using pressurization and infrared diagnostic techniques, and wrapping hot water heaters with an insulating blanket are cost-effective retrofit measures.

Validation of Energy Analysis Computer Programs and Energy Audits

BECA-V [Wagner and Rosenfeld 1982] evaluates the accuracy of computer programs in predicting measured building energy use. For commercial buildings, detailed computer programs were accurate to within about 10% when correct input data were available. Figure 9 summarizes the results of three studies of predicted (DOE-2 and BLAST) vs. measured values of monthly site energy use in commercial buildings. The eleven buildings represent a wide variety of building types, locations, and HVAC systems. For residential buildings, the accuracy tended to decrease as the quality of the input data decreased, but for buildings with submetered data or detailed audit data the predictions were within 10 to 15% of the actual usage. This is illustrated in Figure 10 where the predictions from DOE-2, CIRA, and HOTCAN are compared with measured usage for residential buildings with no submeters or monitoring. The results are still preliminary since they are based on a small sample: 12 data sets and 50 buildings thus far. Standard weather and occupancy were used to compute the predicted energy usage. We found that input errors can easily swamp algorithm accuracy. Thus far the BECA-V effort has focused mainly on overall heating and/or cooling performance, not on savings or component contributions.

Numerous energy audits have taken place throughout the country for the purpose of estimating costs and savings which would result from retrofitting a commercial or residential building. Little study has been done in comparing the predicted versus actual savings. We present some preliminary results of small samples of buildings taken from our BECA-C and BECA-B studies. Figure 11A displays a plot of predicted vs. actual energy savings for a well-documented subset of 18 individual commercial
buildings in the overall retrofit data base. There appears to be no significant correlation between estimated savings and measured results for individual buildings, as is true for the overall group of 60 BECA-C buildings for which predictions were available. However, for the 18 building aggregate (equal weighting factor for each building), the predicted value of energy savings (23%) compares favorably with the actual savings (21%). Figure 11B shows a comparison of actual vs. predicted savings for 9 residential retrofit projects (all but one are aggregates of homes). The agreement is reasonably good. Predictions for aggregates of buildings are found to be much better than for a single building. However, the samples thus far are too limited to allow generalizations about the accuracy of energy audit procedures used to estimate savings for commercial and residential retrofits.

Home Energy Use Ratings
Present U.S. residential building practice, on the average, lags many years behind current cost-effective and achievable levels of energy performance. Part of this delay is due to a lack of credible information about home energy efficiency. Home energy efficiency ratings (or labels) are an attractive tool for providing this information and could play the same role for homes as have "miles per gallon" stickers for automobiles and energy use ratings for appliances.

There has existed a well-established tradition, within utilities and the building industry, of labeling and advertising energy-related features of a home (e.g. "Gold Medallion" homes) but in the past most of these features involved increased energy intensity. In 1979 LBL collaborated with Pacific Gas & Electric Company (PG & E) in designing the first quantitative, comprehensive ECH (Energy Conservation Home) Rating Program: an energy point system based on exceeding the State of California Title 24 building standards. The program was quite successful as approximately 66% of the newly connected homes in 1981 (the last year of the program) qualified for the "ECH" rating. Figure 12 plots trends in energy use for newly built homes in PG & E's service area prior to the ECH program, compared to the energy use of an average ECH home or of an optimum home.

Presently there are a number of rating and labeling systems employed. Their accuracy, adequacy, and usefulness still needs to be thoroughly examined. Rosenfeld and Wagner (1982) at LBL propose to use an absolute rating scale (reference point of zero) with the homes labeled in actual energy units or actual dollars instead of "points". They estimate the potential impact of ratings on the market value of efficient homes to be substantial (± $2500). Ratings can be utilized for both new and existing homes and can be updated as the building undergoes changes. Figure 13 displays a sample rating, calculated using LBL's CIRA program for a real house in Walnut Creek, CA. The label is designed to illustrate the home's current rating and offer the homeowner a variety of "target" ratings available to him, and the energy savings resulting from improvements he might choose to make.
Every rating relies on a specified test procedure. There is the standard urban or highway cycle for automobiles and there are standard conditions for testing a refrigerator and other appliances. Likewise the standard use of a home must be defined in terms of number of occupants, appliance usage, thermostat settings, weather, etc. Rosenfeld and Wagner suggest a certification process for rating tools and users and an ongoing monitoring process to support the certification. They believe that the next step should be a pilot project to field-test the whole rating process. Meanwhile the good news is that "Freddie Mac" and "Fannie Mae" (the major wholesale mortgage lenders) have agreed to lend additional money for energy-efficient homes, specifically to raise the "debt/income" ratio from 28% to 30 or 32%.

CONCLUSIONS

It is evident that progress is being made in improving the energy efficiency of buildings in the U.S. New products such as heat mirror windows, high-frequency solid-state ballasts for fluorescent lamps, efficient light bulb replacements, and microcomputer control systems are available in the marketplace. Useful analytical methods and models along with computer simulations have enabled scientists, engineers, and architects to gain an understanding of the energy needed for particular end-uses and to design efficient structures. Techniques such as earth berming, superinsulation, thermal storage, and innovations in HVAC systems and controls have decreased the energy requirements for buildings. Better operation and maintenance procedures have reduced energy consumption. Possible problems associated with "tightening" buildings, such as indoor air quality, are being carefully examined.

Preliminary analyses of actual buildings energy consumption data confirm the progress in energy efficiency. New commercial and residential buildings use less energy than the existing stocks. Time trends indicate a steady improvement in the energy efficiency of new construction. Many low-energy buildings are being constructed for no extra cost. Retrofits in both the commercial and residential sectors have shown a wide range in energy savings and costs but most have been cost-effective—although modest and "conventional" investments. Comparisons of predicted vs. actual results indicate that the prediction tools are generally reliable in the aggregate, but poor for individual buildings. The use of home energy efficiency ratings may be the approach needed to decrease the lag time between actual building practice and cost-effective construction methods.

Collection and analysis of metered energy consumption data for buildings of all types in climate zones throughout the U.S. and other countries, for multiple years, are needed to accurately evaluate what progress is being made in the energy efficiency of buildings. Better cost data would improve the economic analysis. We at LBL solicit your data, your references to other possible data sources, and your suggestions so that we can greatly increase the scope and accuracy of our data compilations.
ACKNOWLEDGEMENTS

Special thanks go to Jeffrey Harris, who provided us with helpful suggestions and critical comments, and Jeana Traynor for her wordprocessing skills and overall assistance.

The work described in this report was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Buildings Energy Research and Development, Buildings Systems Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

REFERENCES

Office Building Resource Energy Intensity, 40 year trends

Figure 1. Forty-year trend in annual resource energy use per unit area of new U.S. and Swedish office buildings. Ten recent energy-efficient U.S. office buildings are represented by "X's". Electricity is counted in resource energy units of 11,500 Btu per kWh.

Figure 2. Histogram of the distribution of total site energy usage for the new U.S. office buildings contained in the LBL BECA-CN data base. The buildings are separated into two groups: those with performance data and those with design data.
Figure 3. Time trend in annual fuel for gas space heating in new U.S. single family homes as represented by NAHB surveys. Energy usage by 1979 U.S. average stock for space heat, water heat, and appliances is shown for comparison. The bar labelled "BECA-A" represents the approximate range for the fuel intensities of many of the low-energy residences compiled in BECA-A.

Figure 4. BECA-A scatter plot of annual thermal intensity versus heating degree days for 27 points representing 215 submetered energy-efficient new residential buildings. The solid curve is based on a 1979 NAHB survey of U.S. building practice.
Figure 5. Histogram of installed measures for commercial building retrofits contained in BECA-C data base.

Figure 6. Histogram of simple payback periods for the subset of commercial building retrofits from BECA-C which have complete cost data.
Figure 7. Scatter plot of annual resource energy savings versus contractor cost for the residential building retrofit projects contained in the BECA-B database. Cost-effectiveness boundary lines are drawn for reference.

Figure 8. Histogram of simple payback periods for the residential retrofit projects contained in the BECA-B database.
Figure 9. Predicted (DOE-2 and BLAST) site energy use versus measured site energy use, averaged over metering period (1 month to 1 year), for commercial buildings contained in the BECA-V data base.

Figure 10. Predicted versus measured site energy use, averaged over monitoring period (3 months to 1 year), for residential buildings contained in the BECA-V data base.
Figure 11A. Predicted versus actual energy savings (percent) for 18 well-documented commercial building retrofits, showing little correlation between predictions and measured results for the individual buildings (denoted by +). The 18-building aggregate point (denoted by ⬤) shows reasonable agreement.

Figure 11B. Actual versus predicted energy savings (percent) for 9 residential building retrofit projects, showing reasonably good correlation between predictions and measured results. The data points, except for G1 which is a single residence, represent aggregates of buildings varying in number from 4 to 8802.
Figure 12. Time trend for total gas use in new homes located within Pacific Gas & Electric Company's service area. Points representing an average ECH home, a sample ECH home, and an optimum home are plotted for reference.

Figure 13. Sample home energy rating expressed in terms of the yearly cost of energy for a 1500-ft² house located in Walnut Creek, CA.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.