Renal Cell Carcinoma With Inferior Vena Cava Involvement: Prognostic Effect of Tumor Thrombus Consistency on Cancer Specific Survival

RENE MAGER, MD,* SIAMAK DANESHMAND, MD,1 CHRISTOPHER P. EVANS, MD,2 JOAN PALOU, MD, PhD,4 JUAN I. MARTINEZ-SALAMANCA, MD,5 VIRAJ A. MASTER, MD, PhD,6 JAMES M. MCKIERNAN, MD,7 JOHN A. LIBERTINO, MD,8 AXEL HAFERKAMP, MD,1 ON BEHALF OF THE INTERNATIONAL RENAL CELL CARCINOMA-VENOUS THROMBUS CONSORTIUM,8 AXEL HAFERKAMP, 1 UMBERTO CAPITANIO,9 JOAQUIN A. CARBALLIDO,10 VENANCIO CHANTADA,11 THOMAS CHROMECKI,12 GAETANO CIANCIO,13 SIAMAK DANESHMAND, 2 CHRISTOPHER P. EVANS,3 PAOLO GONTERO,14 JAVIER GONZÁLEZ,15 MARKUS HOHENFELLNER,16 WILLIAM C. HUANG,17 THERESA M. KOPPIE,18 JOHN A. LIBERTINO,8 ESTEFANÍA LINARES ESPÍNOS,19 ADAM LORENTZ,6 JUAN I. MARTINEZ-SALAMANCA,10 VIRAJ A. MASTER,6 JAMES M. MCKIERNAN,7 FRANCESCO MONTORSI,9 GIACOMO NOVARA,20 PATRICK O’MALLEY,21 SASCHA PAHERNIK,16 JOAN PALOU,4 JOSÉ LUIS PONTONES MORENO,22 RAJ S. PRUTHI,23 OSCAR RODRÍGUEZ FABA,4 PAUL RUSSO,24 DOUGLAS S. SCHERR,21 SHAHROKH F. SHARIAT,25 MARTIN SPAHN,26 CARLO TERRONE,27 DERYA TILKI,3 DARIO VÁZQUEZ-MARTUL,1 CESAR VERA DONOSO,22 DANIEL VERGHO,26 ERIC M. WALLEN,23 AND RICHARD ZIGEUNER12

1Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
2USC/Norris Comprehensive Cancer Center, Los Angeles, California
3Department of Urology, UC Davis Medical Center, Sacramento, California
4Department of Urology, Fundación Puigvert, Barcelona, Spain
5Department of Urology, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain
6Department of Urology, Emory University, Atlanta, Georgia
7Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York
8Department of Urology, Lahey Clinic, Burlington, Massachusetts
9Department of Urology, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, Madrid, Spain
10Department of Urology, Complejo Hospitalario Universitario A Coruña, Coruña, Spain
11Department of Urology, Medical University of Graz, Graz, Austria
12Department of Urology, Miami Transplant Institute, University of Miami, Miami, Florida
13Department of Urology, A.O.U. San Giovanni Battista, University of Turin, Turin, Italy
14Department of Urology, Hospital Central de la Cruz Roja San José y Santa Adela, Madrid, Spain
15Department of Urology, University of Heidelberg, Heidelberg, Germany
16Department of Urology, New York University School of Medicine, New York, New York
17Department of Urology, Oregon Health and Science University, Portland, Oregon
18Department of Urology, Hospital Universitario Infanta Sofia, Madrid, Spain
19Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
20Department of Urology, Weill Cornell Medical Center, New York, New York
21Department of Urology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
22Department of Urology, UNC at Chapel Hill, Chapel Hill, North Carolina
23Department of Urology, Medical University of Vienna, Vienna, Austria
24Department of Urology, University of Würzburg, Würzburg, Germany
25Department of Urology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy

*Members of the International Renal Cell Carcinoma-Venous Thrombus Consortium (IRCCVTC).
Conflict of interest: The authors declare that they have no conflict of interest.
Disclosures and Funding Sources: No funding has been granted for the study. The participating centers provided local ethics committee approval for their site.
*Correspondence to: René Mager, MD, Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany. Fax: +49-6131-17/2305. E-mail: rene.mager@unimedizin-mainz.de
Received 29 April 2016; Accepted 18 July 2016
DOI 10.1002/jso.24395
Published online 26 August 2016 in Wiley Online Library (wileyonlinelibrary.com).
© 2016 Wiley Periodicals, Inc.
Background: Renal cell carcinoma forming a venous tumor thrombus (VTT) in the inferior vena cava (IVC) has a poor prognosis. Recent investigations have been focused on prognostic markers of survival. Thrombus consistency (TC) has been proposed to be of significance but yet there are conflicting data. The aim of this study is to test the effect of IVC VTT consistency on cancer specific survival (CSS) in a multi-institutional cohort.

Methods: The records of 413 patients collected by the International Renal Cell Carcinoma–Venous Thrombus Consortium were retrospectively analyzed. All patients underwent radical nephrectomy and tumor thrombectomy. Kaplan–Meier estimate and Cox regression analyses investigated the impact of TC on CSS in addition to established clinicopathological predictors.

Results: VTT was solid in 225 patients and friable in 188 patients. Median CSS was 50 months in solid and 45 months in friable VTT. TC showed no significant association with metastatic spread, pT stage, perinephric fat invasion, and higher Fuhrman grade. Survival analysis and Cox regression rejected TC as prognostic marker for CSS.

Conclusions: In the largest cohort published so far, TC seems not to be independently associated with survival in RCC patients and should therefore not be included in risk stratification models.

KEY WORDS: venous tumor thrombus; renal cell carcinoma; thrombus consistency; cancer specific survival

INTRODUCTION

Renal cell carcinoma (RCC) represents roughly 3% of cancers worldwide [1] and its estimated incidence is approximately 12/100,000 in the US and Europe [2,3]. In 4–10% of patients, RCC forms a venous tumor thrombus (VTT) and invades the inferior vena cava (IVC) [4]. VTT is considered to be an independent adverse prognostic parameter [5]. Although approximately 44% of patients with RCC and VTT present with synchronous metastases resulting in a reduced 5-year cancer specific survival (CSS) between 17% and 36% surgery remains the first treatment option [6]. In those cases, nephrectomy plus thrombectomy may result in improved survival and better effect of subsequent targeted therapy [7,8]. Recently, tumor thrombus consistency gained attention for its prognostic value:

In a retrospective study cohort of 174 patients, friable thrombus consistency was an independent predictor of survival and was associated with a significantly poorer CSS and overall survival (OS) [9].

At present two studies have been published trying to validate these results: A retrospective analysis of 200 patients confirmed significantly shorter OS for patients with friable thrombus consistency but failed to demonstrate significance of thrombus consistency in predicting survival independently. Solely in the subgroup of non-metastasized patients thrombus consistency was of predictive value [10]. Conversely, in another cohort of 147 patients thrombus consistency was not related to survival [11].

Given these apparent controversies, we aimed to evaluate the prognostic effect of tumor thrombus consistency in patients with IVC involvement in the largest multi-institutional cohort of IVC patients available.

MATERIALS AND METHODS

Patients

The patients of our study were collected retrospectively by the International Renal Cell Carcinoma–Venous Thrombus Consortium (IRCCVT). Prior to data collection all of the participating centers provided local ethics committee approval for their site. Data were submitted according to the IRCCVT criteria and were cleared for data inconsistencies [12,13]. We retrospectively enrolled 477 patients who underwent radical nephrectomy and IVC tumor thrombectomy of hard or elastic VTT from 1975 to 2014 in 16 European and US centers. Patient records incomplete for tumor thrombus level, TNM staging, Fuhrman grade, and perinephric fat invasion were excluded from analysis.

Definition of Variables

Thrombus consistency was classified binarily as friable or solid depending on the surgeon’s intraoperative discovery of pliable and silitery or hard and barely compressible thrombotic tissue.

Thrombus level was defined according to Mayo classification [14]. Only IVC tumor thrombus patients (levels I–IV) were part of the study. TNM staging corresponded to the 2009 system [15]. RCCs were of clear cell, papillary, or chromophobe histological subtype [16]. Other renal neoplasms were excluded from study cohort [17]. Types 1 and 2 papillary RCC were not distinguished.

Follow Up

Follow-up was conducted according to local standards. Date of last follow-up and date of death were available for survival analysis. Cause of death was specified to distinguish cancer specific from cancer independent death.

Statistical Analysis

The distribution of IVC tumor thrombus consistency in categorical clinicopathological variables was assessed using Chi-square test or Fisher’s exact test. Continuous variables were analyzed by T test. Survival was calculated from the date of surgery to last follow-up or death. Tumor-independent death was censored. Survival analysis was performed with Kaplan–Meier estimates and variables were compared using log-rank test according to Peto–Pike. The clinicopathologic variables thrombus consistency, thrombus level, pT stage, presence of metastasis, Fuhrman grade, and perinephric fat invasion were selected for evaluation of their prognostic significance on cancer specific survival. To assess the variable’s impact on survival, univariable and multivariable analyses were performed using Cox proportional hazard regression model. All tests were two-sided and a P-value of P < 0.05 was considered significant. Data were analyzed using Bias software (epsilon, Frankfurt, Germany) [18].

RESULTS

Of 477 patients enrolled, 413 patients fulfilled all aforementioned criteria and were available for analysis. There were 225 patients (54%) with solid and 188 patients (46%) with friable tumor thrombus in the IVC. Clinical and pathological features separated for solid and friable tumor thrombus consistency are shown in Table I. Neither friable nor solid tumor thrombus showed significant association with the histological subtype, presence of nodal or distant metastases, pT
TABLE I. Characteristics of RCC Patients With IVC TT of RCC (at Least pT3b Stage) and Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>Friable IVC TT</th>
<th>Solid IVC TT</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>413</td>
<td>188</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>PT stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT3b</td>
<td>251</td>
<td>112</td>
<td>139</td>
<td>0.9a</td>
</tr>
<tr>
<td>pT3c</td>
<td>130</td>
<td>61</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>pT4</td>
<td>32</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Fuhrmann grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>39</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>194</td>
<td>83</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>114</td>
<td>62</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>VTT level (Mayo classification)</td>
<td></td>
<td></td>
<td></td>
<td>0.03a</td>
</tr>
<tr>
<td>1</td>
<td>113</td>
<td>48</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>136</td>
<td>75</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>37</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>79</td>
<td>28</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Histological subtype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear cell RCC</td>
<td>371</td>
<td>169</td>
<td>202</td>
<td>0.4a</td>
</tr>
<tr>
<td>Papillary RCC</td>
<td>29</td>
<td>11</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Chromophobe RCC</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nodal status</td>
<td></td>
<td></td>
<td></td>
<td>0.8a</td>
</tr>
<tr>
<td>N0/Nx</td>
<td>297</td>
<td>134</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>N+</td>
<td>116</td>
<td>54</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Distant metastasis</td>
<td></td>
<td></td>
<td></td>
<td>0.2a</td>
</tr>
<tr>
<td>M0/Mx</td>
<td>303</td>
<td>145</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>110</td>
<td>43</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Perinephric fat invasion</td>
<td></td>
<td></td>
<td></td>
<td>0.5a</td>
</tr>
<tr>
<td>Yes</td>
<td>266</td>
<td>124</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>147</td>
<td>64</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>IVC wall invasion</td>
<td></td>
<td></td>
<td></td>
<td>0.2a</td>
</tr>
<tr>
<td>Yes</td>
<td>119</td>
<td>60</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>294</td>
<td>128</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0.5a</td>
</tr>
<tr>
<td>Male</td>
<td>278</td>
<td>123</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>135</td>
<td>65</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td>0.49f</td>
</tr>
<tr>
<td>Mean</td>
<td>61.5</td>
<td>61.0</td>
<td>61.9</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>62</td>
<td>61</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>20–84</td>
<td>20–84</td>
<td>23–84</td>
<td></td>
</tr>
</tbody>
</table>

a Chi-square test.
b Fisher’s exact test.
c T test.

DISCUSSION

Locally advanced RCC with VTT is a grave disease with an unfavorable prognosis. Even if staging at diagnosis reveals no sign of metastases in our N0M0 subgroup it is accompanied with cancer specific death in approximately 29% of cases. Surgical resection remains the only treatment option for cure in non-metastatic disease and is also part of a multimodal treatment approach in metastatic disease because targeted therapy alone is considered to be less effective [7,8,19–21]. However, in most patients with IVC involvement of RCC survival is limited. Taken into account the high risk of tumor recurrence or progression in patients with RCC and IVC despite surgery prognostic markers to identify patients in need for further treatment or closer follow up would be beneficial. In view of recently published data [9–11], the current study aimed to validate if thrombus consistency could serve as a significant and relevant prognostic marker for survival. Interestingly, in our large multi-institutional cohort of 413 patients thrombus consistency neither is significantly involved in cancer specific survival analyzing Kaplan–Meier curves nor contributes significantly to survival in univariable and multivariable Cox regression. Dividing the study population into metastasized and non-metastasized patients demonstrated the same results for each subgroup.

Our results support recently published data by Antonelli et al. where tumor consistency also failed to serve as a predictive marker for survival in a smaller cohort of 147 patients [11]. These observations are in contrast to Bertini et al. who were able to show a significantly decreased cancer specific survival in patients with friable solid caval tumor thrombus. Furthermore, the latest subgroup of patients operated between 2006 and 2014 were analyzed the same way and demonstrated similar results (data not shown).
perinephric fat invasion has been considered to be an independent adverse prognostic marker in metastasized patients [11]. Our results support the hypothesis that poor outcome in patients with friable thrombus consistency as reported by Bertini et al. might rather be biased by the dominating impact of these unfavorable tumor characteristics than caused by friable thrombus related lack of cell adhesion molecules [10,11].

The other previously published study by Weiss et al. with 200 patients reported that friable thrombus consistency was solely significantly in multivariable analysis of OS in non-metastasized patients [10]. These results might indicate again the dominating impact of metastatic disease on survival. Furthermore, the inclusion of 137 level 0 VTT patients associated with solid thrombus consistency in 70% might bias the favorable survival in the solid thrombus consistency group [10].

In accordance to previously published data, our study confirmed the impact of different clinicopathologic variables on survival: Thrombus levels I and II showed a significantly increased survival compared to levels III and IV and multivariable analysis confirmed thrombus level as independent prognostic marker in non-metastasized patients [7,13,24,25]. As reported by Bertini et al. and Weiss et al., predictive value of pT stage was restricted to univariable analysis [9,10]. In multivariable analysis, redundancy of the variables thrombus level and perinephric fat invasion in pT stage analysis might bias the results. In non-metastasized tumor patients, Fuhrman grade and thrombus level were independent predictors of poor survival indicating the tumor’s capacity to invasive growth or metastatic spread [7]. IVC wall invasion deteriorated CSS significantly as previously reported by Hatcher et al. but was no independent predictor for survival in multivariable analysis [26].

In summary, metastatic spread such as nodal involvement or distant metastases is the most decisive variable for survival exceeding almost all variables of locally advanced RCC. In the current study population, once metastasized, 5-year CSS probability is reduced by 60% compared to unmetastasized patients [7,13,24,25]. As reported by Bertini et al. and Weiss et al., level as independent prognostic marker in non-metastasized group [26].

To complete the analysis of the impact of VTT consistency on RCC patients, we further investigated how thrombus consistency would influence the surgical technique: Multivariable analysis revealed that thrombus consistency was no independent predictor for the necessity of cavectomy, cavotomy, or Pringle maneuver whereas thrombus level—as commonly recognized [27,28]—proved to be of significant predictive value (data not shown).

Our study had several limitations determined by retrospective analysis and multi-institutional approach. IRCCVTC database included 477 patients but due to missing data and non-RCC histopathology only 413 patients met all criteria mandatory for multivariable analysis. In contrast to previous publications where thrombus consistency was classified by histopathological re-evaluation [9–11], IRCCVTC data was limited to surgeons’ intraoperative description of thrombus consistency. This might be negligible since Bertini has provided statistical measure of interrater-agreement between surgeons’ description and retrospective histopathologic re-evaluation in a subgroup of 61 patients showing an excellent agreement (κ = 0.83) equal to the interrater-agreement between two pathologists (κ = 0.78) [9]. Our results might be biased by innovations in diagnostics, surgical treatment, and targeted therapy during the analyzed period. Treatment of mRCC has changed dramatically with the emergence of molecular diagnostics, surgical treatment, and targeted therapy during the analyzed period. Treatment of mRCC has changed dramatically with the emergence of molecular diagnostics, surgical treatment, and targeted therapy during the analyzed period.

In summary, metastatic spread such as nodal involvement or distant metastases is the most decisive variable for survival exceeding almost all variables of locally advanced RCC. In the current study population, once metastasized, 5-year CSS probability is reduced by 60% compared to unmetastasized patients [7,13,24,25]. As reported by Bertini et al. and Weiss et al., level as independent prognostic marker in non-metastasized group [26].

To complete the analysis of the impact of VTT consistency on RCC patients, we further investigated how thrombus consistency would influence the surgical technique: Multivariable analysis revealed that thrombus consistency was no independent predictor for the necessity of cavectomy, cavotomy, or Pringle maneuver whereas thrombus level—as commonly recognized [27,28]—proved to be of significant predictive value (data not shown).

Our study had several limitations determined by retrospective analysis and multi-institutional approach. IRCCVTC database included 477 patients but due to missing data and non-RCC histopathology only 413 patients met all criteria mandatory for multivariable analysis. In contrast to previous publications where thrombus consistency was classified by histopathological re-evaluation [9–11], IRCCVTC data was limited to surgeons’ intraoperative description of thrombus consistency. This might be negligible since Bertini has provided statistical measure of interrater-agreement between surgeons’ description and retrospective histopathologic re-evaluation in a subgroup of 61 patients showing an excellent agreement (κ = 0.83) equal to the interrater-agreement between two pathologists (κ = 0.78) [9]. Our results might be biased by innovations in diagnostics, surgical treatment, and targeted therapy during the analyzed period. Treatment of mRCC has changed dramatically with the emergence of molecular diagnostics, surgical treatment, and targeted therapy during the analyzed period. Treatment of mRCC has changed dramatically with the emergence of molecular diagnostics, surgical treatment, and targeted therapy during the analyzed period.

In summary, metastatic spread such as nodal involvement or distant metastases is the most decisive variable for survival exceeding almost all variables of locally advanced RCC. In the current study population, once metastasized, 5-year CSS probability is reduced by 60% compared to unmetastasized patients [7,13,24,25]. As reported by Bertini et al. and Weiss et al., level as independent prognostic marker in non-metastasized group [26].

To complete the analysis of the impact of VTT consistency on RCC patients, we further investigated how thrombus consistency would influence the surgical technique: Multivariable analysis revealed that thrombus consistency was no independent predictor for the necessity of cavectomy, cavotomy, or Pringle maneuver whereas thrombus level—as commonly recognized [27,28]—proved to be of significant predictive value (data not shown).

Our study had several limitations determined by retrospective analysis and multi-institutional approach. IRCCVTC database included 477 patients but due to missing data and non-RCC histopathology only 413 patients met all criteria mandatory for multivariable analysis. In contrast to previous publications where thrombus consistency was classified by histopathological re-evaluation [9–11], IRCCVTC data was limited to surgeons’ intraoperative description of thrombus consistency. This might be negligible since Bertini has provided statistical measure of interrater-agreement between surgeons’ description and retrospective histopathologic re-evaluation in a subgroup of 61 patients showing an excellent agreement (κ = 0.83) equal to the interrater-agreement between two pathologists (κ = 0.78) [9]. Our results might be biased by innovations in diagnostics, surgical treatment, and targeted therapy during the analyzed period. Treatment of mRCC has changed dramatically with the emergence of molecular diagnostics, surgical treatment, and targeted therapy during the analyzed period. Treatment of mRCC has changed dramatically with the emergence of molecular diagnostics, surgical treatment, and targeted therapy during the analyzed period.

In summary, metastatic spread such as nodal involvement or distant metastases is the most decisive variable for survival exceeding almost all variables of locally advanced RCC. In the current study population, once metastasized, 5-year CSS probability is reduced by 60% compared to unmetastasized patients [7,13,24,25]. As reported by Bertini et al. and Weiss et al., level as independent prognostic marker in non-metastasized group [26].

To complete the analysis of the impact of VTT consistency on RCC patients, we further investigated how thrombus consistency would influence the surgical technique: Multivariable analysis revealed that thrombus consistency was no independent predictor for the necessity of cavectomy, cavotomy, or Pringle maneuver whereas thrombus level—as commonly recognized [27,28]—proved to be of significant predictive value (data not shown).

Our study had several limitations determined by retrospective analysis and multi-institutional approach. IRCCVTC database included 477 patients but due to missing data and non-RCC histopathology only 413 patients met all criteria mandatory for multivariable analysis. In contrast to previous publications where thrombus consistency was classified by histopathological re-evaluation [9–11], IRCCVTC data was limited to surgeons’ intraoperative description of thrombus consistency. This might be negligible since Bertini has provided statistical measure of interrater-agreement between surgeons’ description and retrospective histopathologic re-evaluation in a subgroup of 61 patients showing an excellent agreement (κ = 0.83) equal to the interrater-agreement between two pathologists (κ = 0.78) [9]. Our results might be biased by innovations in diagnostics, surgical treatment, and targeted therapy during the analyzed period. Treatment of mRCC has changed dramatically with the emergence of molecular diagnostics, surgical treatment, and targeted therapy during the analyzed period. Treatment of mRCC has changed dramatically with the emergence of molecular diagnostics, surgical treatment, and targeted therapy during the analyzed period.
performed additional analysis of this subgroup demonstrating similar results. Therefore, we assume equal in performance additional analysis of this subgroup demonstrating similar results. Therefore, we assume equal in performance additional analysis of this subgroup demonstrating similar results. Therefore, we assume equal

CONCLUSIONS

Our large multi-institutional and international study cohort provided unique data to define the role of thrombus consistency in RCC with VTT involving the IVC. Survival analysis showed no difference in survival between friable and solid thrombus consistency. Furthermore, thrombus consistency was not of significance in prediction of survival. Traditionally used prognostic markers such as perinephric fat invasion, thrombus level, or Fuhrman grade were shown to be of much stronger relevance. Our data confirmed once more metastatic disease as strongest independent predictor of poor survival. At present prognostic nomograms and models integrating clinical, pathohistological, and molecular variables increasingly aim to guide cancer treatment. In RCC with VTT and IVC, involvement the variable thrombus consistency failed to predict CSS and should therefore not be introduced in risk stratification models.

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher’s web-site.